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Abstract
Multi-Agent Reinforcement Learning (MARL) has become a versatile tool for tack-
ling complex tasks, as agents learn to cooperate and compete across a wide range of
applications. Yet, instability remains a persistent hurdle. We pinpoint one key source
of instability: the rotational dynamics that naturally arise when agents optimize con-
flicting objectives—dynamics that standard gradient methods struggle to tame. We
reframe MARL approaches using Variational Inequalities (VIs), offering a unified frame-
work to address such issues. Leveraging optimization techniques designed for VIs,
we propose a general approach for integrating gradient-based VI methods capable of
handling rotational dynamics into existing MARL algorithms. Empirical results demon-
strate significant performance improvements across benchmarks. In zero-sum games,
Rock–paper–scissors and Matching pennies, VI methods achieve better convergence to
equilibrium strategies, and in the Multi-Agent Particle Environment: Predator-prey, they
also enhance team coordination. These results underscore the transformative potential of
advanced optimization techniques in MARL.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) builds on Reinforcement Learning (RL) by addressing
environments where multiple agents interact to achieve their objectives. Competition among agents
can also foster more efficient and robust learning outcomes. As a result, MARL has found applications
across diverse domains, including autonomous driving, robotic coordination, and multi-player games,
showcasing its ability to address complex challenges (see, for example, Omidshafiei et al., 2017;
Vinyals et al., 2017; Spica et al., 2018; Zhou et al., 2021; Bertsekas, 2021).

Despite its potential, advancing and deploying MARL research faces significant challenges. Crucially,
both actor-critic RL and MARL move beyond standard minimization, instead operating within the
framework of two- or multi-player games. The introduction of competitive learning objectives and
interaction terms generates unique learning dynamics, where conventional gradient descent (GD)
methods may fail to converge even in relatively simple scenarios (Korpelevich, 1976). Performance
is also highly sensitive to seemingly minor factors, such as the initial random seed, making reliable
benchmarking difficultGorsane et al. (2022). While similar issues exist in single-agent actor-critic
RL–a form of two-player game–they are far more severe in MARL, contributing to what has been
called the MARL reproducibility crisis (Bettini et al., 2024b).

In mathematics and numerical optimization, equilibrium-finding problems can be modeled using
several frameworks, most notably the Variational Inequality (VIs, Stampacchia, 1964; Facchinei &

Our code implementation: https://anonymous.4open.science/r/VI-marl-1436/README.md.
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Pang, 2003) framework (see Section 3 for a formal definition). A key limitation of Gradient Descent
(GD) in solving simple VI problems stems from the “rotational component” of their associated
vector fields (Mescheder et al., 2018; Balduzzi et al., 2018). For example, the GD method for the
minz1∈Rd1 maxz2∈Rd2 z1 · z2 game, rotates around the equilibrium (0, 0) for infinitesimally small
learning rates, and diverges away from it for practical choices of its value.

Recent advances in solving variational inequalities (VIs) have been heavily influenced by challenges
observed in training generative adversarial networks (GANs, Goodfellow et al., 2014). This progress
spans both theoretical developments—with new convergence guarantees (e.g., Golowich et al.,
2020b; Daskalakis et al., 2020b; Gorbunov et al., 2022)—and practical algorithms for large-scale
optimization (Diakonikolas, 2020; Chavdarova et al., 2021). We provide a detailed discussion of
these advances in Appendix A.

MARL can be broadly categorized into centralized and independent learning approaches. In this
work, we focus on Centralized Training Decentralized Execution (CTDE) approaches, specifically
the ones with centralized critics. Several of the new algorithms in MARL belong to this category
such as (MADDPG, Lowe et al., 2017), (MATD3, Ackermann et al., 2019), (MAPPO, Yu et al.,
2021), and (COMA, Foerster et al., 2018).

In summary, this paper explores the following:

Can VI methods counteract rotational dynamics in centralized MARL and enhance algorithmic
performance?

To address this question, we primarily focus on the CTDE actor-critic MARL learning paradigm, and
build VI approaches leveraging a (combination of) nested-Lookahead-VI (Chavdarova et al., 2021)
and Extragradient (Korpelevich, 1976) methods for iteratively solving variational inequalities (VIs).
These methods specifically target the rotational component through contraction in rotational spaces.
Our key contributions are:

• We formalize MARL optimization through a variational inequality lens.

