Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 DATASET DETAILS

We use three graph models: ER random graph, Barabési-Albert (BA) graph Albert & Barabdsi (2002)
and Random Geometric Graph (Geometric or RGG) Dall & Christensen (2002). The density of
all three (|E|/(%)) is adjustable, but BA can produce exact trees. Fixing the number of nodes to
N = 1,000, we first obtain one random instance of tree BA, and dense BA, ER and Geometric
graphs with | E| = 10, 000 using the NetworkX library (NetworkX developer team, 2014) and then
use NDLib (Rossetti et al., 2017) to simulate SIR and SEIR epidemic dynamics on the graph (supp.
A.1). For each sample graph, we pick a PO seed node ¢ at random to be the patient zero at time ¢ = 0
and then we run S(E)IR a fixed number of steps T". The epidemic parameters («, 3, y) are chosen
such that we can vary Ry to study model performance. We set v = 0.4 and 3 = Ry7y/A1 where A is
the largest eigenvalue of the graph. For SEIR, we set a = 0.5. We generate 20, 000 simulations and
use 80 — 10 — 10 train-validation-test split. For each sample we select ¢ € {1,--- T} uniformly at
random and try to predict PO at time ¢ = 0 given the graph adjacency matrix A and node features x?.

Table 1 describes the details of the synthetic datasets.

Table 1: Description of the sampled graph statistics

Dataset # of Nodes # of Edges Density Diameter

BA-Tree 1,000 999 0.99 19
BA-Dense 1,000 9,900 9.90 4
Geometric 1,000 9,282 9.28 21
ER-Dense 1,000 9,930 9.93 4

A.2 TRAINING AND HARDWARE

We train the model with an ADAM optimizer for 150 epochs with an initial learning rate of 0.003
and decay the learning rate by 0.5 when the validation loss plateaus with a patience of 10 epochs.
We perform hyperparameter tuning over a validation set with a random search strategy. We sweep
over the hyperparameter space and track our experiments using Weights and Biases Biewald (2020)
choosing the model with the lowest validation error. We run our experiments on Nvidia 2080Ti GPUs
and report performance averaged over 4 random seeds.

A.3 HYPER-PARAMETER DETAILS

Table 2: Description of hyper-parameters used. All of our models have been trained with 4 random
seeds. The initial learning rate is mentioned in the table below and additionally we decay the learning
rate by 0.5 with a patience of 10 epochs when the validation error plateaus. Note that GAT had 4
attention heads and has been trained with 5 layers due to a limitation on GPU memory.

Hyperparameters GCN-S GCN-R GCN-M GAT
Number of Epochs 150 150 150 150
Batch Size 128 128 128 32
GNN Hidden Dim 128 128 128 128
Dropout 0.265 0.265 0.265 0.265
Number of GNN Layers 10 10 10 5

Initial Learning Rate 0.0033 0.0033 0.0033 0.004

A.4 NOTES ON DMP IMPLEMENTATION

We include DMP Lokhov et al. (2014) as a baseline against our proposed GNN based method. As
DMP does not have code that is publicly available, we implemented DMP using Python for a fair

12

Under review as a conference paper at ICLR 2021

comparison with GNNs. Accordingly, our implementation of DMP uses DGL Wang et al. (2019)
which enables us to vectorize belief propagation (BP) and marginalization and now it runs in parallel
for all nodes.

Given a graph G(V, E), we observe O? as the state of the graph with nodes i € V. DMP employs
MLE estimation to determine the node 7p(that may have led to the observed snapshot O. For a
single sample in our dataset D, we use algorithm 1. In order to implement DMP efficiently, we
implemented it as a message-passing on a graph using DGL. We sequentially initialize node and edge
features for all node 7 and then as we obtain N = |V| set of graphs with node 4 acting as PO in G;.
DMP then allows us to obtain ¢ = argmax,; P(O|¢). The advantage of our implementation then is that
we can process all N graphs in parallel as if it were one large graph with N2 nodes and E? edges
thanks to DGL’s support for batching graphs. A salient feature of using DGL is that the message
passing framework allows us to additionally process all the nodes and edges for a single time step ¢
in parallel. The nature of BP algorithms do not allow us to do away with the for-loop over time t and
that remains the only sequential aspect of our implementation. Finally, we use algorithm 1 to process
each sample in our test set sequentially. It should be noted that we can further vectorize over a batch
of samples in our test set. However, the memory required for DMP is O(bN?E?) with b being the
size of the batch and so memory requirements quickly blow up. Accordingly, we leave this aspect of
implementation for future work.

