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As large as it gets — Studying Infinitely Large Convolutions via
Neural Implicit Frequency Filter

Supplementary Material

In the following, we provide additional information and details that accompany the main paper:

A Kernel Mass Evaluation

In this section, we evaluate the kernel mass ratio for more ResNet models trained on ImageNet-1k (Figure
and different network architectures trained on ImageNet-100 (Figure . The networks show similar
behavior already observed in the main paper, all models predominately learn small, well-localized kernels
regardless of the potential to learn much larger kernels. However, the smaller ResNet-18 model learns larger
kernels than the ResNet-50 or ResNet-101 in the second layer. For ImageNet-100, MobileNet-v2 does not
learn as large kernels as observed for ImageNet-1k. Further, ResNet-50 trained on ImageNet-100 seems to
learn larger kernels in the second layers compared to the ResNet-50 trained on ImageNet-1k (Figure |4)).
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Figure A1l: Effective kernel size evaluation on ImageNet-1k for further ResNet models. We plot the average
ratio of the entire kernel mass contained within the limited spatial kernel size, where the x-axis denotes the
width and height of the squared kernels. The layers are summarised as follows: Layer 1 encoding 56 x 56,
Layer 2 28 x 28, Layer 3 14 x 14 and Layer 4 7 x 7.

Non-square kernels Following Romero et al.| (2022al), we analyse not only square shape kernels, which
are typically applied in CNNs but also rectangular shape kernels. Thus, we fit a 2D Gaussian to kernels
learned using our NIFF and compare the variance given by o, and o, in the x- and y- direction. In detail, we
build the ratio between o, and o, of the Gaussian. To aggregate over all kernels within one layer, we plot the
mean and standard deviation of these ratios in [Figure A3|and [Figure A4l The mean over all kernels within
a layer is near to a ratio of one indicating that most kernels exhibit square-shapes. For some layers (the
last layer for ResNet-50 and ResNet-101 on ImageNet-1k and ResNet-18 and ResNet-50 on ImageNet-100)
the variance is quite high, indicating that o, and o, differ and non-square, rectangle kernels are learned.
Not that the learned kernels by [Romero et al.| (2022a)) are parameterized by a Siren |Sitzmann et al.| (2020)
leading to more wave-like, smooth kernels. In contrast, we learn the kernels in the frequency domain which
could be wave-like, but are mostly not wave-like as shown in [Figure A22| and [Figure A23| Therefore, the
measured standard deviations in x and y direction should not be understood as a kernel mask as argued in
Romero et al.| (2022al). They merely indicate the rough spatial distribution of filter weights.
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B Filter Visualization

B.1 Principle Component Analysis

The Principle Component Analysis, short PCA, is typically a dimensionality reduction method. The goal
of PCA is to maintain most information of a dataset while transforming it into a smaller one. The first
principle component explains the most variance of the data, thus representing the majority. The second
principle component explains the next highest variance while being orthogonal to the first. For more details
on PCA, we refer to Dunteman| (1989)). For our analysis, we use the PCA of the learned kernels to visualize
the predominate structure. Hence, we use the dimensionality reduction property of the PCA to simplify the
visualization of the kernels. We also provide images of the original kernels in Figure and

B.2 Spatial Kernels

In this section, we show the PCA evaluation of the learned spatial kernels by the NIFFs for additional
architectures and datasets (ImageNet-100). The results are similar to the ones in the paper (Figure @
Figure [I] and Figure [7] The learned filters in the spatial domain are well-localized and relatively small
compared to the size they could actually learn. This holds true for different architectures on ImageNet-1k

(Figure and as well as for ImageNet-100 (Figure and [A12)).

Further, we show a grid of the actually learned filter in the spatial domain in Figure [A22] and [A23]

The learned spatial filters on CIFAR-10 are shown in Figure Similarly, to the results shown in Figure
[l The network learns well-localized, small filters n the spatial domain. Yet, for the feature map size of 8 x 8
in Layer 2 the network uses significantly more than the standard kernel size of 3 x 3.

B.3 NIFF multiplication weights

Moreover, we analyze the learned element-wise multiplication weights for the real and imaginary parts
of different models trained on ImageNet-1k in the frequency domain. Figures [A14] [AT5] [AT6] and [AT7]
show the PCA per layer for the learned element-wise multiplication weights for ResNet-50, DenseNet-121,
ConvNeXt-tiny and MobileNet-V2 respectively. For ResNet-50 and ConvNext-tiny, it seems as if the networks
focus in the first layer on the middle-frequency spectra and in the later layers more on the high-frequency
spectra. The multiplication weights learned for MobileNet-V2 (Figure focus in the first layer on low-
frequency information in the second layer on high-frequency information and in the third layer again on
low-frequency information. The DenseNet-121 (Figure learns high-frequency information prior in the
first two layers and low-frequency information predominately in the later, third layer. Hence, a general claim
for different models and their learned multiplication weights in the frequency domain can not be derived
from our empirical analysis. Still for all networks, the imaginary part seems to be less important for these
networks and thus the learned structures are less complex. This might be owed to the fact that with increased
sparsity through the activation function in the network, the network favours cosine structures (structures
with a peak in the center) over sine structures.