• We propose LA-MARL (Algorithm 1), a scalable approach for neural network-based agents. While
presented for actor-critic systems, the method generalizes to other MARL settings. LA-MARL is
computationally efficient, making it well-suited for large-scale optimization tasks.

• We evaluate our proposed methods against standard optimization techniques in two zero-sum
games—Rock–paper–scissors and Matching pennies—and in two benchmarks from the Multi-
Agent Particle Environments (MPE, Lowe et al., 2017).

2 Related Works

In the following, we discuss related works that study the optimization in centralized MARL. Our
approach primarily builds on two key areas, VIs, and MARL, which we review in Appendix A.
The necessary VI/MARL background is presented in Section 3. Works focused on optimization in
independent MARL are also discussed in Appendix A.

Convergence. Several works rely on two-player zero-sum Markov games to study the regret of an
agent relative to a perfect adversary. For instance, Bai & Jin (2020) introduces self-play algorithms
for online learning—the Value Iteration with Upper/Lower Confidence Bound (VI-ULCB) and an
explore-then-exploit algorithm—and show the respective regret bounds. In addition to the online
setting, Xie et al. (2020) also consider the offline setting where they propose using Coarse Correlated
Equilibria (CCE) instead of Nash Equilibrium (NE) and derive concentration bounds for CCEs.

For the classical linear quadratic regulator (LQR) problem (Kalman, 1960), single-agent policy
gradient methods are known to exhibit global convergence (Fazel et al., 2018). The LQR problem
extends to the multi-agent setting through general-sum linear quadratic (LQ) games, where multiple
agents jointly control a (high-dimensional) linear state process. Unlike the zero-sum case (Bu
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et al., 2019; Zhang et al., 2021), policy gradient faces significant challenges for general-sum LQ
games with n players. Mazumdar et al. (2020) highlight a negative result that contrasts sharply
with the corresponding result in the single-agent setting. In particular, policy gradient methods
fail to guarantee even local convergence in the deterministic setting (Mazumdar et al., 2020), and
additional techniques are required to guarantee convergence (Hambly et al., 2023). Beyond LQ games,
policy gradient struggles with multi-agent settings more broadly. Ma et al. (2021) address gradient
descent limitations in multi-agent scenarios, introducing an alternative gradient-based algorithm for
finding equilibria in polymatrix games (Janovskaja, 1968), which model multi-agent interactions with
pairwise competition.

Convergence in MARL is challenging due to complex interactions and non-stationarity among agents.
While multi-agent actor-critic methods are widely used (Bettini et al., 2024a), their optimization and
convergence properties remain underexplored, making this an open problem.

3 Preliminaries

Notation. We denote (i) vectors with small bold letters, (ii) sets with curly capital letters, (iii) re-
al-valued functions with small letters, and (iv) operators Z 7→ Z with capital letters, e.g., F . The
notation [n] denotes the set {1, . . . , n}. In the following, let Z be a convex and compact set in
the Euclidean space, equipped with the inner product ⟨·, ·⟩. We adopt standard MARL notation to
describe the setting, as we discuss next.

MARL problem formulation. Markov games (MGs, also known as stochastic
games, Shapley, 1953; Littman, 1994) generalize Markov Decision Processes (MDPs
Puterman, 1994) to a multi-agent setting. An MG is defined by the tuple:(

n,S, {Ai}ni=1, p, {ri}ni=1, γ
)
, (MG)

where n agents interact within an environment characterized by a common state space S. Each
agent i ∈ [n] receives observation oi ∈ O of the current state s ∈ S of the environment. In
the most general case, agent i’s observation oi = f(s), where f : S → Oi. Based on its policy
πi : Oi → Ai, each agent i ∈ [n] selects an action ai ∈ Ai, where Ai is its finite action set.
The joint actions of all agents are represented as a ≜ (a1, . . . , an), and the joint action space
as A ≜ A1 × · · · × An . The environment transitions to a new state s′ ∈ S according to a
transition function p : S × A → ∆(S) , specifying the probability distribution of the next state
s′, given the current state s and the joint action a. Each agent i ∈ [n] receives a reward ri,
where the reward function ri : S × A × S → R depends on the current state, the joint action,
and the resulting next state. The importance of future rewards is governed by the discount factor
γ ∈ [0, 1). Each agent i ∈ [n] aims to maximize its expected cumulative reward (return), defined as:

v
πi,π−i

i (s)=E
[ ∞∑
t=0

γtri(st,at, st+1)|s0∼ρ,at∼π(st)
]
, (MA-Return)

where π ≜ (π1, . . . , πn) represents the joint policy of all agents, π−i denotes the policies of all
agents except agent i, and ρ is the initial state distribution.

