
A Code and Further Resources520

We provide complementary code in the supplementary of the paper. All models were imple-521

mented in Python using the PyTorch library. The total training computation required for op-522

timizing all models and baselines presented in this works amounts to roughly 150 hours (wall523

clock) on a single standard GPU. Visualization and additional material will be uploaded here524

https://sites.google.com/view/velap-corl/home.525

B Hyperparameters and algorithm details526

Here we present a description of the hyperparameter used in method used during the training and527

inference phases.528

B.1 Model architectures529

Table 2: Hyperparameters of the encoder ϕ

Parameter Value

Batch-norm. yes
Filters [32,32,64,64]
Kernels [4,4,4,4]
Strides [2,2,2,2]
Activation LeakyRelu
Dense layers [256, 128, 32]

Table 3: Hyperparameters of dynamics model h

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128,128,32]

Table 4: Hyperparameters of action sampler g (β-VAE)

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Latent dimension 16
β (kl-weight) 0.01
Encoder dense layers [128,128,128, 2*16]
Decoder dense layers [128,128,128, daction,]

Table 5: Hyperparameters of policy networks πl and πg

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128, daction]

14

https://sites.google.com/view/velap-corl/home

Table 6: Hyperparameters of critic networks Ql
k and Qg

Parameter Value

Batch-norm. yes
Activation LeakyRelu
Dense layers [128,128,128, 1]

B.2 Training hyperparameters530

Table 7: Hyperparameters during training (model learning)

Parameter Value

batch size 64
learning rate (all models) 0.0003
c0 0.2
c1 (SpiralMaze) 0.001
c1 (ObstacleMaze) 1.0
c1 (metaworld tasks) 0.01
c2 0.001
c3 0.001
c3 (expert) 0.5
γ (discount factor) 0.96
dZ 32
T (temperature parameter) 1.0
nens 3

B.3 Planner and controller hyperparameters531

Table 8: Hyperparameters during inference (planning)

Name Description Value

niter Number of planner iterations 250 (500 in ButtonWall)

nsim Number of simulation steps during tree expansion 5 (10 in SpiralMaze, ButtonWall and
DrawerButton)

τ high
discard

Q-value threshold for discarding node
if too close to existing nodes in the tree γ2

τ low
discard

Q-value threshold for discarding node
if too far from expansion node γnsim

τ std
discard

Q-value threshold for discarding node
if standard deviation of ensemble prediction is too high 1.0− γ

τneigh Q-value threshold to determine neighboring nodes γ3

τgoal Q-value threshold to determine goal nodes γ1

dneigh
Euclidean distance threshold

to determine candidate neighbors
3 x upper 5-percentile of Eucl. distances
between encoding of subsequent states

Table 9: Hyperparameters during inference (controller)

Parameter Description Value

nreplan Planning frequency 15 (25 in SpiralMaze, ButtonWall)
ϵgoal Q-threshold to determine vicinity to the goal γ5

ϵwp Q-threshold for switching to the next waypoint γ3

15

B.4 Training of policy and value functions532

We use TD3-BC [48] as the base offline RL algorithm to train our local and goal policies πl and πg ,533

respectively state-action value functions a Ql
k and Qg . Within our planning framework Ql

k takes an534

important role as it provides us with a distance proxy. To further improve the accuracy of Ql
k, we535

use k Q networks (instead of 2 usually used in TD3). During the training update of the Q-network,536

we then determine the Q-target by taking the minimum value among the predictions given by the537

ensemble of Q-networks (similar to [49]). The ensemble further allows us to filter out unlikely538

or out-of-distribution transitions generated during the tree expansion by thresholding the resulting539

Q-values based on the minimum predicted ensemble value and the standard deviation among the540

predicted values.541

Our models πl and Ql
k describe goal-reaching navigation policy and state-action value functions542

which require a set of goal-conditioned reaching experiences for training. Since our original dataset543

D might not provide such data, we augment it using data augmentation via hindsight relabeling. In544

particular, we create a new dataset D′ creating transitions (zt, at, rt, zt+1, zg , γ) ∈ D′ based on the545

existing transitions in D by relabeling the values of rt, γ (γ also indicates terminal condition, i.e.546

γ = 0) and adding a new goal state zg . In this regards, we apply a combination of three different547

relabeling strategies (a) set goal zg to be next state of the original transitions and set γ = 0 and548

rt = 1 (b) sample zg from the set of future states within the same trajectory and set γ = 0; rt = 0549