Algorithm 1: Dynamic Message Passing given graph G, snapshot O and time t

for: € V do
set node 7 to be PO
initialize node features and edge features with eq (12, 13) in DMP;
for(t=0;t<t;t=t+1)do
L for ¢ € E do
| perform message passing with eq (15, 16, 17) in DMP

for j € V do
| marginalize and update node states with eq (18, 19, 20) in DMP.

| Calculate P(Oli) with eq 21 in DMP.
return i = argmax; P(O|i)

A.5 EFFECT OF VARYING NUMBER OF GCN—-S LAYERS ON TOP-1 ACCURACY

Fig. 6 shows the top-1 accuracy of PO of the GCN-S model for varying number of layers. We do
not observe a significant effect coming from the number of layers. This may be due to the accuracy
limitations with %, and cycles affecting all the models equally, and superseding other effects such
as the diameter of the graph. Another possible reason may be that the 20,000 samples on a graph
of 1,000 nodes has many repetitions of the same PO, resulting in both shallow and deep models
memorizing patterns.

Lo (a) BA-Tree (b) BA-Dense (c) Geometric (d) ER-Dense
>0, N\ — 122
Bt Vo Ve \\ _
x 06 o \}% A L=5
Voo04 AAL N A = = =10
<02 . ad YRAAA s
1 5 9 1317212529 1 5 9 1317212529 1 5 9 1317212529 1 5 9 13 17 21 25 29
Time Steps Time Steps Time Steps Time Steps

Figure 6: Performance of GCN-S for SIR epidemic dynamics as top-1 accuracy over the test set with
varying number of layers.

13

Under review as a conference paper at ICLR 2021

B THEORETICAL ANALYSIS

B.1 EARLY STAGE EVOLUTION OF SIR AND SEIR

The SIR equation on a graph are

das;
dt

dR; as; dI; dR;

=8> A,LS;, =9I, —
BZ J a ! dt dt dt

=0. (11

In very early stages, whent < 1/yand), I; + R; < N, we have S; = 1 and we have exponential
for I; because

dsS; dl; dR; dI;

@ @ a - ar

d;

E:ﬂ;AijIj& ~vI; ~Z ’Y@g

Li(t) =) (explt (BA — D)), Ij(O) (12)

J

Expanding this using the eigen-decomposition A = >, i1} yields eq. (29).

B.2 TRANSITION PROBABILITIES

More generally, when the graph is weighted, the probability of susceptible node ¢ getting infected
depends on A;; and the probability of node j being in the infected state. For brevity, define
pi(t) = P(z! = p), with p € {S, I, ..., R}. The infection probability in SIR (2) can be written as

Pttt =Tzt =8)=1- H (1— BA;pl) ﬂZA”pJ B2 [Ap" 12+ 0(B%). (13)
J
B.3 REACTION DIFFUSION FORMULATION

For brevity, define p!'(t) = P(z! = p). In a network diffusion process the assumption is that node i
can only be directly affected by state of node j if there is a connection between them, i.e. if A;; # 0.
This restriction means that the general reaction-diffusion process on a graph has the form

Ap)t =3 fu(9(A)isha(0))") (14)
pi(t+1) = F(A;p); = o ({Fa(4;p(t));}) (15)

With
9a(A)ij = 0(Aij)Ga(A)ij ha(pi) = 04 (Z Wa.pi + bff) (16)

where 6(-) is the step function and o,(-) a nonlinear function. In regular diffusion on a graph, we
have two states S, I and diffusion is changing the S — I state. The probability P;; = P(x?l =
I |x = 5) of node ¢ getting infected at ¢ 4+ 1, given node j was in the infected state at time ¢, can be
expressed in the form of is determined by the adjacency matrix A;; because node] can only infect its
neighbors. The infection probability is given by p! (¢t + 1) = BA;; pj() and p¥ = 1 — p!. Hence,
for diffusion

fi(z)=a g1(A) = BA, 1(py) = Zéf‘éyp] (17)

In regular diffusion there is no condition on the target node ¢ and even if it is in the I state the

dynamics is the same. In the SI model, however, the infection only spreads to i if it is in the S state.

Thus, we have to multiply the dynamics by p? = P(x! = S) which yields

pi(t+1) = BAypl(t)ps. (18)

14

Under review as a conference paper at ICLR 2021

This can still be written as (9) by adding the extra functions
fo(a) = =, 92(A) =1, ha(ps)* = 856, (19)

and having
pilt + 1) = Fy(A;p(t)] Fa(A; p(t))} (20)

where F,, = fo(ga - ha) are as in (14). More complex epidemic spreading models such as SIR and
SEIR can also be written in a similar fashion. In SIR and SEIR the rest of the dynamic equations
are linear and do not involve the the graph adjacency A at all, meaning g,(A) = I in the rest of the
equations.