MARL algorithms Multi-agent deep deterministic policy gradient (MADDPG, Lowe et al., 2017),
extends Deep deterministic policy gradient (DDPG, Lillicrap et al., 2015) to multi-agent setting,
leveraging a centralized training with decentralized execution paradigm. Each agent i ∈ [n] has:
(i) critic network Qi : O1 × · · · × On × A → R, parametrized by wi ∈ Rd

Q
i : evaluating the

expected return of joint actions a in state s and (ii) actor network µi : Oi → ∆(Ai), parametrized
by θi ∈ Rd

µ
i : represents the agent’s policy, mapping agents’ observation of states s to a probability

distribution over actions ai.

For stability during training, MADDPG employs target networks ( Q̄i, µ̄i), which are delayed
versions of the critic and actor networks updated using a soft update mechanism:

w̄i ← τwi + (1− τ)w̄i , (Target-Critic) θ̄i ← τθi + (1− τ)θ̄i , (Target-Actor)
where τ ∈ (0, 1] is a hyperparameter controlling the update rate of the target networks.
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Multi-agent TD3 (Ackermann et al., 2019) improves upon MADDPG by introducing two key modi-
fications: (i) Dual critics: When calculating the target for Q-learning, the smaller of the two critic
values (Qi,1, Qi,2) is used, mitigating overestimation bias. (ii) Actor policies and target networks
are updated less frequently, typically after every c critic updates, to improve training stability. For
detailed explanation on MADDPG and MATD3 refer to Appendix B.2

Variational Inequality (Stampacchia, 1964; Facchinei & Pang, 2003). Variational Inequalities
(VIs) extend beyond standard minimization problems to encompass a broad range of equilibrium-
seeking problems. Formally, the VI goal is to find an equilibrium z⋆ from the domain of continuous
strategies Z , such that: ⟨z − z⋆, F (z⋆)⟩ ≥ 0, ∀z ∈ Z , (VI)

where F : Z → Rd, referred to as the operator, is continuous, and Z is a subset of the Euclidean
d-dimensional space Rd. VIs are thus characterized by the tuple (F,Z), denoted herein as VI(F ,
Z). For a more comprehensive introduction to VIs, including examples and applications, see
Appendix B.1.

VI methods. The gradient descent method straightforwardly extends for the VI problem as follows:
zt+1 = zt − ηF (zt) , (GD)

where t denotes the iteration count, and η ∈ (0, 1) the step size or learning rate.

Extragradient (Korpelevich, 1976) is a modification of GD, which uses a “prediction” step to obtain
an extrapolated point zt+ 1

2
using GD: zt+ 1

2
= zt − ηF (zt), and the gradients at the extrapolated

point are then applied to the current iterate zt as follows:
zt+1=zt − ηF

(
zt+ 1

2

)
. (EG)

The nested-Lookahead-VI (LA) algorithm for VI problems (Alg. 3, Chavdarova et al., 2021), is
a general wrapper of a “base” optimizer B : Rn → Rn where, after every k iterations with B,
zt+1 = B(zt) an averaging step is performed as follows:

zt+k ← zt + α(zt+k − zt), α ∈ [0, 1] . (LA)

For this purpose a copy (snapshot) of the iterate after the averaging step is stored for the next LA
update. This averaging can be applied recursively across multiple levels l, when using LA as base
optimizer, typically with l ∈ [1, 3]. See Appendix B.1 for an alternative view and detailed algorithm.

4 VI Perspective & Optimization

In this section, we introduce the operators for multi-agent general policy-based learning, actor-critic
methods, and the specific operator corresponding to MADDPG. Following this, we present a broader
class of algorithms that incorporate a designated MARL operator and integrate it with LA and/or EG.