C Performance Evaluation

ImageNet-100 We report the accuracy our NIFF CNNs could achieve on ImageNet-100 and the number
of learnable parameters in Table The trend is similar to ImageNet-1k, the larger models benefit from
NIFF while the lightweight models do not so much. In addition to the models considered in the main paper,
we additionally evaluated MobileNet-v3 Howard et al.| (2019). We observe that both the baseline model and
the NIFF version have comparably low accuracy. For MobileNets, the training pipeline is usually highly
optimized for best performance. The data augmentation scheme from [Liu et al.| (2022b), that we employ
for all trainings to achieve comparable results, does not seem to have a beneficial effect here, neither on
ImageNet-1k (for [Sandler et al.| (2018)), nor on ImageNet-100 (for [Sandler et al. (2018); [Howard

et al.| (2019)), [Table Al)).
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Table Al: Performance evaluation of top 1 and 5 test accuracy on ImageNet-100 for different network
architectures. We used the standard training parameter for each network architecture and stayed consistent
with these for each architecture respectively. For the bigger networks like ResNet and DenseNet, which
include 2D convolutions, we split into depth-wise and 1x1 convolution as described in Section to reduce
the number of parameters, for faster training. For all models, our NIFF CNNs perform slightly better, even
with reduced number of parameters.

Name | # Parameters Acc@l Acc@5
ConvNeXt-tiny Liu et al.| (2022b) 27.897.028 91.70  98.32
NIFF (ours) 28.231.684 92.00 98.42
ResNet-18 (2016) 11.227.812 87.52 97.50
NIFF 2D conv (ours) 20.665.620 86.42  97.08
ResNet-18 separated conv 2.865.700 86.52  97.20
NIFF (ours) 3.198.660 86.52  97.14
ResNet-50 (2016]) 23.712.932 89.88  98.22
NIFF 2D conv (ours) 31.934.228 90.08 98.06
ResNet-50 separated conv 16.431.588 89.78  98.18
NIFF (ours) 16.760.900 89.98  98.44
ResNet-101 (2016) 42.705.060 90.54  98.14
NIFF 2D conv (ours 60.954.180 89.94  98.14
ResNet-101 separated conv 26.549.988 90.20  98.36
NIFF (ours) 27.343.332 90.54 98.38
DenseNet-121 Huang et al | (2017) 7.056.356  90.06  98.20
NIFF 2D conv (ours) 0.197.252 89.66  98.32
DesNet-121 separated conv 5.222.628 89.94  98.08
NIFF (ours) 5.237.012 90.24 98.18
MobileNet-v2 Sandler et al. (2018) 2.351.972 84.06  96.52
NIFF (ours) 2.359.660 85.46 96.70
MobileNet-v3 Howard et al.| (2019) 1.620.356 79.84  94.76
NIFF (ours) 1.617.748 78.90  95.40

CIFAR-10 Although NIFF CNNs can perform on par with the respective baseline on high-resolution
datasets, their performance is limited on low-resolution dataset. Table shows the results on CIFAR-
10 with different architectures. Unfortunately, our NIFF CNNs lose around 1 to 3 % points compared to the
baseline models. This can be addressed to our previous observation: The networks trained on CIFAR-10 do
only use a small amount of the potential kernel size NIFF provides being as big as the kernels of the baseline
model (3 x 3).

D Circular vs Linear Convolution

Our NIFF as proposed above performs a circular convolution, which allows us to directly apply the convo-
lution theorem and execute it as multiplication in the frequency domain. However, standard convolutions
in CNNs are finite linear convolutions. A circular convolution can mimic a linear convolution when zero-
padding a signal with length M and a kernel with length K to length L < M + K — 1 Winograd| (1978|).
Thus, to ablate on circular versus finite linear convolutions, the input featuremaps with size N x N are
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Table A2: Performance evaluation of different networks trained on CIFAR-10 and the number of learnable
hyperparameters for each network. To be comparable between all models and architecture changes we used
the same training schedule for all of them. One can see that NIFF CNNs perform slightly better with a
ConvNeXt |[Liu et al.| (2022b)) backbone. However, for other architectures, it performs slightly worse.