(c) sample zg from another trajectory in the data and γ = 0 and rt = 0.550

B.5 Additional details about planning method551

Neighbor computation To determine if a newly sampled node znew is novel, we check its simi-552

larity to existing nodes in the tree by evaluating the state-action value function. Yet, evaluating the553

values network for all nodes in the tree results in an enormous computations overhead. Yet, we can554

significantly reduce this computation by first determining a set of candidate neighbors around znew555

using the Euclidean metric and a distance threshold dneigh. In practice, we found it useful to define556

dneigh based on the statistics of Euclidean distances between subsequent states in the dataset (see557

App. B.3).558

Batch processing The method in Alg. 1 describes an iterative schema for which at every expan-559

sion step one new node is generated and evaluated. Yet, some steps can be compuated in parallel on560

a GPU in order to speed up the planning time. For a practical implementation, we therefore suggest561

to parallelize the tree expansion by sampling multiple expansion nodes at once and generating new562

nodes by passing batches through the neural network dynamics model. Similarly, we can compute563

state-action values in batches instead of assessing one new nodes at a time. For discussions about564

highly-parallelized implementations of classical RRT-like planners, we refer to [58, 59].565

B.6 Additional details about MPC controller566

The below Alg. 2 presents the pseudocode for our MPC controller. The fucntion567

update waypoint(zcurr, g
∗) determines the next waypoint zwp which we seeks to achieve using568

our local policy. In particular, we estimate the value between the current state and waypoint and569

switch to the next element in g∗ if the predicted value surpasses a threshold ϵwp, i.e Qcurr,wp
min > ϵwp.570

Once the zcurr gets close to the goal, we disable planning and determine actions based on πg . To571

determine vicinity to the goal, we check if the prediction of the global value function Qg exceeds a572

threshold ϵgoal.573

16

Algorithm 2 MPC controller

Given: sinit, nreplan nmax steps, ϕ, πl

zcurr ← ϕ(sinit) ▷ Map state to latent encoding
i← 0
while goal not achieved and i < nmax steps do

if not i mod nreplan then ▷ Replan every nreplan steps
Build tree T rooted at zcurr for niter steps (Alg. 1).
Determine g∗ = {zcurr, z1, .., zn} given T (Eq. 8)

end if
zwp ← update waypoint(zcurr, g

∗) ▷ Update waypoint if close enough
a← πl(zcurr, zwp) ▷ Compute action given policy
Execute a and update state
zcurr ← ϕ(scurr)

end while

C Evaluation Environments574

C.1 Description of block environments575

Similar to the evaluation environments in [14], we implement two long-horizon navigation tasks576

whose underlying state space is relatively low-dimensional in order to facilitate illustration and577

visual inspect of learned embeddings using dimensionality reduction techniques such as Isomap578

[60]. For both environments, the a block robot is controlled using velocity commands while it’s579

position in constrained to a planar surface.580

C.1.1 SpiralMaze581

To solve this task, the block agent must navigate form the outer end of the spiral-shaped corridor582

to the inner region (colored in red; see Fig. 2). The maximum allowed number of episode steps is583

limited to 300. To generate training data, the agent is placed randomly at a collision free position584

in the workspace and random actions sequences are applied by subsequently adding Gaussian noise585

an initially sampled random uniform action. For testing, the agent’s position is sampled uniformly586

within a small region close to the outer end of the spiral-shaped corridor.587

C.1.2 ObstacleMaze588

In this environment, the agent must navigate towards the upper wall of the workspace (color in589

red; see Fig. 2). To achieve the goal the agent must take actions around two obstacles which are590

randomly placed around the center of the workspace at the beginning of each new episode. The591

maximum allows number of environment steps is set to 100. For testing, the agent is initialized to592

random configuration close to wall which is opposite to the goal. We used the same random data593

collection policy as for the SpiralMaze task.594

C.2 Description of manipulation environments595

We adapted and implemented several robot manipulation environments based on the Metaworld [17]596

robot benchmark tasks. The underlying physics simulator in this regard is Mujoco [61]. To enable597

visual manipulation, similar to the problems studied in [6], we enable background rendering of RGB598

images from a static viewpoint. The robot is controlled by commanding desired endeffector and599

gripper opening displacements resulting in a 4-dimensional action space. While WindowClose and600

FaucetClose were with small modifications adapted from the [17], we evaluate two new scenarios601

