Published in Transactions on Machine Learning Research (05/2024)

As large as it gets — Studying Infinitely Large Convolutions via
Neural Implicit Frequency Filter

Supplementary Material

In the following, we provide additional information and details that accompany the main paper:

A Kernel Mass Evaluation

In this section, we evaluate the kernel mass ratio for more ResNet models trained on ImageNet-1k (Figure
and different network architectures trained on ImageNet-100 (Figure . The networks show similar
behavior already observed in the main paper, all models predominately learn small, well-localized kernels
regardless of the potential to learn much larger kernels. However, the smaller ResNet-18 model learns larger
kernels than the ResNet-50 or ResNet-101 in the second layer. For ImageNet-100, MobileNet-v2 does not
learn as large kernels as observed for ImageNet-1k. Further, ResNet-50 trained on ImageNet-100 seems to
learn larger kernels in the second layers compared to the ResNet-50 trained on ImageNet-1k (Figure |4)).

ResNet-18 ResNet-101
1.0 1.0 :
208 .© 0.8
-+ -+
o o
v o.6 N 0.6 :
© © :
e Layer 1 (max resolution 56x56) I i Layer 1 (max resolution 56x56)
o 0.41 : Layer 2 (max resolution 56x56) o 0.41 : Layer 2 (max resolution 56x56)
g i —— Layer 3 (max resolution 28x28) qE) i —— Layer 3 (max resolution 28x28)
~ 0.2 i —— Layer 4 (max resolution 14x14) X 0.27 i — Layer 4 (max resolution 14x14)
-------- effective kernel size 9x9 ------- effective kernel size 9x9
0.04, 0.01
0 10 20 30 40 50 0 10 20 30 40 50
kernel size kernel size

Figure A1l: Effective kernel size evaluation on ImageNet-1k for further ResNet models. We plot the average
ratio of the entire kernel mass contained within the limited spatial kernel size, where the x-axis denotes the
width and height of the squared kernels. The layers are summarised as follows: Layer 1 encoding 56 x 56,
Layer 2 28 x 28, Layer 3 14 x 14 and Layer 4 7 x 7.

Non-square kernels Following Romero et al.| (2022al), we analyse not only square shape kernels, which
are typically applied in CNNs but also rectangular shape kernels. Thus, we fit a 2D Gaussian to kernels
learned using our NIFF and compare the variance given by o, and o, in the x- and y- direction. In detail, we
build the ratio between o, and o, of the Gaussian. To aggregate over all kernels within one layer, we plot the
mean and standard deviation of these ratios in [Figure A3|and [Figure A4l The mean over all kernels within
a layer is near to a ratio of one indicating that most kernels exhibit square-shapes. For some layers (the
last layer for ResNet-50 and ResNet-101 on ImageNet-1k and ResNet-18 and ResNet-50 on ImageNet-100)
the variance is quite high, indicating that o, and o, differ and non-square, rectangle kernels are learned.
Not that the learned kernels by [Romero et al.| (2022a)) are parameterized by a Siren |Sitzmann et al.| (2020)
leading to more wave-like, smooth kernels. In contrast, we learn the kernels in the frequency domain which
could be wave-like, but are mostly not wave-like as shown in [Figure A22| and [Figure A23| Therefore, the
measured standard deviations in x and y direction should not be understood as a kernel mask as argued in
Romero et al.| (2022al). They merely indicate the rough spatial distribution of filter weights.

Published in Transactions on Machine Learning Research (05/2024)

B Filter Visualization

B.1 Principle Component Analysis

The Principle Component Analysis, short PCA, is typically a dimensionality reduction method. The goal
of PCA is to maintain most information of a dataset while transforming it into a smaller one. The first
principle component explains the most variance of the data, thus representing the majority. The second
principle component explains the next highest variance while being orthogonal to the first. For more details
on PCA, we refer to Dunteman| (1989)). For our analysis, we use the PCA of the learned kernels to visualize
the predominate structure. Hence, we use the dimensionality reduction property of the PCA to simplify the
visualization of the kernels. We also provide images of the original kernels in Figure and

B.2 Spatial Kernels

In this section, we show the PCA evaluation of the learned spatial kernels by the NIFFs for additional
architectures and datasets (ImageNet-100). The results are similar to the ones in the paper (Figure @
Figure [I] and Figure [7] The learned filters in the spatial domain are well-localized and relatively small
compared to the size they could actually learn. This holds true for different architectures on ImageNet-1k

(Figure and as well as for ImageNet-100 (Figure and [A12)).

Further, we show a grid of the actually learned filter in the spatial domain in Figure [A22] and [A23]

The learned spatial filters on CIFAR-10 are shown in Figure Similarly, to the results shown in Figure
[l The network learns well-localized, small filters n the spatial domain. Yet, for the feature map size of 8 x 8
in Layer 2 the network uses significantly more than the standard kernel size of 3 x 3.

B.3 NIFF multiplication weights

Moreover, we analyze the learned element-wise multiplication weights for the real and imaginary parts
of different models trained on ImageNet-1k in the frequency domain. Figures [A14] [AT5] [AT6] and [AT7]
show the PCA per layer for the learned element-wise multiplication weights for ResNet-50, DenseNet-121,
ConvNeXt-tiny and MobileNet-V2 respectively. For ResNet-50 and ConvNext-tiny, it seems as if the networks
focus in the first layer on the middle-frequency spectra and in the later layers more on the high-frequency
spectra. The multiplication weights learned for MobileNet-V2 (Figure focus in the first layer on low-
frequency information in the second layer on high-frequency information and in the third layer again on
low-frequency information. The DenseNet-121 (Figure learns high-frequency information prior in the
first two layers and low-frequency information predominately in the later, third layer. Hence, a general claim
for different models and their learned multiplication weights in the frequency domain can not be derived
from our empirical analysis. Still for all networks, the imaginary part seems to be less important for these
networks and thus the learned structures are less complex. This might be owed to the fact that with increased
sparsity through the activation function in the network, the network favours cosine structures (structures
with a peak in the center) over sine structures.

C Performance Evaluation

ImageNet-100 We report the accuracy our NIFF CNNs could achieve on ImageNet-100 and the number
of learnable parameters in Table The trend is similar to ImageNet-1k, the larger models benefit from
NIFF while the lightweight models do not so much. In addition to the models considered in the main paper,
we additionally evaluated MobileNet-v3 Howard et al.| (2019). We observe that both the baseline model and
the NIFF version have comparably low accuracy. For MobileNets, the training pipeline is usually highly
optimized for best performance. The data augmentation scheme from [Liu et al.| (2022b), that we employ
for all trainings to achieve comparable results, does not seem to have a beneficial effect here, neither on
ImageNet-1k (for [Sandler et al.| (2018)), nor on ImageNet-100 (for [Sandler et al. (2018); [Howard

et al.| (2019)), [Table Al)).

Published in Transactions on Machine Learning Research (05/2024)

Table Al: Performance evaluation of top 1 and 5 test accuracy on ImageNet-100 for different network
architectures. We used the standard training parameter for each network architecture and stayed consistent
with these for each architecture respectively. For the bigger networks like ResNet and DenseNet, which
include 2D convolutions, we split into depth-wise and 1x1 convolution as described in Section to reduce
the number of parameters, for faster training. For all models, our NIFF CNNs perform slightly better, even
with reduced number of parameters.