Method ‘ # Parameters Top 1 Acc
ConvNeXt-tiny |Liu et al.| (]2022bD 6.376.466 90.37
NIFF (ours) 6.305.746 91.48
ResNet-18 (2016]) 11.173.962 92.74
NIFF 2D conv (ours) 20.613.546 92.66
ResNet-18 separated conv 2.810.341 90.18
NIFF (ours) 1.932.432 90.63
ResNet-50 (2016) 23.520.842 93.75
NIFF 2D conv (ours) 31.743.914 93.39
ResNet-50 separated conv 16.237.989 92.13
NIFF (ours) 15.491.600 93.11
DenseNet-121 Huang et al.| (2017) 6.956.426 93.93
NIFF 2D conv (ours) 9.099.098 92.47
DenseNet-121 separated conv 5.121.189 92.00
NIFF (ours) 5.555.856 92.49
MobileNet-v2 Sandler et al. (2018) |  2.236.682 94.51
NIFF (ours) 2.593.760 94.03
MobileNet-v3 Howard et al.| (2019) |  1.528.106 86.28
NIFF (ours) 1.526.466 86.60

zero-padded to 2N x 2N. For both, the linear and the circular case, NIFF learns filters with the original
size N x N of the featuremap. To mimic linear filters, the learned filters by our NIFF are transformed
into the spatial domain and zero-padded similarly to the input featuremaps to 2N x 2NN. Afterwards, they
are transformed back into the frequency domain and the point-wise multiplication is executed. Note that
this is not efficient and just serves the academic purpose of verifying whether any accuracy is lost when
replacing linear convolutions by circular ones in our approach. However, the resulting networks experience
a performance drop compared to the baseline and our NIFF as shown in [Table A3| and [Table A4l We hy-
pothesize that this drop in performance results from the enforcement of really large kernels. The additional
padding mimics linear finite convolutions that are as big as the featuremaps. Related work has shown that
larger context can improve model performance Ding et al.| (2022); Liu et al. (2022a)). Still, there is a limit
to which extent this holds as with large kernels artifacts may arise Tomen & van Gemert| (2021). Thus,
enforcing kernels as large as the featuremaps seems to be not beneficial as shown by our quantitative results.
Another explanation for the drop in accuracy could be the introduction of sinc interpolation artifacts into
the padded and transformed featuremaps and kernels. The padding is formally a point-wise multiplication
with a box-function in the spatial domain. Thus, sinc-interpolation artifacts in the frequency domain can
arise. [Figure A20| and [Figure A21| show that the learned spatial kernels are larger than the learned kernel
when we apply a circular convolution with our NIFF. While the first and second layers still learn relatively
small filters compared to the actual size they could learn, the third and fourth layers make use of the larger
kernels. Since these results come with a significant drop in accuracy, we should however be careful when
interpreting these results.
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Table A3: Evaluation of top 1 and top 5 accuracies on ImageNet-100 for networks learning filters with
our NIFF but afterwards those are padded in the spatial domain and transformed back into the frequency
domain to mimic linear convolutions. All ResNet architectures and DenseNet-121 were trained with separated
depth-wise and 1x1 convolutions due to efficiency reasons. All models using finite linear convolutions perform
significantly worse than the baseline and our NIFF which applies circular convolutions. This observation is
consistent with low-resolution data like CIFAR-10.

Name ‘ Acc@l Acc@b
ConvNeXt-tiny [Liu et al.| (2022b) | 91.70  98.32
NIFF (ours) 92.00 98.42
NIFF linear 83.00 95.36
ResNet-18 separated conv 86.52  97.20
NIFF (ours) 86.52  97.14
NIFF linear 81.90 95.42
ResNet-50 separated conv 89.78  98.18
NIFF (ours) 89.98  98.44
NIFF linear 86.76  97.16
ResNet-101 separated conv 90.20  98.36
NIFF (ours) 90.54 98.38
NIFF linear 86.70  97.06
DesNet-121 separated conv 89.94  98.08
NIFF (ours) 90.24 98.18
NIFF linear 81.40  95.52
MobileNet-v2 [Sandler et al|(2018) | 84.06  96.52
NIFF (ours) 85.46 96.70
NIFF linear 73.90 93.16

E Runtime

As discussed in the computing costs section of the main paper, our approach is slower than the current
implementation with spatial convolutions due to the repetitive use of FFT and IFFT. However, when com-
paring the number of FLOPs needed to compute convolutions with kernel sizes as big as the featuremaps
to our NIFF approach, NIFF requires significantly fewer FLOPs, especially with increased featuremap size.
Figure [§ shows that most of the FLOPs for our NIFF result from the additional FFT and IFFT operation.
Still, we require much fewer FLOPs than large spatial convolutions.