4.1 MARL Operators

General MARL. Policy-based learning directly solves the (MA-Return) problem, where agents
optimize their policy parameters directly to maximize their return. The operator FMAR, where MAR
stands for multi-agent-return, with Z ≡ A, corresponds to:

FMAR

(
...
πi
...

)≜


...
∇πi

v
πi,π−i

i
...

 ≡


...

∇πi

(
E
[ ∞∑
t=0

γtri(st,at, st+1)|s0∼ρ,at∼π(st)
])

...

 . (FMAR)

Actor-critic MARL. We denote by x the full state information from which the agents ob-
servations oi are derived. As above, consider a centralized critic network, denoted as the
Q–network: Qµ

i (xt,at;wi) and an associated policy network µi(oi;θi) for each agent i ∈
[n] . Given a batch of experiences B = {(xj ,aj , rj ,x′j)}|B|

j=1 , drawn from a replay buffer
D, the objective is to find an equilibrium by solving the (VI) with the operator defined as:
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FMAAC

(


...
wi

θi
...


)
≡



...

∇wi

(
1
|B|

|B|∑
j=1

ℓwi (·;wi,θi)
)

∇θi

(
1
|B|

|B|∑
j=1

ℓθi (·;wi,θi)
)

...


, (FMAAC)

where the parameter space is Z ≡ Rd, with d =
∑n
i=1(d

Q
i + dµi ); and MAAC stands for multi-agent-

actor-critic. Even in the single-agent case (n = 1), an inherent game-like interaction exists between
the actor and the critic: the update of wi depends on θi, and vice versa. This interplay is fundamental
to the optimization dynamics in multi-agent actor-critic frameworks.
MADDPG. As an illustrative example, we fully present the terms in (FMAAC) for MADDPG,
deferring the other algorithms to Appendix C. The critic and actor loss functions are defined as:

ℓwi (·;wi,θi) =
(
yi −Qµ

i (x
j ,aj ;wi)

)2
, yi = rji + γQµ̄

i (x′j ,a′;w′
i)
∣∣
a′=µ̄(o′j) . (ℓwMADDPG)

ℓθi (·;wi,θi)=µi(o
j
i ;θi)∇ai Qµ

i (x
j , aj1, . . . , ai, . . . , a

j
n;wi)

∣∣∣
ai=µi(o

j
i )
. (ℓθMADDPG)

This formulation captures the interplay between the actor and critic networks in MADDPG, where
the critic updates its parameters to minimize the Bellman error, while the actor updates its policy by
maximizing the Q-value.

4.2 Proposed Methods

Algorithm 1 LA–MARL Pseudocode.
1: Initialize:
2: Replay buffer D ← ∅
3: LA parameters: φ← {θ}×l, {w}×l
4: for all episode e = 1 to t do
5: Sample initial state x from E (with o ≡ f(x))
6: step← 1
7: repeat
8: if step ≤ trand then

Select random actions for each agent i else select actions using policy for each agent i
9: end if

10: Execute a, observe rewards and state (r,x′), store (x,a, r,x′) in replay buffer D
11: x← x′

12: if step%tlearn == 0 then
13: Sample a batch B from D, use B and update to solve VI(F , Rd) using B
14: θ̄ ← τθ + (1− τ)θ̄, w̄ ← τw + (1− τ)w̄ Update target networks
15: end if
16: step← step + 1
17: until environment terminates
18: NESTEDLOOKAHEAD(n, e,φ,L)
19: end for
20: Output: θ(l−1), w(l−1)

To solve the VI problem with an operator corresponding to the MARL algorithm—for instance (FMAR)
or (FMAAC)—we propose the LA-MARL, and EG-MARL methods, described in detail in this section.

LA-MARL, Algorithm 1. LA-MARL periodically saves snapshots of all agents’ networks (both
actor and critic) and averages them with the current networks during training. It operates with a
base optimizer (e.g., Adam (Kingma & Ba, 2015), and applies a lookahead averaging step every k
intervals. Specifically, the current network parameters (θ,w) are updated using their saved snapshots
(θ(j),w(j)) through α-averaging (Algorithm 6). The algorithm allows for multiple nested lookahead
levels, where higher levels update their corresponding parameters less frequently. All agents apply
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lookahead updates simultaneously at each step, ensuring consistency across both actor and critic
parameters. Extended versions of LA-MARL tailored for MADDPG and MATD3, with more detailed
notations, can be found in the appendix (Algorithms 7 and 8).