B.4 DISCRETE TIME AGENT-BASED SIR AS A REACTION DIFFUSION SYSTEM

The agent-based models (2) and (3), which correct for double-counting of infection from multiple
neighbours, are sometimes written as

P =Izi =5)=1-(1-p)%, 1)

where &; is the total number of neighbors j of ¢ which are infected, meaning ! = I. We will first
show that this is a special case of the form given in our paper. First, note that in (5) the terms can also
be written as

=35 =TT (1 - Bousr) 22)

J

In the probabilistic model, we have to replace the strict condition of j being in the I state with its
probability, so 0,¢ ; — P(z} = I) = pi(t).

P(att = Ijat = 8) = 1= [T (1- BAyp}) (23)
J€EO;
and for small /3 yield
Pz =1Ilz;=8) =5 Z Az‘jpjl' - B Z Aijp]I‘Aikpi +0(8%) 24)
J Jik

which yields the simplified equation p;(t + 1)! = p¥(t) > ; 5Aijp§ (t). Note that if the infection
rate per time step [is large 8> j Aijpj can exceed 1, rendering (24) inconsistent with p{ being

probabilities. Both (23) and (24) both can be written in the form of RD (15) and (9). We utilize the
h1, g1 and ho, g found for diffusion (17) and SI (19)

Fy(Asp)t =Y tog (1= BAim (p))") Fi(Ap)l = ha(p) (25)
J

and defining the probability as

pl(t+1)=Fif (1 —exp [Fa]]) = pi(t) 1—H(1—6Aup§(t))

~ Bpf ()Y Aipj(t) (26)
J

B.5 PROOFS

Proposition 2. Reaction-diffusion dynamics on graphs is structurally equivalent of the message-
passing neural network ansatz.

15

Under review as a conference paper at ICLR 2021

Proof: Analyzing the full stochastic model requires closely tracking the individual events and varies
in each run. Hence, we will work with mean-field diffusion dynamics using transition probabilities,
instead. Denoting p!'(t) = P(z! = p) of node i being in states such as o € {S, I, ..., R} attime ¢, a
Markovian reaction-diffusion dynamics can be written as

pit+1) =0 ZF(A“ : h(pj)“) : ha(pi) = o (Z W, pi + b“) 27)

J

where A7, = 0(A;;) f(A);; with 6(-) being the step function and o(-) a nonlinear function. To see
this, note that RD processes on graphs involve a message-passing (MP) step (e.g. an infection signal
coming from neighbors of a node), and a reaction step where messages of different states x passed
to node ¢ interact with each other on node . RD dynamics such as the SIR and SEIR models are
also Markovian and the probability p'(¢) only depends on the probabilities at ¢ — 1. These are also
the conditions satisfied by MPNN. In (27), A are a set of propagation rules for the messages, which
are only nonzero where A is nonzero, same as the aggregation rule in MPNN. To have interactions
between states 1 occurring inside each fixed node ¢, h(p;) can mix the states but not change the
node index ¢, leading to the form of h(p;) in (27), which is the general ansatz for a neural network
with weight sharing for nodes, same as in MPNN, and graph neural networks in general. [

B.5.1 PROOF OF THEOREM 3

Theorem 3 (Time Horizon). Assume SIR dynamics (1) on a connected graph of N nodes, starting
with a single patient zero. Denoting the adjacency matrix by A and its largest eigenvalue by A1, the
average infection probability, both over nodes and choice of patient zero, (I(t)) = (}_; Ii(t)/N)p,
becomes O(1) after tiax time steps given by

log N
tnax ~ — 4 > Ry=— (28)
Y(Ro — 1) Ty

Proof: Consider the spectral expansion A = Zivz1 M@ P@T with Ay > -+ > Ay. In (1) early
in the disease spreading, all nodes are susceptible, meaning S; ~ 1, R; ~ 0, and I; ~ 1 — S;. Thus,
combining the three SIR equations, keeping only I;, the infection spreads as Newman (2018)

1i(0) = Y exp [H(BA — 4D, 1;(0) ~ exp (80 — i) (60 10)) ", @9)

J

Here, I is the identity matrix, \; is the largest eigenvalue of A and () is the corresponding
eigenvector. Averaging over a uniform choice of patient zeros, for the average infection probability
we have

(1) = 5 esp (B3 =) (50 10), S0 = LeplBh - G0

where we used the inequality between L; and Lo norms to get <1p(1) . I(O)>P0 = "¢(1)|’1 >
||1/)(1) ||2 = 1. Connectedness means A is irreducible and by the Perron-Frobenius theorem its leading

eignvector is positive, hence 3, wgl) = |lv W] L2 [|p™) [|,- Setting the lower bound of (30) equal
to 1 and solving for ¢ we get (28). O

B.5.2 PROOF OF THEOREM 2 P;,;

Proof: If PO is in a triangle, we may miss it 2/3 of the times. Thus, the probability of detecting PO is
bounded by P < 1 — Py,; X 2/3, where P,,; is the probability that PO is in a triangle. Since edges in
G are uncorrelated, each having probability p, G is also a connected random graph with the same
edge probability p. Hence, in G all nodes have degree k = p|G|. Py; is one minus the probability

that none of the k neighbors of PO are connected, i.e. Py; =1 — (1 — p)(‘cg lp), which proves the
proposition. O