Name | # Parameters Acc@l Acc@5
ConvNeXt-tiny Liu et al.| (2022b) 27.897.028 91.70 98.32
NIFF (ours) 28.231.684 92.00 98.42
ResNet-18 (2016) 11.227.812 87.52 97.50
NIFF 2D conv (ours) 20.665.620 86.42 97.08
ResNet-18 separated conv 2.865.700 86.52 97.20
NIFF (ours) 3.198.660 86.52 97.14
ResNet-50 (2016]) 23.712.932 89.88 98.22
NIFF 2D conv (ours) 31.934.228 90.08 98.06
ResNet-50 separated conv 16.431.588 89.78 98.18
NIFF (ours) 16.760.900 89.98 98.44
ResNet-101 (2016) 42.705.060 90.54 98.14
NIFF 2D conv (ours 60.954.180 89.94 98.14
ResNet-101 separated conv 26.549.988 90.20 98.36
NIFF (ours) 27.343.332 90.54 98.38
DenseNet-121 Huang et al | (2017) 7.056.356 90.06 98.20
NIFF 2D conv (ours) 0.197.252 89.66 98.32
DesNet-121 separated conv 5.222.628 89.94 98.08
NIFF (ours) 5.237.012 90.24 98.18
MobileNet-v2 Sandler et al. (2018) 2.351.972 84.06 96.52
NIFF (ours) 2.359.660 85.46 96.70
MobileNet-v3 Howard et al.| (2019) 1.620.356 79.84 94.76
NIFF (ours) 1.617.748 78.90 95.40

CIFAR-10 Although NIFF CNNs can perform on par with the respective baseline on high-resolution
datasets, their performance is limited on low-resolution dataset. Table shows the results on CIFAR-
10 with different architectures. Unfortunately, our NIFF CNNs lose around 1 to 3 % points compared to the
baseline models. This can be addressed to our previous observation: The networks trained on CIFAR-10 do
only use a small amount of the potential kernel size NIFF provides being as big as the kernels of the baseline
model (3 x 3).

D Circular vs Linear Convolution

Our NIFF as proposed above performs a circular convolution, which allows us to directly apply the convo-
lution theorem and execute it as multiplication in the frequency domain. However, standard convolutions
in CNNs are finite linear convolutions. A circular convolution can mimic a linear convolution when zero-
padding a signal with length M and a kernel with length K to length L < M + K — 1 Winograd| (1978|).
Thus, to ablate on circular versus finite linear convolutions, the input featuremaps with size N x N are

Published in Transactions on Machine Learning Research (05/2024)

Table A2: Performance evaluation of different networks trained on CIFAR-10 and the number of learnable
hyperparameters for each network. To be comparable between all models and architecture changes we used
the same training schedule for all of them. One can see that NIFF CNNs perform slightly better with a
ConvNeXt |[Liu et al.| (2022b)) backbone. However, for other architectures, it performs slightly worse.

Method ‘ # Parameters Top 1 Acc
ConvNeXt-tiny |Liu et al.| (]2022bD 6.376.466 90.37
NIFF (ours) 6.305.746 91.48
ResNet-18 (2016]) 11.173.962 92.74
NIFF 2D conv (ours) 20.613.546 92.66
ResNet-18 separated conv 2.810.341 90.18
NIFF (ours) 1.932.432 90.63
ResNet-50 (2016) 23.520.842 93.75
NIFF 2D conv (ours) 31.743.914 93.39
ResNet-50 separated conv 16.237.989 92.13
NIFF (ours) 15.491.600 93.11
DenseNet-121 Huang et al.| (2017) 6.956.426 93.93
NIFF 2D conv (ours) 9.099.098 92.47
DenseNet-121 separated conv 5.121.189 92.00
NIFF (ours) 5.555.856 92.49
MobileNet-v2 Sandler et al. (2018) | 2.236.682 94.51
NIFF (ours) 2.593.760 94.03
MobileNet-v3 Howard et al.| (2019) | 1.528.106 86.28
NIFF (ours) 1.526.466 86.60

zero-padded to 2N x 2N. For both, the linear and the circular case, NIFF learns filters with the original
size N x N of the featuremap. To mimic linear filters, the learned filters by our NIFF are transformed
into the spatial domain and zero-padded similarly to the input featuremaps to 2N x 2NN. Afterwards, they
are transformed back into the frequency domain and the point-wise multiplication is executed. Note that
this is not efficient and just serves the academic purpose of verifying whether any accuracy is lost when
replacing linear convolutions by circular ones in our approach. However, the resulting networks experience
a performance drop compared to the baseline and our NIFF as shown in [Table A3| and [Table A4l We hy-
pothesize that this drop in performance results from the enforcement of really large kernels. The additional
padding mimics linear finite convolutions that are as big as the featuremaps. Related work has shown that
larger context can improve model performance Ding et al.| (2022); Liu et al. (2022a)). Still, there is a limit
to which extent this holds as with large kernels artifacts may arise Tomen & van Gemert| (2021). Thus,
enforcing kernels as large as the featuremaps seems to be not beneficial as shown by our quantitative results.
Another explanation for the drop in accuracy could be the introduction of sinc interpolation artifacts into
the padded and transformed featuremaps and kernels. The padding is formally a point-wise multiplication
with a box-function in the spatial domain. Thus, sinc-interpolation artifacts in the frequency domain can
arise. [Figure A20| and [Figure A21| show that the learned spatial kernels are larger than the learned kernel
when we apply a circular convolution with our NIFF. While the first and second layers still learn relatively
small filters compared to the actual size they could learn, the third and fourth layers make use of the larger
kernels. Since these results come with a significant drop in accuracy, we should however be careful when
interpreting these results.

Published in Transactions on Machine Learning Research (05/2024)

Table A3: Evaluation of top 1 and top 5 accuracies on ImageNet-100 for networks learning filters with
our NIFF but afterwards those are padded in the spatial domain and transformed back into the frequency
domain to mimic linear convolutions. All ResNet architectures and DenseNet-121 were trained with separated
depth-wise and 1x1 convolutions due to efficiency reasons. All models using finite linear convolutions perform
significantly worse than the baseline and our NIFF which applies circular convolutions. This observation is
consistent with low-resolution data like CIFAR-10.

Name ‘ Acc@l Acc@b
ConvNeXt-tiny [Liu et al.| (2022b) | 91.70 98.32
NIFF (ours) 92.00 98.42
NIFF linear 83.00 95.36
ResNet-18 separated conv 86.52 97.20
NIFF (ours) 86.52 97.14
NIFF linear 81.90 95.42
ResNet-50 separated conv 89.78 98.18
NIFF (ours) 89.98 98.44
NIFF linear 86.76 97.16
ResNet-101 separated conv 90.20 98.36
NIFF (ours) 90.54 98.38
NIFF linear 86.70 97.06
DesNet-121 separated conv 89.94 98.08
NIFF (ours) 90.24 98.18
NIFF linear 81.40 95.52
MobileNet-v2 [Sandler et al|(2018) | 84.06 96.52
NIFF (ours) 85.46 96.70
NIFF linear 73.90 93.16

E Runtime

As discussed in the computing costs section of the main paper, our approach is slower than the current
implementation with spatial convolutions due to the repetitive use of FFT and IFFT. However, when com-
paring the number of FLOPs needed to compute convolutions with kernel sizes as big as the featuremaps
to our NIFF approach, NIFF requires significantly fewer FLOPs, especially with increased featuremap size.
Figure [§ shows that most of the FLOPs for our NIFF result from the additional FFT and IFFT operation.
Still, we require much fewer FLOPs than large spatial convolutions.

Moreover, we evaluate the runtime per epoch for each model on CIFAR-10 (Table and ImageNet-100
(Table and compare it to the standard spatial 3x3 convolution, which has a much smaller spatial
context than our NIFF as well as spatial convolutions which are as large as the featuremaps. This would
be comparable to our NIFF. Obviously, small spatial kernels (3 x 3) are much faster than larger kernels like
NIFF or large spatial kernels. However, NIFF is much faster than the large spatial kernels during training.
Especially on high-resolution datasets like ImageNet-100 our NIFF is over four times faster on ResNet-50
and over three times faster on ConvNeXt-tiny compared to the large convolution in the spatial domain.

In general, we want to emphasize that our NIFF models still learn infinite large kernels while all kernels
in the spatial domain are limited to the set kernel size. If one would like to learn a 2D convolution in the
spatial domain with an image g of size N x N and filters with the same size N x N this would be in O(N*)
whereas using FFT and pointwise multiplication (Equation [1)) would result in O(N?2log(N)).

Published in Transactions on Machine Learning Research (05/2024)

Table A4: Evaluation of top 1 on CIFAR-10 for networks learning filters with our NIFF but afterwards
those are padded in the spatial domain and transformed back into the frequency domain to mimic linear,
non-circular convolutions. All models using finite linear convolutions perform significantly worse than the
baseline and our NIFF. This observation is consistent with high-resolution data like ImageNet-100.