However, the lookahead method (Eq. LA) must be applied in the joint strategy space of all players.
This is crucial because, in multi-agent reinforcement learning (MARL), the adversarial nature of
agents’ objectives introduces a rotational component in the associated vector field. The averaging
steps help mitigate this effect. Particularly, to ensure correct updates, no agent should use parameters
that have already been averaged within the same iteration.

(LA-)EG-MARL. For EG-MARL, the (EG) update rule is used for both the actor and critic
networks and for all agents; refer to Algorithm 2 for a full description. Moreover, Algorithm 1 can
also use EG as the base optimizer—represented by B—herein denoted as LA-EG-MARL.

Generalization and Adaptability. While Algorithm 1 focuses on off-policy actor-critic methods, it
serves as a general framework and can be adapted to other MARL learning paradigms: (i) Policy
Gradient Methods: It can be instantiated with a specific operator—of the form Eq. (FMAR)—by setting
one set of parameters (w or θ) to ∅; or (ii) On-Policy Learning: modifications include removing the
use of target networks.

Convergence. For a discussion on the convergence of proposed methods see Appendix C.

5 Experiments

5.1 Setup

We use the open-source PyTorch implementation of MADDPG (Lowe et al., 2017) and extend it to
MATD3 using the same hyperparameters specified in the original papers; detailed in Appendix D. Our
experiments cover two zero-sum games—Rock–paper–scissors and Matching Pennies—along with
two Multi-Agent Particle Environments (MPE) (Lowe et al., 2017). We use game implementations
from PettingZoo (Terry et al., 2021).

Benchmarks. We evaluate learning performance in both analytically tractable and complex multi-
agent environments. The Rock–Paper–Scissors (RPS) and Matching Pennies (MP) games are
classical two-player settings with known mixed Nash equilibria, allowing precise analysis of cyclical
behavior and convergence. Additionally, we assess two scenarios from the Multi-Agent Particle
Environments (MPE): Predator-Prey, a chasing game between good-agents and adversaries, and
Physical Deception, where multiple good agents must mislead a single adversary about a target
landmark. These environments introduce coordination, partial observability, and strategic deception,
providing a diverse testbed for multi-agent learning methods.

Methods. We evaluate our methods against the baseline, which is the MARL algorithms (MADDPG
or MATD3) with Adam (Kingma & Ba, 2015) as the optimizer B. Throughout the rest of this section,
we will refer to baseline as GD-MARL (GD). When referring to LA-based methods, we will indicate
the k values for each lookahead level in brackets. For instance, LA (10, 1000) denotes a two-level
lookahead where k(1) = 10 and k(2) = 1000. We denote with EG the EG method, and refer to it
analogously.

5.2 Results

2-player games: RPS & MP. Figures 1a and 1b illustrate the average distance between learned and
equilibrium policies. GD-MARL eventually diverge, whereas LA-MARL consistently converges to a
near-optimal policy, outperforming the baseline. Both MARL algorithms perform similarly, though
MATD3 exhibits lower variance across seeds than MADDPG. For LA-based methods, experiments
with different k values indicate that smaller k-values for the innermost LA-averaging yield better
performance (see Appendix D.1). The results consistently show performance improvements.

Available at https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch/tree/master.

https://github.com/Git-123-Hub/maddpg-pettingzoo-pytorch/tree/master
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(a) Rock–paper–scissors
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Figure 1: Comparison between GD-(MADDPG/MATD3) and LA-(MADDPG/MATD3), on Rock–paper–
scissors and Matching pennies. x-axis: training episodes. y-axis: total distance of agents’ policies to the
equilibrium policy; averaged over 10 seeds.

Table 1: Competition between agents trained with different algorithms. Adversary rewards (mean ± std) in
Predator-Prey shows that LA exploits GD in direct competition.