Moreover, we evaluate the runtime per epoch for each model on CIFAR-10 (Table and ImageNet-100
(Table and compare it to the standard spatial 3x3 convolution, which has a much smaller spatial
context than our NIFF as well as spatial convolutions which are as large as the featuremaps. This would
be comparable to our NIFF. Obviously, small spatial kernels (3 x 3) are much faster than larger kernels like
NIFF or large spatial kernels. However, NIFF is much faster than the large spatial kernels during training.
Especially on high-resolution datasets like ImageNet-100 our NIFF is over four times faster on ResNet-50
and over three times faster on ConvNeXt-tiny compared to the large convolution in the spatial domain.

In general, we want to emphasize that our NIFF models still learn infinite large kernels while all kernels
in the spatial domain are limited to the set kernel size. If one would like to learn a 2D convolution in the
spatial domain with an image g of size N x N and filters with the same size N x N this would be in O(N*)
whereas using FFT and pointwise multiplication (Equation [1)) would result in O(N?2log(N)).
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Table A4: Evaluation of top 1 on CIFAR-10 for networks learning filters with our NIFF but afterwards
those are padded in the spatial domain and transformed back into the frequency domain to mimic linear,
non-circular convolutions. All models using finite linear convolutions perform significantly worse than the
baseline and our NIFF. This observation is consistent with high-resolution data like ImageNet-100.

Method ‘ Top 1 Acc
ConvNeXt-tiny [Liu et al.| (2022b) 90.37
NIFF (ours) 91.48
NIFF linear 84.30
ResNet-18 [He et al.| (2016) 92.74
NIFF full (ours) 92.66
NIFF full linear 85.10
ResNet-18 separated conv 90.18
NIFF (ours) 90.63
NIFF linear 83.11
ResNet-50 [He et al.| (2016]) 93.75
NIFF full (ours) 93.39
NIFF full linear 88.22
ResNet-50 separated conv 92.13
NIFF (ours) 93.11
NIFF linear 87.54
DenseNet-121 |[Huang et al.| (2017) 93.93
NIFF full (ours) 92.47
NIFF full linear 85.73
DenseNet-121 separated conv 92.00
NIFF (ours) 92.49
NIFF linear 79.95
MobileNet-v2 [Sandler et al.| (2018]) 94.51
NIFF (ours) 94.03
NIFF linear 93.21

Table A5: Average training time per epoch in seconds and standard deviation on one NVIDIA Titan V
of NIFF compared to standard spatial convolutions 3x3 or 7x7 and maximal larger spatial convolutions on
CIFAR-10.

Name Baseline Spatial Conv NIFF
3x3/7x7 featuremap sized (ours)
ConvNeXt-tiny [Liu et al.| (2022b) | 68.31 £ 0.62 108.97 + 0.25 96.48 + 1.97
ResNet-18 [He et al.| (2016) 8.57 £ 0.20 22.75 £ 0.28 17.87 £ 0.54
ResNet-50 He et al.| (2016) 7.98 £ 0.10 37.05 4+ 0.48 27.36 £0.16
DenseNet-121 [Huang et al.| (2017)) | 26.36 + 1.32 67.11 4+ 0.25 84.51 4+ 3.71
MobileNet-v2 [Sandler et al.| (2018]) | 22.50 4 0.26 143.47 + 0.20 83.41 + 4.78

F Ablation on more modules

We show that our NIFF can be combined with other frequency modules to achieve networks that operate
mostly in the frequency domain. Hence, the number of transformations can be reduced. demon-
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Table A6: Average training time per epoch in seconds and standard deviation on four NVIDIA A100 of
NIFF compared to standard spatial convolutions (3x3 or 7x7) and maximal larger spatial convolutions on
ImageNet-100.

Name Baseline Spatial Conv NIFF
3x3/7x7 featuremap sized (ours)
ConvNeXt-tiny |Liu et al.| (2022b) 92.19 £ 4.21 487.89 £+ 3.54 149.70 + 1.32
ResNet-18 [He et al.| (2016) 31.99 £ 0.71 608.13 £ 22.53 89.00 + 0.60
ResNet-50 [He et al.| (2016) 85.51 + 0.22 951.43 £+ 6.09 204.82 £ 0.33
ResNet-101 [He et al.| (2016]) 152.39 £ 5.07  1392.21 4+ 47.91 349.83 + 2.44
DenseNet-121 [Huang et al.| (2017) | 128.95 + 1.64 10188.15 + 28.17 408.08 £ 2.20
MobileNet-v2 [Sandler et al.|(2018) | 32.64 + 0.25 856.84 + 4.35 100.75 + 0.15

Table AT: Average inference time in seconds and standard deviation on one NVIDIA Titan V of NIFF
compared to standard spatial convolutions (3x3 or 7x7) and maximal larger spatial convolutions on the full
CIFAR-10 validation set.