Method ‘ Top 1 Acc
ConvNeXt-tiny [Liu et al.| (2022b) 90.37
NIFF (ours) 91.48
NIFF linear 84.30
ResNet-18 [He et al.| (2016) 92.74
NIFF full (ours) 92.66
NIFF full linear 85.10
ResNet-18 separated conv 90.18
NIFF (ours) 90.63
NIFF linear 83.11
ResNet-50 [He et al.| (2016]) 93.75
NIFF full (ours) 93.39
NIFF full linear 88.22
ResNet-50 separated conv 92.13
NIFF (ours) 93.11
NIFF linear 87.54
DenseNet-121 |[Huang et al.| (2017) 93.93
NIFF full (ours) 92.47
NIFF full linear 85.73
DenseNet-121 separated conv 92.00
NIFF (ours) 92.49
NIFF linear 79.95
MobileNet-v2 [Sandler et al.| (2018]) 94.51
NIFF (ours) 94.03
NIFF linear 93.21

Table A5: Average training time per epoch in seconds and standard deviation on one NVIDIA Titan V
of NIFF compared to standard spatial convolutions 3x3 or 7x7 and maximal larger spatial convolutions on
CIFAR-10.

Name Baseline Spatial Conv NIFF
3x3/7x7 featuremap sized (ours)
ConvNeXt-tiny [Liu et al.| (2022b) | 68.31 £ 0.62 108.97 + 0.25 96.48 + 1.97
ResNet-18 [He et al.| (2016) 8.57 £ 0.20 22.75 £ 0.28 17.87 £ 0.54
ResNet-50 He et al.| (2016) 7.98 £ 0.10 37.05 4+ 0.48 27.36 £0.16
DenseNet-121 [Huang et al.| (2017)) | 26.36 + 1.32 67.11 4+ 0.25 84.51 4+ 3.71
MobileNet-v2 [Sandler et al.| (2018]) | 22.50 4 0.26 143.47 + 0.20 83.41 + 4.78

F Ablation on more modules

We show that our NIFF can be combined with other frequency modules to achieve networks that operate
mostly in the frequency domain. Hence, the number of transformations can be reduced. demon-

Published in Transactions on Machine Learning Research (05/2024)

Table A6: Average training time per epoch in seconds and standard deviation on four NVIDIA A100 of
NIFF compared to standard spatial convolutions (3x3 or 7x7) and maximal larger spatial convolutions on
ImageNet-100.

Name Baseline Spatial Conv NIFF
3x3/7x7 featuremap sized (ours)
ConvNeXt-tiny |Liu et al.| (2022b) 92.19 £ 4.21 487.89 £+ 3.54 149.70 + 1.32
ResNet-18 [He et al.| (2016) 31.99 £ 0.71 608.13 £ 22.53 89.00 + 0.60
ResNet-50 [He et al.| (2016) 85.51 + 0.22 951.43 £+ 6.09 204.82 £ 0.33
ResNet-101 [He et al.| (2016]) 152.39 £ 5.07 1392.21 4+ 47.91 349.83 + 2.44
DenseNet-121 [Huang et al.| (2017) | 128.95 + 1.64 10188.15 + 28.17 408.08 £ 2.20
MobileNet-v2 [Sandler et al.|(2018) | 32.64 + 0.25 856.84 + 4.35 100.75 + 0.15

Table AT: Average inference time in seconds and standard deviation on one NVIDIA Titan V of NIFF
compared to standard spatial convolutions (3x3 or 7x7) and maximal larger spatial convolutions on the full
CIFAR-10 validation set.

Name Baseline Spatial Conv NIFF
3x3/7x7 featuremap sized (ours)
ConvNeXt-tiny |Liu et al.| (2022b) | 2.35 £ 0.05 4.06 £ 0.02 6.32 £ 0.14
ResNet-18 [He et al.| (2016) 2.69 £ 0.10 3.29 £ 0.08 3.14 £ 0.54
ResNet-50 He et al.| (2016)) 3.09 £ 0.13 5.05 £ 0.45 5.26 £ 0.06
DenseNet-121 |Huang et al.[(2017) | 3.40 4+ 0.05 5.27 £ 0.02 6.50 + 0.14
MobileNet-v2 [Sandler et al.| (2018) | 2.93 £+ 0.06 8.68 + 0.43 7.02 £ 0.04

strates that adding the downsampling layer |Grabinski et al.| (2022; [2023)) or the last average pooling and the
fully connected layer also yields good results. Also combining all of them, NIFF, FLC Pooling |Grabinski
et al.| (2022) and the Average Pooling plus Fully connected layer performs quite well. Also, incorporating
the ComplexBatchNorm |Trabelsi et al| (2018) leads to a drop in accuracy by roughly 15%. We also tried to
incorporate the non-linearity into the frequency domain, but we were not able to achieve much better results
than by removing it fully.

G Ablation on Padding

We evaluate our NIFF when the featuremaps are padded with different kinds of padding methods. Due to
the padding of the featuremaps and the cropping after the application of our NIFF, possible artifacts can
be mitigated. The padding is applied around the featuremaps before transforming them into the frequency
domain. The padding size is as large as the original featuremap. After the application of our NIFF, the
featuremaps are transformed back into the spatial domain and cropped to their original size. The resulting
networks experience similar performance as our baseline NIFF as shown in [Table AI0l [Figure A1§| and
Figure A19 show the learned spatial kernels when only the featuremaps are padded. The learned spatial
kernels are still relatively small and well-localized.

H NIFF’s architecture

In the following, we describe the architecture used for our NIFFs for each backbone network architecture.
Note that the size of the NIFF is adjusted to the size of the baseline network as well as the complexity of
the classification task.

Published in Transactions on Machine Learning Research (05/2024)

Table A8: Average inference time in seconds and standard deviation on four NVIDIA A100 of NIFF compared
to standard 3x3 full or 7x7 depth-wise spatial convolutions and maximal larger spatial convolutions on the

full ImageNet-100 validation set.

Name Baseline Spatial Conv NIFF
3x3/7x7 featuremap sized (ours)
ConvNeXt-tiny |Liu et al.| (2022b) 4.86 £ 0.13 17.07 £ 0.19 6.06 £ 0.08
ResNet-18 He et al.| (2016)) 4.53 £ 0.52 24.57 £ 0.21 4.52 £ 0.18
ResNet-50 He et al.| (2016) 5.43 £ 0.30 42.33 £ 0.21 10.35 £ 0.14
ResNet-101 He et al.| (2016) 7.35 £ 0.17 54.85 £+ 0.25 16.82 £ 0.10
DenseNet-121 |[Huang et al.| (2017) | 5.12 £ 0.07 104.36 + 0.40 12.04 4+ 0.18
MobileNet-v2 [Sandler et al.| (2018) | 4.27 + 0.13 28.97 £+ 0.04 6.61 0.16

Table A9: Comparison on CIFAR-10 of NIFF MobileNet-v2 Sandler et al.[(2018) incorporating more modules
besides our NIFF into the frequency domain.

NIFF ‘ FLC Pooling [2022] Complex BatchNorm [2018] AveragePooling + FC Accuracy
X X X 94.03
v v X X 93.61
v X v X 78.60
v X X v 93.82
v v v X 79.83
v v X v 93.27
v X v v 73.90
v v v v 55.81

Low-resolution task All networks trained on CIFAR-10 incorporate the same NIFF architecture. The
NIFF consists of two stacked 1 x 1 convolutions with a ReLU activation function in between. The 1 x 1
convolution receives as input two channels, which encode the x and y coordinate as described in Figure
The 1 x 1 convolution expands these two channels to 32 channels. From these 32 channels, the next 1 x 1
convolution maps the 32 channels to the desired number of point-wise multiplication weights.

High-resolution task For the networks trained on ImageNet-100 and ImageNet-1k the size of the neural
implicit function to predict the NIFF is kept the same for each architecture respectively, while the size of the
neural implicit function is adjusted to the network architecture to achieve approximately the same number
of trainable parameters. Hence, the lightweight MobileNet-v2 model [Sandler et al.| (2018]) and the small
DensNet-121 [Huang et al.| (2017)) incorporate a smaller light-weight neural implicit function to predict the
NIFF, while larger models like ResNet [He et al. (2016 or ConvNeXt-tiny |Liu et al.| (2022b)) incorporate a
larger neural implicit function. For simplicity, we define two NIFF architectures. One for the large models
and one for the smaller, lightweight models.