ButtonWall and DrawerButton which were particularly desired to study our method under extreme602

sparse reward conditions over a long temporal horizon which requires trajectory ”stitching” to find603

a solution policy.604

For data collection, we use a suboptimal policies which takes random actions (additive Gaussian605

noise) most of the time and with a low probability takes an action generated by a scripted expert606

17

policy. Table. 10 provides insight about the number of samples and trajectories in the training data607

and as well presents the portion of successful actions (reward=1). For all manipulation tasks, we608

set the maximum permitted environmental steps at 150, with the exception of the ”ButtonWall”609

scenario, where we allow up to 250 steps during the evaluation phase.610

C.2.1 WindowClose611

In order to accomplish this task, the robotic arm must successfully open a window by shifting a612

specific handle sideways. We implement environmental variability by randomly determining the x-y613

location of the window object in each episode. During the data collection stage, we randomly set614

the positioning of the end-effector above the surface of the table. However, we restrict the sampling615

of expert actions to areas close to the objective (window handle). This approach is intended to616

guarantee that the strategy employed necessitates to ”stitch” different trajectories together to reach617

the objective and complete the task when starting from states that are farther away. To ensure618

challenging planning situations during testing, we initiate the robot at a significant distance away619

from the target.620

C.2.2 FaucetClose621

This task is similar to the WindowClose task, but it requires the agent to use its end-effector to close a622

faucet instead. In addition, we employ analogous strategies for data gathering and scenario creation623

as those used in the WindowClose environment.624

C.2.3 ButtonWall625

In this scenario, the robot’s end-effector is required to navigate around a wall structure before press-626

ing a button. The wall’s location is randomly set at the beginning of each episode. Furthermore,627

a height limitation is imposed on the end-effector to ensure that the agent takes a more extended628

path around the wall, as opposed to simply elevating the end-effector. The dataset was produced by629

either placing the agent in front of the wall, near the button, or far behind the wall. However, expert630

samples in the dataset only exist for scenarios when starting closer to the goal. For testing purposes,631

the end-effector is sampled within a restricted region behind the wall to increase the planning task’s632

complexity.633

C.2.4 DrawerButton634

In this scenario, the agent is tasked to first close a drawer using its end-effector and subsequently635

press a button. To train the agent, we develop a dataset by separately collecting trajectories for each636

subtask. This approach necessitates the use of a method capable of combining different trajectories637

in the data to devise a solution that achieves the overall task goal.638

C.3 Composition of training dataset639

The table below presents the composition of our training datasets. Each context in this regards,640

refers to a new environment initialization (excl. agent) such as the position of obstacles.641

Table 10: Composition of training datasets for each environment

Environment Num. contexts Traj. per context Max. traj. length Successful transitions

SpiralMaze 1 1000 20 0.12 %
ObstacleMaze 250 20 20 0.11 %
WindowClose 200 10 50 0.48 %
ButtonWall 200 10 50 0.16 %
FaucetClose 200 10 50 0.31 %
DrawerButton 150 20 50 0.16 %

18

D Baseline methods642

To enable a fair comparison between different methods, we use the same underlying representa-643

tion/encoder ϕ and dynamics model h in the evaluation of all baselines. For assessing the quality644

and impact of our representation learner, please review the experimental ablation study in App. E.2.645

D.1 BC and BC (D∗)646

Simple behavioral cloning baselines for which we use the same network architecture as our policy647

networks (see Table 5) and train using a mean-squared error objective. For D∗ we train only on the648

subset of successful episodes in the dataset. The train both methods for 3 · 105 iterations using a649

learning rate of 3 · 10−4 and batches of size 128.650

D.2 TD3-BC [48]651

This baselines resembles the underlying global policy πg used in VELAP. It provides us with an652

intuition how well pure offline RL performs without adding any planning methods on top.653