#Players GD vs. GD GD vs. LA LA vs. LA LA vs. GD
n = 3 2.99± 1.73 2.14± .91 ↓ 5.44± 1.27 7.41± 1.75 ↑
n = 5 15.69± 7.18 15.5± 5.32 ↓ 14.58± 5.45 22.58± 8.97 ↑

MPE: Predator-prey and Physical Deception. In Predator-Prey, LA-trained adversaries consistently
outperform those trained with the baseline in direct competition, as shown in Table1. In Physical
Deception (Table2), success is defined by the adversary reaching the target landmark and equilibrium
is achieved when both teams win with equal probability across multiple instances. Given the cooper-
ative nature of the game, the baseline performs relatively well, with EG-MADDPG achieving similar
performance. However, both LA-MADDPG and LA-EG-MADDPG outperform their respective base
optimizers (MADDPG and EG-MADDPG), demonstrating improved stability and effectiveness.

Summary. Overall, our results indicate that VI-based methods consistently outperform their respec-
tive baselines, by effectively handling the rotational dynamics. We defer the comparison between VI
methods along with insights from GANs to Appendix E.1

6 Discussion

MARL’s inherent competitive nature creates complex learning dynamics that standard gradient-based
optimization methods—designed for minimization problems—fail to handle effectively. Rather than
proposing new learning objectives, this work focuses on a fundamental but often neglected aspect:
the optimization process itself.

We address this by adopting a variational inequality (VI) perspective, which provides a unifying
framework for MARL learning dynamics. We introduce a general algorithmic framework (Algorithm
1), a computationally efficient VI-based method designed for practical MARL scalability. Our results
demonstrate consistent and clear findings that simply replacing the optimizer—while holding all
other factors fixed—yields significant improvements. These results demonstrate that optimization
methods are a critical yet understudied factor in MARL performance, motivating further research in
this direction.

Method Adversary Win Rate
Baseline 0.45± .16

LA-MADDPG 0.53± .11
EG-MADDPG 0.56± .27

LA-EG-MADDPG 0.51± .14

Table 2: Means and standard deviations (over 5 seeds)
of adversary win rate on last training episode for
MPE: Physical deception, on 100 test environments.
The win rate is the fraction of times the adversary was
closer to the target. Closer to 0.5 is better.
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A Extended Related Works Discussion

Our work is primarily grounded in two key areas: Multi-Agent Reinforcement Learning (MARL)
and Variational Inequalities (VIs), which we discuss next. Additionally, we extend our discussion on
related works on Linear-Quadratic (LQ) games and discuss relevant literature on independent MARL.

Multi-Agent Reinforcement Learning (MARL). Various MARL algorithms have been devel-
oped (Lowe et al., 2017; Iqbal & Sha, 2018; Ackermann et al., 2019; Yu et al., 2021), with some
extending existing single-agent reinforcement learning (RL) methods (Rashid et al., 2018; Son et al.,
2019; Yu et al., 2022; Kuba et al., 2022). Lowe et al. (2017) extend an actor-critic algorithm to the
MARL setting using the centralized training decentralized execution framework. In the proposed
algorithm, named multi-agent deep deterministic policy gradient (MADDPG), each agent in the game
consists of two components: an actor and a critic. The actor is a policy network that has access
only to the local observations of the corresponding agent and is trained to output appropriate actions.
The critic is a value network that receives additional information about the policies of other agents
and learns to output the Q-value; see Section 3. After a phase of experience collection, a batch is
sampled from a replay buffer and used for training the agents. To our knowledge, all deep MARL
implementations rely on either stochastic gradient descent or Adam optimizer (Kingma & Ba, 2015)
to train all networks. Game theory and MARL share many foundational concepts, and several studies
explore the relationships between the two fields (Yang & Wang, 2021; Fan, 2024), with some using
game-theoretic approaches to model MARL problems (Zheng et al., 2021). This work proposes
incorporating game-theoretic techniques into the optimization process of existing MARL methods to
determine if these techniques can enhance MARL optimization.

Li et al. (2019) introduced an algorithm called M3DDPG, aimed at enhancing the robustness of
learned policies. Specifically, it focuses on making policies resilient to worst-case adversarial
perturbations, as well as uncertainties in the environment or the behaviors of other agents.