For the smaller, lightweight models, the neural implicit function consists of three stacked 1 x 1 convolutions
with one SiLLU activation after the first one and one after the second one. The dimensions for the three 1 x 1
convolutions are as follows. We start with two channels and expand to eight channels. From these eight
channels, the second 1 x 1 convolution suppresses the channels down to four. Afterwards, the last 1 x 1
convolution maps these four channels to the desired number of point-wise multiplication weights.

For the larger models, we used four layers within the neural implicit function for NIFF. The structure is
similar to all NIFFs between each 1 x 1 convolution a SiLLU activation function is applied. The dimensions
for the four layers are as follows. First from two to 16 channels, secondly from 16 to 128 channels and

Published in Transactions on Machine Learning Research (05/2024)

Table A10: Evaluation of top 1 and top 5 accuracies on ImageNet-100 for ResNet-18 with different kinds of
padding.

Name ‘ Acc@Ql Acc@5b
ResNet-18 baseline 87.52 97.50
NIFF (ours) 86.52 97.14

NIFF zero padding 87.00 97.54
NIFF reflect padding | 86.64 97.24
NIFF circular padding | 87.06 97.34

afterwards suppressed down from 128 to 32 channels. The last 1 x 1 convolution maps these 32 channels to
the desired number of point-wise multiplication weights.

We show that the smaller NIFF size for the lightweight models does not influence the resulting performance.
Thus, we train a lightweight MobileNet-v2 with larger NIFFs (similar size as the larger models). The results
are presented in Table[ATI] We can see that the network does not benefit from the larger NIFF size. Hence,
we assume that keeping the smaller NIFFs for the smaller, lightweight models can achieve a good trade-off
between the number of learnable parameters and performance.

Table A1l: Evaluation of top 1 and top 5 accuracies on ImageNet-100 for different NIFF sizes for the
lightweight MobileNet-v2 [Sandler et al.| (2018)).

Name ‘ Acc@l Acc@b
MobileNet-v2 baseline | 84.94 96.28
small NIFF 83.72 96.40
big NIFF 83.82 96.32

Low-resolution task For all models trained on CIFAR-10 the NIFF architectures is kept the same. The
neural implicit function consists of two stacked 1 x 1 convolutions with one ReLU activation in between.
The dimensions for the two 1 x 1 convolutions are as follows. We start with two channels and expand to
32 channels. The second 1 x 1 convolution maps these 32 channels to the desired number of point-wise
multiplication weights.

Ablation on Separated Convolution Further, we ablate our design choices to use separated depth-wise
and 1 x 1 convolutions instead of full convolutions for efficiency. Hence, we train all ResNet and DenseNet
networks with additionally separated convolutions (separated in depth-wise and 1 x 1 convolution) as well
as our NIFF as full convolution. Tables and show that using separated convolutions in the spatial
domain performs slightly worse than the baseline but also reduces the amount of learnable parameters
similarly to our NIFF. Using full convolutions in our NIFF leads to an increase in accuracy but also an
increased amount of learnable parameters. Hence, we can see a clear trade-off between number of learnable
parameters and accuracy.

| Training Details

ImageNet. The training parameters and data preprocessing are kept the same for ImageNet-1k and
ImageNet-100. For the training of each network architecture, we used the data preprocessing as well as
the general training pipeline provided by |Liu et al.| (2022b)). The training parameters for each individual

Published in Transactions on Machine Learning Research (05/2024)

network are taken from the original papers provided by the authors ResNet |He et al| (2016)), DenseNet-121
Huang et al.| (2017) ConvNeXt-tiny Liu et al.| (2022b)) and MobileNet-v2 [Sandler et al.| (2018)).

CIFAR-10. For CIFAR-10 we used the same training parameter for all networks. We trained each network
for 150 epochs with a batch size of 256 and a cosine learning rate schedule with a learning rate of 0.02. we
set the momentum to 0.9 and weight decay to 0.002. The loss is calculated via LabelSmoothingLoss with
label smoothing of 0.1 and as an optimizer, we use Stochastic Gradient Descent (SGD).

For data preprocessing, we used zero padding by four and cropping back to 32 x 32 and horizontal flip, as
well as normalizing with mean and standard deviation.

Computing Infrastructure For training our models and the baseline we use NVIDIA Titan V and
NVIDIA A100 GPUs. For the training on low-resolution data (CIFAR-10). We used one NVIDIA Titan
V, depending on the model architecture and the convolution used (baseline, NIFF or large convolution) the
training took between 15 minutes and 90 minutes. For the training on high-resolution data (ImageNet-100
and 1k) we used four NVIDIA A100 in parallel. The training time depends on the used model architecture
and varies if we used the full ImageNet-1k dataset or only ImageNet-100. The training time for ImageNet-1k
varies between one day and one hour and ten days and nine hours for ImageNet-100 between 93 minutes and
one day eight hours dependent on the model architecture and the number of epochs for training.

J Convolution Theorem

Following, we demonstrate the proof of the convolution theorem. For more details, please refer to (for
example) Bracewell & Kahn| (1966); Forsyth & Ponce| (2003)).

As stated in Equation in the main paper we make use of the convolution theorem Bracewell & Kahn| (1966));
Forsyth & Ponce| (2003) which states that a circular convolution, denoted by ®, between a signal g(x) and
filter k(x) in the spatial domain can be equivalently represented by a point-wise multiplication, denoted by
©®, of these two signals in the frequency domain, by computing their Fourier Transform, denoted by the
function F(.):

Flgek) = Flg) 0 F(k) g
with
Flgle)) = G = [gy ®

To show that this holds, we first show that the Fourier transformation as a system has specific properties
when the signal is shifted. If we shift a signal/function g(z) by a in the spatial domain expressed by g(x — a)
this results in a linear phase shift in the Fourier domain:

Flala - a)) = Floa)) = [glaye et)

— 00

. , . N .)
where e J2mu(z’+a) — g—j2muap—j2mus’ gnq e~i27ua jg g constant, such that

Flg(a — a)) = e 727G u) (10)

Using the shift property of the Fourier transform we can now prove the convolution theorem. The continuous
convolution is defined as follows:

gla) ko) = [" g@)k(y — 2)de (11)

— 00

10

Published in Transactions on Machine Learning Research (05/2024)

The Fourier transformation of g(x) ® k(x) is defined by:

/O; UZ g(x)k(y — x)dx] eI gy

By reversing the order of the integration we get

[o[ke as

where we can pull out g(z). Given the shift property, the inner integration can be defined by:

/oo k(y — x)e 7™ Wdy = F(k(y — z)) = e 2™ K (u)

— 00

such that

[o | [k- ooy ao

= /OO g(x)e 2™ K (u)dx

—0o0

= [/ h g(x)ej%“dx} K (u)

= G(u)K(u) = F(g)(u)F (k) (u),

so that for all spatial frequencies u, we have
Flg®k)(u) = F(g)(u) © F(k)(u).
K Fast Fourier Transform
The Discrete Fourier Transform (DFT) of an input signal f(n) with N samples is defined as
N-1

F(k) = f(n)e 72rtm/N

n=0

(12)

(13)

(15)

(16)

(17)

Executing the DFT directly would take O(N?). Thus [Cooley & Tukey! (1965) developed the Fast Fourier
Transform, short FFT. Which builds upon a divide and concur strategy and reduces the runtime down to

O(NlogN).

They used the inherent symmetry which results from the period nature of the transformed signal. To give

an intuition for this inherent symmetry lets explore what happens if we shift by V:

=

F(k+N) = f(n)e /2rHNn/N,

i
L

f(n)€7j27rnefj27rkn/N7

i
L

f(’n,)@_jQTrkn/N,

3
I
=3

11

(18)

Published in Transactions on Machine Learning Research (05/2024)

as /2™ =1 for any integer n. Thus one can see that

F(k + N) = F(k) (19)

and also

F(k+iN) = F(k) (20)

for any integer ¢ holds.