16

Under review as a conference paper at ICLR 2021

Histogram of log(degrees) - 10 bins (Original Graph with 384, 590 nodes) Histogram of log(degrees) - 10 bins (Original Graph with 2, 689 nodes)

100000
600

. 80000
v

$ 60000
3

»
3
3

o
§ 40000
=

Frequency

N
S
s

w
20000

0 0
1 2 3 4 5 6 7 8 9 1 2 3

4 5 6 7 8 9
log(degree) log(degree)

(a) Degree distribution of original network (b) Degree distribution of subsampled network

Figure 7: Degree distribution of the original co-location network with 384,590 nodes and the
subsampled network with 2, 689 nodes. We subsample the larger network to find a subgraph in order
to reduce computational costs of our experiments. We observe that the distribution of our subsampled
network is similar to the original graph.

C CoviD-19 DATA AND SIMULATIONS

Geolocation data Mobility data are provided by Cuebiq, a location intelligence and measure-
ment platform. Through its Data for Good program (https://www.cuebiqg.com/about/
data-for-good/), Cuebiq provides access to aggregated and privacy-enhanced mobility data for
academic research and humanitarian initiatives. These first-party data are collected from users who
have opted in to provide access to their GPS location data anonymously, through a GDPR-compliant
framework. Additionally, Cuebiq provides an estimate of home and work census areas for each user.
In order to preserve privacy, noise is added to these “personal areas”, by upleveling these areas to the
Census block group level. This allows for demographic analysis while obfuscating the true home
location of anonymous users and preventing misuse of data.

Colocation network The method for constructing the co-location graphs is as follows. First, we
split each day into five minute time windows, resulting in 288 time bins per day. For every location
event, we use its timestamp to assign it to a time bin, then assign the longitude-latitude coordinate of
the observation to an 8-character string known as a geohash. A geohash defines an approximate grid
covering the earth, the area of which varies with latitude. The largest dimensions of an 8-character
geohash are 38m x 19m, at the equator. If a user does not have an observation for a given time bin,
we carry the last observation forward until there is another observation. We finally define two users
to be co-located — and therefore to have a timestamped edge in the graph — if they are observed
in the same geohash in the same time bin. Accordingly, our co-location graph is constructed by
observing the greater Boston area over two weeks from 23 March, 2020 to 5 April, 2020 and results
in a graph with N = 384, 590 nodes. To reduce computational costs, we sample a subgraph with
N = 2,689 nodes and |E| = 30, 376 edges with similar degree distribution and connectivity patterns
as the original graph and can be observed in Fig 7.

Epidemic simulations in real data. We run a SEIR model on the real co-location network. In
doing so, we select parameters and modify the structure of the model to resemble the natural history
of COVID-19 Chinazzi et al. (2020). At each time step nodes, according their health status, can be in
one of five compartments: S, E, I, I, or R. Thus, we split infectious nodes in two categories. Those
that are symptomatic (I) and those that are asymptomatic (/,). The first category infects susceptible
node, with probability A per contact. The second category instead with probability r,\. We set
r, = 0.5 and consider that probability of becoming asymptomatic as p, = 0.5. The generation time,
that is the sum of incubation (') and infectious period (y~1), is set to be 6.5 days. Specifically,
we fix a~! = 2.5 and y~! = 4 days. In a single, homogeneously mixed, population the basic
reproductive number of such epidemic model is Ry = (1 — p, + r4pa) 3/~ where [is the per capita
spreading rate Keeling & Rohani (2011). Here however, the epidemic model unfolds on top of the
real co-location network. Hence, infected nodes are able to transmit the disease only via contacts
(with susceptible individuals) established during the observation period. As mentioned above, the
value of Ry is defined by the interplay between the disease’s parameters as well as the structural
properties of the network Pastor-Satorras et al. (2015); Masuda & Holme (2017). For simplicity we
approximate 5 = (k)\, where (k) is the average number of connections in the network. We obtain
A = 0.073 after solving for Ry and plugging in (k) = 30376/2689 = 11.29. The simulations start

17

Under review as a conference paper at ICLR 2021

with an initial infectious seed selected uniformly at random among all nodes. We then read and store
the time-aggregated network in memory. The infection dynamics, which are catalysed by the contacts
between infectious and nodes, take place on such network. The spontaneous transitions instead (i.e.
transition from .S to £ and the recovery process), take place independently of the connectivity patterns.
After the infection and recovery dynamics, we print out the status, with respect to the disease, of each
node. Finally, we create a dataset with 10, 000 samples and an 80 — 10 — 10 train-validation-test split.

18