D.3 IQL [54]654

This method presents a state of the art model-free offline RL baseline which utilizes expectile regres-655

sion to estimate state-conditional expectiles of the target values in order to avoid querying values of656

out-of-sample actions during training. The train IQL for 3 ·105 iterations, a learning rate of 3 ·10−4,657

batches of size 256 and τ = 0.7 and β = 3.0.658

D.4 MPPI659

We implement a trajectory optimization baseline similar to the model-based planning algorithm660

introduced in [7]. The method in [7] presents an adaption of MPPI specifically for the online rein-661

forcement learning setting which seeks to optimize the expected return of sampled trajectories. To662

estimate the return, a learned model is used to predict the reward for each trajectory node while a663

learned Q-function predicts the future return beyond the specified planning horizon. Since rewards664

in our evaluation environments are sparse, a learned model of the environment reward carries guid-665

ance for the trajectories optimization as most states have 0 reward. Therefore, we adapt the objective666

in [7] and instead use the accumulated sum of state-action values as the optimization criterion. This667

type of scoring function in model-based RL has recently been discussed in [62]. To implement this668

baseline, we utilize the Q-function of TD3-BC. For all environments, we use 1000 samples per itera-669

tion, a planning horizon of 50, elite size 64 and 5 iterations. Replanning is done every 5 environment670

steps.671

D.5 MBOP [35]672

MBOP presents an adaptation of MPPI which was particularly designed for the offline RL setting.673

It generates new candidate trajectories by addding small amount of Gaussian noise to the actions674

predicted by a behavioral-cloned policy. To evaluate the quality of the rollouts it uses a truncated675

value function trained on the offline data. Due to the sparse nature of rewards in our experiments, we676

found that both the behavioral-cloned policies and the truncated value function were insufficient to677

generated farsighted behaviors that solve our tasks. To accommodate for the long planning horizons,678

we instead sample action for a TD3-BC policy and use the corresponding Q-functions to score679

candidate trajectory during the optimization update. For all environments, we use 1000 samples per680

iteration, a planning horizon of 50, elite size 64, 5 iterations and a β parameter of 0.7. Replanning681

is done every 5 environment steps.682

19

D.6 IRIS [36]683

IRIS presents an offline RL methods that was desired particularly for sparse reward environments.684

It uses a hierarchical decomposition of the planning agent into a low-level and a high-level policy.685

A conditional VAE model is trained on offline trajectory data and predicts a set of suitable subgoals686

states that are n-step ahead of the current states. The high-level policy is essentially represented687

by a Q-function which is chooses the highest values subgoal states among the set of generated688

candidate states. The low-level policy is then used to navigate towards the predicted subgoal. In689

all experiments we implement IRIS by training an conditional VAE to predict subgoal states at a690

horizon of 5 and sample a candidate set of size 256. To implement both the low-level and high-level691

policy, we use TD3-BC as the base RL algorithm.692

D.7 IRIS (multi-step)693

We evaluate an extension of IRIS in which we use the state prediction model to generate multi-step694

rollouts of suitable subgoals. This strategy increases the exploration horizon and allows to choose695

the best subgoal from a larger and potentially more diverse set of states. It exploration strategy can696

also be seen as random shooting of coarse subgoal sequences. In all experiments, we generate 256697

different trajectories using rollouts of length 5 and a conditional generative model to predict states698

for a horizon of 5. In our evaluation, we found this method to sometimes perform worse than IRIS.699

We attribute this to the fact that the global policy doesn’t align with the capabilities of the local one,700

which occasionally results in the selection of subgoal states that might not be attainable.701

E Supplementary Experiments and Analysis702

E.1 Physical hardware experiments703

For the real-world validation of our method, we collected 200 episodes of data for the sponge (∼704

15000 samples) and 150 episodes of data for the rope manipulation (∼ 15000 samples) tasks. Train-705

ing data was generated by operating the robot through a gamepad and took less than 1 hour per task.706

The collected dataset consist largely of suboptimal trajectories. Successful transition (positive re-707

ward + episode termination) were labeled during data. We form states by stacking three subsequent708

images taken by a static camera. The results of a comparison against BC, BC (D∗) and IRIS are709

presented in Table 11.710

Table 11: Results of phyiscal robot experiments (successful episodes)

Environment BC BC D∗ IRIS VELAP

Sponge 5/20 6/20 6/20 14/20
Rope 0/20 0/20 2/20 8/20

20

E.2 Ablating the impact of the learned representation711

SpiralMaze ObstacleMaze
0

20

40

60

80

100

Su
cc

es
s

ra
te

 (%
)

94
97

93

75

0

53

Representation
ours
CPC
VAE+Dyn

Figure 6: Impact of type of representation on the performance of our planner.

E.3 Influence of the dynamics loss712

SpiralMaze ObstacleMaze
0

20

40

60

80

100

Su
cc

es
s

ra
te

 (%
)

94
97

0

35

Dynamics loss
contrastive
mean-squared error

Figure 7: Impact of type of representation on the performance of our planner.

21