Given this symmetry, |(Cooley & Tukey| (1965) developed an algorithm which divides the DFT into smaller
parts such that the DFT can be solved via divide and concur. Following we rearrange the DFT into two
parts:

3
=

S~—
I

N-1
Z f(n)eijWkn/N
n=0

N/2-1

Z f(Qm)e—j%erm/N

m=0

N/2-1

i Z F(2m + 1)e~92mk(@m+1)/N (21)
m=0

N/2—1

_ Z f(Qm)efj%rkm/(N/Q)

m=0

N/2—-1
+e—j27rk/N Z f(2m+1)e—j2ﬂ'km/(N/2)

m=0

Each part represents the even-numbered and odd-numbered values respectively. However, the runtime is
still the same as each term consist of O(N/2)N computations so in total still O(N?).

Luckily, this division into two parts can be continued in each part again. Hence, the range of kis0 < k < N
while m is now in the range of 0 < m < M where M = N/2. Thus, solving the problem only takes half of the
computations as before, O(N?) becomes O(M?) where M is half the size of N. As long as M is even-valued,
we can apply divide the problem in even smaller parts, applying the divide and concur strategy which in an
recursive implementation takes only O(NlogN).

L Code Base

Implementation code for our NIFF CNNs is provided at: https://anonymous.4open.science/r/
NIFF1528anonymous and will be made publicly available upon acceptance.

12

https://anonymous.4open.science/r/NIFF1528anonymous
https://anonymous.4open.science/r/NIFF1528anonymous

Published in Transactions on Machine Learning Research (05/2024)

kernel mass ratio kernel mass ratio

kernel mass ratio

Figure A2: Effective kernel size evaluation on ImageNet-100. We plot the average ratio of the entire kernel
mass contained within the limited spatial kernel size, where the x-axis denotes the width and height of
the squared kernels. For ResNet and ConvNeXt-tiny each layer encodes one resolution. Thus, the layers
could be summarised (Layer 1 encoding 56 x 56, Layer 2 56 x 56, Layer 3 28 x 28 and Layer 4 14 x 14).
For DenseNet-121 each layer can be summarised similarly, yet the after the first layer the feature maps are
already downsampled resulting in the following: Layer 1 encoding 56 x 56, Layer 2 28 x 28, Layer 3 14 x 14

o
0

o
o

©
>

o
[N)

o
o

1.0

0.8

0.6

0.4

0.2

0.01,

1.0

0.8+

0.6

ResNet-18

—— Layer 1 (max resolution 56x56)
: Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

30 40 50

kernel size

20

ResNet-101

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

30 40 50

kernel size

20

DenseNet-121

Layer 1 (max reslution 56x56)
Layer 2 (max resolution 28x28)
Layer 3 (max resolution 14x14)
Layer 4 (max resolution 7x7)
effective kernel size 9x9

30 40 50

kernel size

20

kernel mass ratio

o
N

kernel mass ratio

kernel mass ratio

o© e
o ©

°
IS

o o© = o o © © o = o©
o 0 o o N IN o © =) =)
A A : o) ! A A : o

o
IS

ResNet-50

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
-+ effective kernel size 9x9

30 40 50

kernel size

20

ConvNeXt-tiny

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)

-« effective kernel size 9x9

30 40 50

kernel size

20

MobileNet-v2

——

max resolution 112x112
max resolution 56x56
max resolution 28x28
max resolution 14x14
max resolution 7x7
effective kernel size 9x9

60 80 100

kernel size

40

and Layer 4 7 x 7. However, for MobileNet-v2 the resolution is downsampled within a layer.

13

Published in Transactions on Machine Learning Research (05/2024)

2.00

175

150

oy / Oy

125

1.00

ox /oy,

0.8

0.6

ResNet-18 ResNet-50 ResNet-101
s ermel Square kernels
Square kernels s o v —— Mean over all kemnels
— Mean over all kemels : — Mean over all kemels
Std over all kemels
Std over all kemnels Std over all kernels 3
3.0
25
2
°>\ 2.0 [«
2 =
& 15 S
1
1.0
0.5
o
0.0
layerl layer2 layer3 layerd layerl layer2 layer3 layerd layerl layer2 layer3 layerd.
layer-depth layer-depth layer-depth
MobileNet-v2 DenseNet-121 ConvNeXt-tiny
25
Square kernels Square kernels Square kemels
— Mean over all kemels — Mean over al kemels 30 7 Mean over all kemels
Std over all kemels 2o Std over all kemels v e
25
15 2.0
N
S ISy
= 15
< 10 \x
° S 1.0
0.5
0.5
0.0 0.0
05
112 56 28 14 layerl layer2 layer3 layerd layerl layer2 layer3 layerd
resolution layer-depth layer-depth

Figure A3: Analysis of non-square kernel shapes inspired by Romero et al. (2022a)) on ImageNet-1k. We
compare the variance o, and o, in x- and y-direction of a Gaussian fitted onto our learned spatial weights.

The red dashed line indicates square-shaped kernels as the variance o, and o, are equal.

ox / oy

0.8

0.6

ResNet-18 ResNet-50 ResNet-101
Square kernels Square kernels Square kernels.
—— Mean over all kernels ~—— Mean over all kernels 1.6 —— Mean over all kernels
Std over all kernels 25 Std over all kernels Std over all kernels
20 14
> >
B 1s B 12
- <
x x
S 10 B 10
0.5 0.8
00 06
layerl layer2 layer3 layerd layerl layer2 layer3 layerd layerl layer2 layer3 layerd
layer-depth layer-depth layer-depth
MobileNet-v2 DenseNet-121 is ConvNeXt-tiny
Square kernels. Square kernels Square kernels.
~—— Mean over all kernels ~—— Mean over all kernels ~—— Mean over all kernels
Std over all kernels 20 Std over all kernels 30 Std over all kernels
25
15
> 20
S S
~ 10 ~ .
x x
N o
05 1.0
05
0.0
0.0
112 56 28 14 layerl layer2 layer3 layerd layerl layer2 layer3 layerd
resolution layer-depth layer-depth

Figure A4: Analysis of non-square kernel shapes

inspired by [Romero et al.| (2022al) on ImageNet-100. We
compare the variance o, and o, in x- and y-direction of a Gaussian fitted onto our learned spatial weights.

The red dashed line indicates square-shaped kernels as the variance o, and o, are equal.

14

Published in Transactions on Machine Learning Research (05/2024)

Vo Vi V> V3 Vg Vs Ve 1.00
—©
q:{g O " n - =" 4 s 0.75
Sm

0.86 0.04 0.03 0.03 0.03 0.01 <0.01 0.50
i 1 i
%E H " -: - I my =B 0.25

078 007 006 004 003 <00l <0.01 oo
S I i
2 " - I - i il = = -0.25
EN

0.79 0.06 0.05 0.04 0.02 0.02 <0.01 —0.50
<<]
%g i -+ : I l.. : " -0.75

0.41 0.35 0.17 0.04 0.01 0.01 <0.01

-1.00

Figure A5: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a ConvNeXt-tiny trained on ImageNet-1k zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding layer is given. ConvNeXt convolutions are standardly equipped with larger kernel sizes
than usual (7 x 7). However, our analysis reveals that the network barely uses large filters if it gets the
opportunity to learn large filters. The learned filters in the first and third layer mostly use small (3 x 3),
well-localized filters.

Vo Vi V2 V3 Va Vs Ve 1.00
—©
=N
SR || [|| | ||| | W
3 [Te]

0.96 002 <00l <001 <001 <001 <0.01 050
N oo
“ (N
& H - o = -+ - Lo 0.25
T N
-

098 002 <001 <001 <001 <001 <0.01 000
mMm < |
“
X - o= . o= == " -0.25
S — |]

097 002 <001 <001 <0.0l <001 <0.01 050
;'; | r | | |
Pl | -0.75
3 o | e ||]

0.98 0.01 <0.01 <0.01 <0.01 <0.01 <0.01

-1.00

Figure A6: PCA basis and explained variance for each basis vector (below) of all spatial filters for each layer
of a DenseNet-121 trained on ImageNet-1k zoomed to 9 x 9. On the left, the maximal filter size for the
corresponding layer is given. We can see that most filters only use a well-localized, small kernel size although
they could use a much bigger kernel.