Name Baseline Spatial Conv NIFF
3x3/7x7  featuremap sized (ours)
ConvNeXt-tiny |Liu et al.| (2022b) | 2.35 £ 0.05 4.06 £ 0.02 6.32 £ 0.14
ResNet-18 [He et al.| (2016) 2.69 £ 0.10 3.29 £ 0.08 3.14 £ 0.54
ResNet-50 He et al.| (2016)) 3.09 £ 0.13 5.05 £ 0.45 5.26 £ 0.06
DenseNet-121 |Huang et al.[ (2017) | 3.40 4+ 0.05 5.27 £ 0.02 6.50 + 0.14
MobileNet-v2 [Sandler et al.| (2018) | 2.93 £+ 0.06 8.68 + 0.43 7.02 £ 0.04

strates that adding the downsampling layer |Grabinski et al.| (2022; [2023)) or the last average pooling and the
fully connected layer also yields good results. Also combining all of them, NIFF, FLC Pooling |Grabinski
et al.| (2022) and the Average Pooling plus Fully connected layer performs quite well. Also, incorporating
the ComplexBatchNorm |Trabelsi et al| (2018) leads to a drop in accuracy by roughly 15%. We also tried to
incorporate the non-linearity into the frequency domain, but we were not able to achieve much better results
than by removing it fully.

G Ablation on Padding

We evaluate our NIFF when the featuremaps are padded with different kinds of padding methods. Due to
the padding of the featuremaps and the cropping after the application of our NIFF, possible artifacts can
be mitigated. The padding is applied around the featuremaps before transforming them into the frequency
domain. The padding size is as large as the original featuremap. After the application of our NIFF, the
featuremaps are transformed back into the spatial domain and cropped to their original size. The resulting
networks experience similar performance as our baseline NIFF as shown in [Table AI0l [Figure A1§| and
Figure A19 show the learned spatial kernels when only the featuremaps are padded. The learned spatial
kernels are still relatively small and well-localized.

H NIFF’s architecture

In the following, we describe the architecture used for our NIFFs for each backbone network architecture.
Note that the size of the NIFF is adjusted to the size of the baseline network as well as the complexity of
the classification task.
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Table A8: Average inference time in seconds and standard deviation on four NVIDIA A100 of NIFF compared
to standard 3x3 full or 7x7 depth-wise spatial convolutions and maximal larger spatial convolutions on the

full ImageNet-100 validation set.

Name Baseline Spatial Conv NIFF
3x3/7x7  featuremap sized (ours)
ConvNeXt-tiny |Liu et al.| (2022b) 4.86 £ 0.13 17.07 £ 0.19 6.06 £ 0.08
ResNet-18 He et al.| (2016)) 4.53 £ 0.52 24.57 £ 0.21 4.52 £ 0.18
ResNet-50 He et al.| (2016) 5.43 £ 0.30 42.33 £ 0.21 10.35 £ 0.14
ResNet-101 He et al.| (2016) 7.35 £ 0.17 54.85 £+ 0.25 16.82 £ 0.10
DenseNet-121 |[Huang et al.| (2017) | 5.12 £ 0.07  104.36 + 0.40  12.04 4+ 0.18
MobileNet-v2 [Sandler et al.| (2018) | 4.27 + 0.13 28.97 £+ 0.04 6.61 0.16

Table A9: Comparison on CIFAR-10 of NIFF MobileNet-v2 Sandler et al.[ (2018) incorporating more modules
besides our NIFF into the frequency domain.

NIFF ‘ FLC Pooling [2022] Complex BatchNorm [2018] AveragePooling + FC  Accuracy
X X X 94.03
v v X X 93.61
v X v X 78.60
v X X v 93.82
v v v X 79.83
v v X v 93.27
v X v v 73.90
v v v v 55.81

Low-resolution task All networks trained on CIFAR-10 incorporate the same NIFF architecture. The
NIFF consists of two stacked 1 x 1 convolutions with a ReLU activation function in between. The 1 x 1
convolution receives as input two channels, which encode the x and y coordinate as described in Figure
The 1 x 1 convolution expands these two channels to 32 channels. From these 32 channels, the next 1 x 1
convolution maps the 32 channels to the desired number of point-wise multiplication weights.

High-resolution task For the networks trained on ImageNet-100 and ImageNet-1k the size of the neural
implicit function to predict the NIFF is kept the same for each architecture respectively, while the size of the
neural implicit function is adjusted to the network architecture to achieve approximately the same number
of trainable parameters. Hence, the lightweight MobileNet-v2 model [Sandler et al.| (2018]) and the small
DensNet-121 [Huang et al.| (2017)) incorporate a smaller light-weight neural implicit function to predict the
NIFF, while larger models like ResNet [He et al. (2016 or ConvNeXt-tiny |Liu et al.| (2022b)) incorporate a
larger neural implicit function. For simplicity, we define two NIFF architectures. One for the large models
and one for the smaller, lightweight models.