15

Published in Transactions on Machine Learning Research (05/2024)

o Yo Vi) V3 V4 Vs Ve 1.00
o u n
o]]
E é n - [W | + - u
nao - 0.75
—

0.78 0.11 0.10 0.01 <0.01 <0.01 <0.01

gg 1 0.50
83 f - Em (=] " - -
w0 un

0.84 0.08 0.05 0.03 <0.01 <0.01 <0.01 0.25
RS

u

IR AERIE-E 2t
wn AN

0.72 0.08 0.07 0.06 0.04 0.01 0.01
%: i [T | -0.25
© <>r< [| -.I - - | N | u | [}
&

—-0.50

0.81 0.05 0.05 0.04 0.02 0.01 <0.01

-0.75

7x7
|
]

Stage

ol ol B e T R

0.85 0.09 0.02 0.01 0.01 0.01 <0.01

-1.00

Figure A7: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a MobileNet-v2 trained on ImageNet-1k zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding stage is given. For MobileNet-v2 the feature maps are downsampled within a layer, thus
the stages are combine by feature maps size rather than the layers. We can see that most filters only use a
well-localized, small kernel size although they could use a much bigger kernel.

Vo Vi V2 V3 Vg Vs Ve 1.00
—©
[T}
q>)~é 0.75
o©un

0.62 0.17 0.10 0.04 0.04 0.01 0.01 0.50
N ©
<N
°>{,3,§ 0.25
S N

0.75 0.15 0.04 0.01 0.01 0.01 <0.01 0.00
™M o
“ N
2% ¥ % . -0.25
TN

0.90 0.06 0.02 0.01 <0.01 <0.01 <0.01 ~050
< <
TR T = | -
q;é . . = . e 1 u -0.75
O~
-

0.87 0.09 0.02 <0.01 <0.01 <0.01 <0.01

-1.00

Figure A8: PCA basis and explained variance for each basis vector (below) of all spatial filters for each layer
of a ResNet-50 trained on ImageNet-1k original size (not zoomed). On the left, the maximal filter size for
the corresponding layer is given. We can see that most filters only use a well-localized, small kernel size
although they could use a much bigger kernel.

16

Published in Transactions on Machine Learning Research (05/2024)

Vo Vi V2 V3 Vg Vs Ve 1.00
— g .
3 u - - e = - "= 0.75
@0

074 0.14 005 003 001 001 001 050
8 . '
o3l " = o i ':.:' 0.25
T

069 018 004 003 002 002 <001 000
3 . u
- o - “a - == "ma" -0.25
S o

0.77 007 004 003 003 001 001 Cos
< : i
x = . = m . (g T -0.75
L]

082 013 002 001 001 <00l <0.01 oo

Figure A9: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a ResNet-50 trained on ImageNet-100 zoomed to 9 x 9. On the left, the maximal filter size for the
corresponding layer is given. We can see that most filters only use a really small kernel size although they
could use a much bigger kernel.

Vo Vi Vo V3 Vg Vs Ve 1.00
Hg n |
23 - = - - =" 0.75
54 I ’

0.88 0.03 0.03 0.03 0.02 <0.01 <0.01 0.50
N ©
= I | |
gg n -:- -:- I = == = = .] 025
SLﬂ

0.89 0.04 0.02 0.02 0.02 <0.01 <0.01 0.00
™M oo u
3% n I » . mm - m
23 " T -0.25
SN

0.82 0.11 0.03 0.02 0.02 <0.01 <0.01 —0.50
T L i
o
%E . ':' : u n - u ' -0.75

0.70 0.24 0.03 0.01 0.01 <0.01 <0.01

-1.00

Figure A10: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a ConvNeXt-tiny trained on ImageNet-100 zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding layer is given. We can see that most filters only use a really small kernel size although
they could use a much bigger kernel.

17

Published in Transactions on Machine Learning Research (05/2024)

Vo Vi V2 V3 Vy Vs Ve 1.00
—©
j—Te]
93 L - = - == " iz 0.75
oo

087 006 002 002 001 001 001 050
N oo
(N
ox| #§ s g s - = - 0.5
TN

080 009 004 003 002 001 001 000
T3 X
9xl " o= . = = E = i 1 -0.25
3 —

080 008 005 002 002 001 <0.01 o5
<
!Qh.) '>\< b | | H N
E"\ 5 ':' ' F 1 m rE EE 078

0.83 0.11 0.03 0.02 0.01 <0.01 <0.01

-1.00

Figure A11: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a DenseNet-121 trained on ImageNet-100 zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding layer is given. We can see that most filters only use a well-localized, small kernel size
although they could use a much bigger kernel.

18

Published in Transactions on Machine Learning Research (05/2024)

1.00

0.75

0.50

- 0.25

- 0.00

o Vo 41 V> V3 Va Vg Ve
Q N
o | =8 . 4 - .
4 | |
(VaNe\l
098 00l 00l <00l <00l <00l <001l
w @
SR =g == ok - =l -
A 0B
090 006 003 00l 001 <00l <001
] % -|.
| = || : : -
N
078 016 003 00l 001 <00l <001
%E | HE
4{3 é [| .:- - + | | [B | ... ' N |
wn
072 014 007 003 00l 00l 001
o B
o | L
S o . . B
& e . Nlruls.
072 015 009 002 001 <00l <001

-0.25

—-0.50

-0.75

—-1.00

Figure A12: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a MobileNet-v2 trained on ImageNet-100 zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding stage is given. For MobileNet-v2 the feature maps are downsampled within a layer, thus
the stages are combine by feature maps size rather than the layers. We can see that most filters only use a
well-localized, small kernel size although they could use a much bigger kernel.

19

Published in Transactions on Machine Learning Research (05/2024)

Vo 41 Vo V3 Vg Vg Ve 1.00

32x32
*
+

0.59 0.18 0.12 0.06 0.02 0.01 0.01

0.50

16x16
i
i
'
o

0.42 0.24 0.16 0.12 0.02 0.01 025

I o i) R T

0.31 0.24 0.21 0.17 0.04 0.03 <0.01

NIFF
8x8
|

<+ . ? -0.25
<& | | E
0.38 0.29 0.18 0.10 0.05 <0.01 <0.01 ~0.50
=
© m
£ B e
8
n 0.42 0.20 0.13 0.13 0.05 0.04 0.02
-1.00

Figure A13: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
resolution for the NIFF convolutions of a MobileNet-V2 trained on CIFAR-10 as well as the learned filters for
the third layer of a standard MobileNet-V2 trained on CIFAR-10 (bottom row). On the right, the maximal
filter size for the corresponding layer is given. We can see that most filters only use a well-localized, small
kernel size although they could use much bigger kernels.

20

Published in Transactions on Machine Learning Research (05/2024)

Vo Vi
—
505 g
ok E
- 0.17 0.10 0.04 0.61 0.17
No_ -
R ©
>o £
_II'n I ——
- 0.73
:_w_ (=)
palsofl-4 =
_,N il
- 0.90 0.06
5% 3
P4 £
_Il—l

0.36 0.04 0.01 0.59 0.36

0.25

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

Figure A14: PCA basis and explained variance for each basis vector (below) of all element-wise multiplication
weights for the real and imaginary part in the frequency domain for each layer of a ResNet-50 trained on
ImageNet-1k. On the left, the maximal filter size for the corresponding layer is given. Right the weights for

the real values are given, and on the left are the imaginary values.

— o _
“ 1N ©
Ux o
%Lon:
[
No_
~1N ©
Ux o
r>U"LOII
_an
Mo _
“~ N @©
Ux o
%oonc
_|N
<
~— ©
U x o
gwrn:
_||—|

0.55 0.32 0.07 0.03 0.55

-0.1

Figure A15: PCA basis and explained variance for each basis vector (below) of all element-wise multiplication
weights for the real and imaginary part in the frequency domain for each layer of a ConvNeXt-tiny trained
on ImageNet-1k. On the left, the maximal filter size for the corresponding layer is given. Right the weights

for the real values are given, and on the left are the imaginary values.

21

Published in Transactions on Machine Learning Research (05/2024)

~ Vo Vi V2 V3 Vo Vi Vo V3
— f‘_U o)) 0.2
=3 e
N b Jd =
— 0.99 0.01 <0.01 <0.01 0.99 0.01 <0.01 <0.01 0.1
© o E , 0.0
N |
0.84 0.08 0.05 0.03 0.84 0.08 0.05 0.03
£
ﬁn: - . J
0.78 0.11 0.07 0.03 0.78 0.11 0.07 0.03 o
<t —
cF
— -0.3
0.79 0.07 0.05 0.04 0.79 0.07 0.05
- [®)]
N @© ©

0.73 0.15 0.09 0.01 0.73 0.15 0.09 0.01

Figure A16: PCA basis and explained variance for each basis vector (below) of all element-wise multiplication
weights for the real and imaginary part in the frequency domain for each layer of a MobileNet-v2 trained on
ImageNet-1k. On the left, the maximal filter size for the corresponding layer is given. Right the weights for
the real values are given, and on the left are the imaginary values.

o

2

Real

0.01 0.98

<0.01 <O. 01 0.01 <0.01 <0.01

o

1

28x28 56x56
Real

0.01 0.01 <0.01 0.0

[l - -0.1

0.01 <0.01 <0.01

14x14
Real

<0.01 <0.01

0.2

Layer 4 Layer 3 Layer 2 Layerl
7x7
Real

0.93 0.04 0.02 <0.01 0.93 0.04 0.02 <0.01

Figure A17: PCA basis and explained variance for each basis vector (below) of all element-wise multiplication
weights for the real and imaginary part in the frequency domain for each layer of a DenseNet-121 trained
on ImageNet-1k. On the left, the maximal filter size for the corresponding layer is given. Right the weights
for the real values are given, and on the left are the imaginary values.

22

Published in Transactions on Machine Learning Research (05/2024)

Vo Vi Vo V3 Vg Vs Ve 1.00
Hg =
23 - = ':::' e e g 0.75
SLﬁ

0.87 0.10 0.01 0.01 0.00 0.00 0.00 0.50
N ©
52| | o] | <ot | o] || (A0 | k| W
SLﬁ | |

0.92 0.03 0.03 0.01 0.00 0.00 0.00 0.00
™M oo
N
SN

0.78 0.20 0.00 0.00 0.00 0.00 0.00 050
ﬁ': -I- |
- " n
ox 5 1: . ns ol -0.75
3= ! i

0.70 0.25 0.02 0.02 0.01 0.01 0.00 100

Figure A18: Actual kernels in the spatial domain of a ResNet-18 with additional zero padding before our
NIFF trained on ImageNet-100. We plot for each kernel the zoomed-in (9 x 9) version below for better
visibility. Still, most kernels exhibit well-localized, small spatial kernels.

Vo Vi Vo V3 Vg Vs Ve 1.00
—©
N
g X 0.75
3 N
0.87 0.10 0.01 0.01 0.00 0.00 0.00 0.50
N ©
1N
23 0.25
3 o]
0.92 0.03 0.03 0.01 0.00 0.00 0.00 0.00
™M oo
=N
3 i -0.25
3 o~
0.78 0.20 0.00 0.00 0.00 0.00 0.00 0,50
< <
—
X : T] -0.75
T
0.70 0.25 0.02 0.02 0.01 0.01 0.00 100

Figure A19: Actual kernels in the spatial domain of a ResNet-18 with additional zero padding before our
NIFF trained on ImageNet-100. Still, most kernels exhibit well-localized, small spatial kernels.

23

Published in Transactions on Machine Learning Research (05/2024)

Vo Vi V> V3 Vg Vs Ve 1.00
— ©
— m | W m s by -
gé "m mm " L L | . Iy 0.75
S Te]

0.51 0.23 0.20 0.02 0.01 0.01 0.01 050
~N©
— m | | ... |
gé . il mm l- - | 0.25
S Te]

0.74 0.12 0.06 0.04 0.02 0.01 0.01 0.00
™M oo
— N [| n
g{é o *n " < i u m o ~0.25
S o

0.65 0.15 0.08 0.04 0.03 0.02 0.01 —0.50
< <
j_ | . |
X . s " o o 1= -0.75
S =

0.85 0.10 0.03 0.02 0.00 0.00 0.00 ~1.00

Figure A20: Actual kernels in the spatial domain of a ResNet-18 which mimics linear convolutions with our
NIFF trained on ImageNet-100. We plot for each kernel the zoomed-in (13 x 13) version below for better
visibility. Still, most kernels exhibit well-localized, small spatial kernels. However, they are slightly larger
than the kernels learned without padding and cropping.

Vo Vi V> V3 Vg Vs Ve 1.00
— ©
e
23 0.75
3 Te}

0.51 0.23 0.20 0.02 0.01 0.01 0.01 0.50
N ©
P
23 g 0.25
S Te}

0.74 0.12 0.06 0.04 0.02 0.01 0.01 0.00
™M oo
“ (N .
3 4 " -0.25
S o

0.65 0.15 0.08 0.04 0.03 0.02 0.01 0,50
< <
o
gé " " T = 1 “d 1= -0.75
S —

0.85 0.10 0.03 0.02 0.00 0.00 0.00 100

Figure A21: Actual kernels in the spatial domain of a ResNet-18 which mimics linear convolutions with our
NIFF to mimic linear convolutions trained on ImageNet-100. Still, most kernels exhibit well-localized, small
spatial kernels. However, they are slightly larger than the kernels learned without padding and cropping.

24

Published in Transactions on Machine Learning Research (05/2024)

—©
N
U X
E\LD
_‘m
j=4
=
_Bcn
OJE)([] L [] [] [] [] - [] - - - -
=59 1.00
-0
N
— o
— N
U X
%LD
_,Ln
<
— 0.75
5T -
x L] []] [] - [] [] am - L[] [] [[]
%Ecn
38
N
N©
N
U X
%'O
n
i 0.50
[=4
~E
« O o
(9]
GEX| = . . = . i i . €+ H . '
TS
-0
N
N ©o
592 L 0.25
%LO
_ILn
C
I
0% i = 2 i i i o = L] . E
SE L | |
© o
-0
R t0.00
™M oo
— 0N
U X - + -
%00
_,N
<
m
582 &=
x |] L -— [] [] []] [] [] - []
>ESD L —-0.25
T o
- 9o
N
™M o
— 0N
v X -
5\00
Jl'\l
C
mE —0.50
[«)]
oO%| & . - o= . = wn . .
>ED
® o
-0
N
<<
o
%é o +* | i "
Chal -0.75
S
<
SOR| o || e || o || || @ . +
>EQ H o t
© o
-0
N
<
N -1.00
TR L [& * i
SH
C
=
_8@
ggx| 4 e o o i an] " L]
38
N

Figure A22: Actual kernels in the spatial domain of a ConvNeXt-tiny including our NIFF trained on
ImageNet-1k. We plot for each kernel the zoomed-in (9 x 9) version below for better visibility. Overall,
most kernels exhibit well-localized, small spatial kernels.

25

Published in Transactions on Machine Learning Research (05/2024)

—©

N

U X

>0

gm

£

-

LB o 4 m 2

T2 . ¥ S -] i . - Ll | . & &

SES] - 1.00
© o .
-0

N

— o

— N

U X

%w

_'Ln

[=

=3 0.75
S0 an i

gexl T i | L ' T = T L | &+ = | = L

© o

-0

N

N©

N

U X

=

4 0.50
£

o~

LB o

g x| - L] L] -— f L] s = § £ L] -

TS

-0

N

N o

o2 +0.25
%LO

_ILn

£

N_cm

s

gex| #* = i i + w E L] I

© o

-0

R t0.00
M o

— 0N

U X * x

%00

_'N

£

m

LUO\

og&| * * + - ' T + ¥ - -0.25
T o

- 9o

N

™M 0

— 0N

v X - - -

>0

SN

= -0.50
5§92 . - + - - S - . - i

>ED

® o

-0

N

<<

o

o x i W i] W

&= -0.75
IS

<

el

u;;gg i i i . i

38

N

<

) -1.00
o % W .5 o= ¥

P

BH

C

=

el

O i i i i

>ESD

38

N

Figure A23: Actual kernels in the spatial domain of a ResNet-50 including our NIFF trained on ImageNet-
1k. We plot for each kernel the zoomed-in (9 x 9) version below for better visibility. Overall, most kernels
exhibit well-localized, small spatial kernels.