For the smaller, lightweight models, the neural implicit function consists of three stacked 1 x 1 convolutions
with one SiLLU activation after the first one and one after the second one. The dimensions for the three 1 x 1
convolutions are as follows. We start with two channels and expand to eight channels. From these eight
channels, the second 1 x 1 convolution suppresses the channels down to four. Afterwards, the last 1 x 1
convolution maps these four channels to the desired number of point-wise multiplication weights.

For the larger models, we used four layers within the neural implicit function for NIFF. The structure is
similar to all NIFFs between each 1 x 1 convolution a SiLLU activation function is applied. The dimensions
for the four layers are as follows. First from two to 16 channels, secondly from 16 to 128 channels and
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Table A10: Evaluation of top 1 and top 5 accuracies on ImageNet-100 for ResNet-18 with different kinds of
padding.

Name ‘ Acc@Ql Acc@5b
ResNet-18 baseline 87.52 97.50
NIFF (ours) 86.52  97.14

NIFF zero padding 87.00 97.54
NIFF reflect padding | 86.64  97.24
NIFF circular padding | 87.06  97.34

afterwards suppressed down from 128 to 32 channels. The last 1 x 1 convolution maps these 32 channels to
the desired number of point-wise multiplication weights.

We show that the smaller NIFF size for the lightweight models does not influence the resulting performance.
Thus, we train a lightweight MobileNet-v2 with larger NIFFs (similar size as the larger models). The results
are presented in Table[ATI] We can see that the network does not benefit from the larger NIFF size. Hence,
we assume that keeping the smaller NIFFs for the smaller, lightweight models can achieve a good trade-off
between the number of learnable parameters and performance.

Table A1l: Evaluation of top 1 and top 5 accuracies on ImageNet-100 for different NIFF sizes for the
lightweight MobileNet-v2 [Sandler et al.| (2018)).

Name ‘ Acc@l Acc@b
MobileNet-v2 baseline | 84.94  96.28
small NIFF 83.72  96.40
big NIFF 83.82  96.32

Low-resolution task For all models trained on CIFAR-10 the NIFF architectures is kept the same. The
neural implicit function consists of two stacked 1 x 1 convolutions with one ReLU activation in between.
The dimensions for the two 1 x 1 convolutions are as follows. We start with two channels and expand to
32 channels. The second 1 x 1 convolution maps these 32 channels to the desired number of point-wise
multiplication weights.

Ablation on Separated Convolution Further, we ablate our design choices to use separated depth-wise
and 1 x 1 convolutions instead of full convolutions for efficiency. Hence, we train all ResNet and DenseNet
networks with additionally separated convolutions (separated in depth-wise and 1 x 1 convolution) as well
as our NIFF as full convolution. Tables and show that using separated convolutions in the spatial
domain performs slightly worse than the baseline but also reduces the amount of learnable parameters
similarly to our NIFF. Using full convolutions in our NIFF leads to an increase in accuracy but also an
increased amount of learnable parameters. Hence, we can see a clear trade-off between number of learnable
parameters and accuracy.

| Training Details

ImageNet. The training parameters and data preprocessing are kept the same for ImageNet-1k and
ImageNet-100. For the training of each network architecture, we used the data preprocessing as well as
the general training pipeline provided by |Liu et al.| (2022b)). The training parameters for each individual
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network are taken from the original papers provided by the authors ResNet |He et al| (2016)), DenseNet-121
Huang et al.| (2017) ConvNeXt-tiny Liu et al.| (2022b)) and MobileNet-v2 [Sandler et al.| (2018)).

CIFAR-10. For CIFAR-10 we used the same training parameter for all networks. We trained each network
for 150 epochs with a batch size of 256 and a cosine learning rate schedule with a learning rate of 0.02. we
set the momentum to 0.9 and weight decay to 0.002. The loss is calculated via LabelSmoothingLoss with
label smoothing of 0.1 and as an optimizer, we use Stochastic Gradient Descent (SGD).

For data preprocessing, we used zero padding by four and cropping back to 32 x 32 and horizontal flip, as
well as normalizing with mean and standard deviation.

Computing Infrastructure For training our models and the baseline we use NVIDIA Titan V and
NVIDIA A100 GPUs. For the training on low-resolution data (CIFAR-10). We used one NVIDIA Titan
V, depending on the model architecture and the convolution used (baseline, NIFF or large convolution) the
training took between 15 minutes and 90 minutes. For the training on high-resolution data (ImageNet-100
and 1k) we used four NVIDIA A100 in parallel. The training time depends on the used model architecture
and varies if we used the full ImageNet-1k dataset or only ImageNet-100. The training time for ImageNet-1k
varies between one day and one hour and ten days and nine hours for ImageNet-100 between 93 minutes and
one day eight hours dependent on the model architecture and the number of epochs for training.

J Convolution Theorem

Following, we demonstrate the proof of the convolution theorem. For more details, please refer to (for
example) Bracewell & Kahn| (1966); Forsyth & Ponce| (2003)).

As stated in Equation in the main paper we make use of the convolution theorem Bracewell & Kahn| (1966));
Forsyth & Ponce| (2003) which states that a circular convolution, denoted by ®, between a signal g(x) and
filter k(x) in the spatial domain can be equivalently represented by a point-wise multiplication, denoted by
©®, of these two signals in the frequency domain, by computing their Fourier Transform, denoted by the
function F(.):

Flgek) = Flg) 0 F(k) g
with
Flgle)) = G = [ gy ®

To show that this holds, we first show that the Fourier transformation as a system has specific properties
when the signal is shifted. If we shift a signal/function g(z) by a in the spatial domain expressed by g(x — a)
this results in a linear phase shift in the Fourier domain:

Flala - a)) = Floa)) = [ glaye et )

— 00

. , . N . )
where e J2mu(z’+a) — g—j2muap—j2mus’ gnq e~i27ua jg g constant, such that

Flg(a — a)) = e 727G u) (10)

Using the shift property of the Fourier transform we can now prove the convolution theorem. The continuous
convolution is defined as follows:

gla) ko) = [ " g@)k(y — 2)de (11)

— 00

10
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The Fourier transformation of g(x) ® k(x) is defined by:

/O; UZ g(x)k(y — x)dx] eI gy

By reversing the order of the integration we get

[ o[ ke as

where we can pull out g(z). Given the shift property, the inner integration can be defined by:

/oo k(y — x)e 7™ Wdy = F(k(y — z)) = e 2™ K (u)

— 00

such that

[ o | [ k- ooy ao

= /OO g(x)e 2™ K (u)dx

—0o0

= [ / h g(x)ej%“dx} K (u)

= G(u)K(u) = F(g)(u)F (k) (u),

so that for all spatial frequencies u, we have
Flg®k)(u) = F(g)(u) © F(k)(u).
K Fast Fourier Transform
The Discrete Fourier Transform (DFT) of an input signal f(n) with N samples is defined as
N-1

F(k) = f(n)e 72rtm/N

n=0

(12)

(13)

(15)

(16)

(17)

Executing the DFT directly would take O(N?). Thus [Cooley & Tukey! (1965) developed the Fast Fourier
Transform, short FFT. Which builds upon a divide and concur strategy and reduces the runtime down to

O(NlogN).

They used the inherent symmetry which results from the period nature of the transformed signal. To give

an intuition for this inherent symmetry lets explore what happens if we shift by V:

=

F(k+N) = f(n)e /2rHNn/N,

i
L

f(n)€7j27rnefj27rkn/N7

i
L

f(’n,)@_jQTrkn/N,

3
I
=3

11

(18)
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as /2™ =1 for any integer n. Thus one can see that

F(k + N) = F(k) (19)

and also

F(k+iN) = F(k) (20)

for any integer ¢ holds.

Given this symmetry, |(Cooley & Tukey| (1965) developed an algorithm which divides the DFT into smaller
parts such that the DFT can be solved via divide and concur. Following we rearrange the DFT into two
parts:

3
=

S~—
I

N-1
Z f(n)eijWkn/N
n=0

N/2-1

Z f(Qm)e—j%erm/N

m=0

N/2-1

i Z F(2m + 1)e~92mk(@m+1)/N (21)
m=0

N/2—1

_ Z f(Qm)efj%rkm/(N/Q)

m=0

N/2—-1
+e—j27rk/N Z f(2m+1)e—j2ﬂ'km/(N/2)

m=0

Each part represents the even-numbered and odd-numbered values respectively. However, the runtime is
still the same as each term consist of O(N/2)N computations so in total still O(N?).

Luckily, this division into two parts can be continued in each part again. Hence, the range of kis0 < k < N
while m is now in the range of 0 < m < M where M = N/2. Thus, solving the problem only takes half of the
computations as before, O(N?) becomes O(M?) where M is half the size of N. As long as M is even-valued,
we can apply divide the problem in even smaller parts, applying the divide and concur strategy which in an
recursive implementation takes only O(NlogN).

L Code Base

Implementation code for our NIFF CNNs is provided at: https://anonymous.4open.science/r/
NIFF1528anonymous and will be made publicly available upon acceptance.