26

Published in Transactions on Machine Learning Research (05/2024)

References

Shashank Agnihotri, Julia Grabinski, and Margret Keuper. Improving stability during upsampling—on the
importance of spatial context. arXiv preprint arXiv:2311.17524, 2023.

Sayed Omid Ayat, Mohamed Khalil-Hani, Ab Al-Hadi Ab Rahman, and Hamdan Abdellatef. Spectral-based
convolutional neural network without multiple spatial-frequency domain switchings. Neurocomputing, 364:
152-167, 2019.

Ron Bracewell and Peter B Kahn. The fourier transform and its applications. American Journal of Physics,
34(8):712-712, 1966.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local implicit
image function. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8628-8638, 2021.

Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
4479-4488. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
2fdbd4lec6cfabd7e32164d5624269b1-Paper . pdf.

Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned distance fields for implicit function
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 21638-21652. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/f69e505b08403ad2298b9f262659929a-Paper . pdf|

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297-301, 1965.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convo-
lutional networks. In Proceedings of the IEEE international conference on computer vision, pp. 764-773,
2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEFE conference on computer vision and pattern recognition, pp. 248-255. leee,
2009.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Scaling up your kernels to 31x31:
Revisiting large kernel design in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 11963-11975, June 2022.

Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and
Baining Guo. Cswin transformer: A general vision transformer backbone with cross-shaped windows. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12124-12134,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

George H Dunteman. Principal components analysis, volume 69. Sage, 1989.

Ricard Durall, Margret Keuper, and Janis Keuper. Watch your up-convolution: Cnn based generative
deep neural networks are failing to reproduce spectral distributions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. An Alan R. Apt book. Prentice Hall,
2003. ISBN 9780130851987. URL https://books.google.de/books?id=VAd5QgAACAAJ.

14

https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://books.google.de/books?id=VAd5QgAACAAJ

Published in Transactions on Machine Learning Research (05/2024)

Julia Grabinski, Steffen Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling — plug &
play against catastrophic overfitting. In Furopean Conference on Computer Vision, 2022. URL https:
//arxiv.org/abs/2204.00491.

Julia Grabinski, Janis Keuper, and Margret Keuper. Fix your downsampling asap! be natively more robust
via aliasing and spectral artifact free pooling. arXiv preprint arXiv:2307.09804, 2023.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=uYLFoz1v1AC.

Bochen Guan, Jinnian Zhang, William A Sethares, Richard Kijowski, and Fang Liu. Specnet: spectral
domain convolutional neural network. arXiv preprint arXiv:1905.10915, 2019.

Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu, Ming-Ming Cheng, and Shi-Min Hu. Segnext:
Rethinking convolutional attention design for semantic segmentation. arXiv preprint arXiv:2209.08575,
2022.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEFE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,
Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314-1324, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-

tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700-4708, 2017.

Steffen Jung and Margret Keuper. Spectral distribution aware image generation. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 1734-1742, 2021.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):1-41, 2022.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Bogian Wu, Mykola Pechenizkiy, Decebal
Mocanu, and Zhangyang Wang. More convnets in the 2020s: Scaling up kernels beyond 51x51 using
sparsity. arXiv preprint arXiv:2207.03620, 2022a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012-10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A con-
vnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022b.

Jovita Lukasik, Paul Gavrikov, Janis Keuper, and Margret Keuper. Improving native cnn robustness with
filter frequency regularization. Transactions on Machine Learning Research, 2023.

Tianyu Ma, Adrian V Dalca, and Mert R Sabuncu. Hyper-convolution networks for biomedical image
segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 1933-1942, 2022.

Tianyu Ma, Alan Q. Wang, Adrian V. Dalca, and Mert R. Sabuncu. Hyper-convolutions via implicit kernels
for medical image analysis. Medical Image Analysis, 86:102796, 2023. ISSN 1361-8415. doi: https://
doi.org/10.1016/j.media.2023.102796. URL https://www.sciencedirect.com/science/article/pii/
S51361841523000579.

15

https://arxiv.org/abs/2204.00491
https://arxiv.org/abs/2204.00491
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://www.sciencedirect.com/science/article/pii/S1361841523000579
https://www.sciencedirect.com/science/article/pii/S1361841523000579

Published in Transactions on Machine Learning Research (05/2024)

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through ffts.
arXiv preprint arXiv:1312.5851, 2013.

Hengyue Pan, Yixin Chen, Xin Niu, Wenbo Zhou, and Dongsheng Li. Learning convolutional neural networks
in the frequency domain, 2022. URL https://arxiv.org/abs/2204.06718.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters — improve semantic
segmentation by global convolutional network. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

Silvia L Pintea, Nergis Témen, Stanley F Goes, Marco Loog, and Jan C van Gemert. Resolution learning
in deep convolutional networks using scale-space theory. IEEFE Transactions on Image Processing, 30:
8342-8353, 2021.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In
International Conference on Machine Learning, pp. 28043-28078. PMLR, 2023.

Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. Fenn: Fourier convolutional neural networks.
In Michelangelo Ceci, Jaakko Hollmén, Ljupco Todorovski, Celine Vens, and Saso Dzeroski (eds.), Ma-
chine Learning and Knowledge Discovery in Databases, pp. 786798, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-71249-9.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for image
classification. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=K_Mnsw5Vo0OW.

David W. Romero, Robert-Jan Bruintjes, Jakub Mikolaj Tomczak, Erik J Bekkers, Mark Hoogendoorn,
and Jan van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel sizes. In
International Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
1id=3jooF27-0Wyl

David W. Romero, Anna Kuzina, Erik J Bekkers, Jakub Mikolaj Tomczak, and Mark Hoogendoorn. CKConv:
Continuous kernel convolution for sequential data. In International Conference on Learning Representa-
tions, 2022b. URL https://openreview.net/forum?id=8FhxBtXS10.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510-4520, 2018.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
7462-7473. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
53c04118df112c13a8c34b38343b9c10-Paper.pdf.

Ivan Sosnovik, Michat Szmaja, and Arnold Smeulders. Scale-equivariant steerable networks. arXiv preprint
arXi:1910.11093, 2019.

Nergis Tomen and Jan C van Gemert. Spectral leakage and rethinking the kernel size in cnns. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5138-5147, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference
on machine learning, pp. 10347-10357. PMLR, 2021.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Joao Felipe Santos,
Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep complex networks. In
International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
H1T2hmZAb.

16

https://arxiv.org/abs/2204.06718
https://openreview.net/forum?id=K_Mnsw5VoOW
https://openreview.net/forum?id=3jooF27-0Wy
https://openreview.net/forum?id=3jooF27-0Wy
https://openreview.net/forum?id=8FhxBtXSl0
https://proceedings.neurips.cc/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://openreview.net/forum?id=H1T2hmZAb
https://openreview.net/forum?id=H1T2hmZAb

Published in Transactions on Machine Learning Research (05/2024)

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann LeCun.
Fast convolutional nets with fbfft: A gpu performance evaluation. arXiv preprint arXiv:1412.7580, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Zelong Wang, Qiang Lan, Dafei Huang, and Mei Wen. Combining fft and spectral-pooling for efficient
convolution neural network model. In 2016 2nd International Conference on Artificial Intelligence and

Industrial Engineering (AIIE 2016), pp. 203-206. Atlantis Press, 2016.

Thomio Watanabe and Denis F Wolf. Image classification in frequency domain with 2srelu: a second
harmonics superposition activation function. Applied Soft Computing, 112:107851, 2021.

Shmuel Winograd. On computing the discrete fourier transform. Mathematics of computation, 32(141):
175-199, 1978.

Daniel Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. Advances in Neural Information
Processing Systems, 32, 2019.

17

	Introduction
	Related Work
	Convolutions in the Frequency domain
	Neural Implicit Frequency Filters
	Common CNN Building Blocks using NIFF

	NIFF Model Evaluation
	How large do spatial kernels really need to be?
	Filter Analysis
	Discussion and Conclusion
	Kernel Mass Evaluation
	Filter Visualization
	Principle Component Analysis
	Spatial Kernels
	NIFF multiplication weights

	Performance Evaluation
	Circular vs Linear Convolution
	Runtime
	Ablation on more modules
	Ablation on Padding
	NIFF's architecture
	Training Details
	Convolution Theorem
	Fast Fourier Transform
	Code Base