12
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Figure A2: Effective kernel size evaluation on ImageNet-100. We plot the average ratio of the entire kernel
mass contained within the limited spatial kernel size, where the x-axis denotes the width and height of
the squared kernels. For ResNet and ConvNeXt-tiny each layer encodes one resolution. Thus, the layers
could be summarised (Layer 1 encoding 56 x 56, Layer 2 56 x 56, Layer 3 28 x 28 and Layer 4 14 x 14).
For DenseNet-121 each layer can be summarised similarly, yet the after the first layer the feature maps are
already downsampled resulting in the following: Layer 1 encoding 56 x 56, Layer 2 28 x 28, Layer 3 14 x 14
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and Layer 4 7 x 7. However, for MobileNet-v2 the resolution is downsampled within a layer.
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Figure A3: Analysis of non-square kernel shapes inspired by Romero et al. (2022a)) on ImageNet-1k. We
compare the variance o, and o, in x- and y-direction of a Gaussian fitted onto our learned spatial weights.

The red dashed line indicates square-shaped kernels as the variance o, and o, are equal.
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The red dashed line indicates square-shaped kernels as the variance o, and o, are equal.
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Figure A5: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a ConvNeXt-tiny trained on ImageNet-1k zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding layer is given. ConvNeXt convolutions are standardly equipped with larger kernel sizes
than usual (7 x 7). However, our analysis reveals that the network barely uses large filters if it gets the
opportunity to learn large filters. The learned filters in the first and third layer mostly use small (3 x 3),
well-localized filters.
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Figure A6: PCA basis and explained variance for each basis vector (below) of all spatial filters for each layer
of a DenseNet-121 trained on ImageNet-1k zoomed to 9 x 9. On the left, the maximal filter size for the
corresponding layer is given. We can see that most filters only use a well-localized, small kernel size although
they could use a much bigger kernel.
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layer of a MobileNet-v2 trained on ImageNet-1k zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding stage is given. For MobileNet-v2 the feature maps are downsampled within a layer, thus
the stages are combine by feature maps size rather than the layers. We can see that most filters only use a
well-localized, small kernel size although they could use a much bigger kernel.
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could use a much bigger kernel.
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Figure A10: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
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the corresponding layer is given. We can see that most filters only use a really small kernel size although
they could use a much bigger kernel.
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Figure A11: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a DenseNet-121 trained on ImageNet-100 zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding layer is given. We can see that most filters only use a well-localized, small kernel size
although they could use a much bigger kernel.
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Figure A12: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a MobileNet-v2 trained on ImageNet-100 zoomed to 9 x 9. On the left, the maximal filter size for
the corresponding stage is given. For MobileNet-v2 the feature maps are downsampled within a layer, thus
the stages are combine by feature maps size rather than the layers. We can see that most filters only use a
well-localized, small kernel size although they could use a much bigger kernel.
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Figure A13: PCA basis and explained variance for each basis vector (below) of all spatial filters for each
resolution for the NIFF convolutions of a MobileNet-V2 trained on CIFAR-10 as well as the learned filters for
the third layer of a standard MobileNet-V2 trained on CIFAR-10 (bottom row). On the right, the maximal
filter size for the corresponding layer is given. We can see that most filters only use a well-localized, small
kernel size although they could use much bigger kernels.
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Figure A18: Actual kernels in the spatial domain of a ResNet-18 with additional zero padding before our
NIFF trained on ImageNet-100. We plot for each kernel the zoomed-in (9 x 9) version below for better
visibility. Still, most kernels exhibit well-localized, small spatial kernels.
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Figure A19: Actual kernels in the spatial domain of a ResNet-18 with additional zero padding before our
NIFF trained on ImageNet-100. Still, most kernels exhibit well-localized, small spatial kernels.
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Figure A20: Actual kernels in the spatial domain of a ResNet-18 which mimics linear convolutions with our
NIFF trained on ImageNet-100. We plot for each kernel the zoomed-in (13 x 13) version below for better
visibility. Still, most kernels exhibit well-localized, small spatial kernels. However, they are slightly larger
than the kernels learned without padding and cropping.
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Figure A21: Actual kernels in the spatial domain of a ResNet-18 which mimics linear convolutions with our
NIFF to mimic linear convolutions trained on ImageNet-100. Still, most kernels exhibit well-localized, small
spatial kernels. However, they are slightly larger than the kernels learned without padding and cropping.
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Figure A22: Actual kernels in the spatial domain of a ConvNeXt-tiny including our NIFF trained on
ImageNet-1k. We plot for each kernel the zoomed-in (9 x 9) version below for better visibility. Overall,
most kernels exhibit well-localized, small spatial kernels.
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Figure A23: Actual kernels in the spatial domain of a ResNet-50 including our NIFF trained on ImageNet-
1k. We plot for each kernel the zoomed-in (9 x 9) version below for better visibility. Overall, most kernels
exhibit well-localized, small spatial kernels.
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