Variational Inequalities (VIs). VIs were first formulated to understand the equilibrium of a dy-
namical system (Stampacchia, 1964). Since then, they have been studied extensively in mathematics,
including operational research and network games (see Facchinei & Pang, 2003, and references
therein). More recently, after the shown training difficulties of GANs (Goodfellow et al., 2014)—
which are an instance of VIs—an extensive line of works in machine learning studies the convergence
of iterative gradient-based methods to solve VIs numerically. Since the last and average iterates
can be far apart when solving VIs (see e.g., Chavdarova et al., 2019), these works primarily aimed
at obtaining last-iterate convergence for special cases of VIs that are important in applications,
including bilinear or strongly monotone games (e.g., Tseng, 1995; Malitsky, 2015; Facchinei &
Pang, 2003; Daskalakis et al., 2018; Liang & Stokes, 2019; Gidel et al., 2019; Azizian et al., 2020;
Thekumparampil et al., 2022), VIs with cocoercive operators (Diakonikolas, 2020), or monotone
operators (Chavdarova et al., 2023; Gorbunov et al., 2022). Several works (i) exploit continuous-time
analyses (Ryu et al., 2019; Bot et al., 2020; Rosca et al., 2021; Chavdarova et al., 2023; Bot et al.,
2022), (ii) establish lower bounds for some VI classes (e.g., Golowich et al., 2020b;a), and (iii)
study the constrained setting (Daskalakis & Panageas, 2019; Cai et al., 2022; Yang et al., 2023;
Chavdarova et al., 2024), among other. Due to the computational complexities involved in training
neural networks, iterative methods that rely solely on first-order derivative computation are the most
commonly used approaches for solving variational inequalities (VIs). However, standard gradient
descent and its momentum-based variants often fail to converge even on simple instances of VIs.
As a result, several alternative methods have been developed to address this issue. Some of the
most popular first-order methods for solving VIs include the extragradient method (Korpelevich,
1976), optimistic gradient method (Popov, 1980), Halpern method (Diakonikolas, 2020), and (nested)
Lookahead-VI method (Chavdarova et al., 2021); these are discussed in detail in Section 3 and
Appendix B.1.1. In this work, we primarily focus on the nested Lookahead-VI (LA) method, which
has achieved state-of-the-art results on the CIFAR-10 (Krizhevsky, 2009) benchmark for generative
adversarial networks (Goodfellow et al., 2014).
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General-sum linear quadratic (LQ) games. In LQ games, each agent’s action linearly impacts
the state process, and their goal is to minimize a quadratic cost function dependent on the state and
control actions of both themselves and their opponents. LQ games are widely studied as they admit
global Nash equilibria (NE), which can be analytically computed using coupled algebraic Riccati
equations (Lancaster & Rodman, 1995).

Several works establish global convergence for policy gradient methods in zero-sum settings. Zhang
et al. (2019a) propose an alternating policy update with projection for deterministic infinite-horizon
settings, proving sublinear convergence. Bu et al. (2019) study leader-follower policy gradient in
a deterministic setup, and showing sublinear convergence. Zhang et al. (2021) study the sample
complexity of policy gradient with alternating policy updates.

For the deterministic n-agent setting, Mazumdar et al. (2020) showed that policy gradient methods
fail to guarantee even local convergence. Roudneshin et al. (2020) prove global convergence for
policy gradient in a mean-field LQ game with infinite horizon and stochastic dynamics. Hambly et al.
(2023) show that the natural policy gradient method achieves global convergence in finite-horizon
general-sum LQ games, provided that a certain condition on an added noise to the system is satisfied.
Recently, Guan et al. (2024) proposed a policy iteration method for the infinite horizon setting.

Independent MARL. In independent MARL, each agent learns its policy independently, without
direct access to the observations, actions, or rewards of other agents (Matignon et al., 2012; Foerster
et al., 2017). Each agent treats the environment as stationary and ignores the presence of other agents,
effectively treating them as part of the environment.

(Daskalakis et al., 2020a) study two-agent zero-sum MARL setting of independent learning algorithms.
The authors show that if both players run policy gradient methods jointly, their policies will converge
to a min-max equilibrium of the game, as long as their learning rates follow a two-timescale rule.
(Arslan & Yüksel, 2015) propose a decentralized Q-learning algorithm for MARL setting where
agents have limited information and access solely of their local observations and rewards. Jiang
& Lu (2022) proposes a decentralized algorithm. Sayin et al. (2021) explore a decentralized Q-
learning algorithm for zero-sum Markov games, where two competing agents learn optimal policies
without direct coordination or knowledge of each other’s strategies. Each agent relies solely on local
observations and rewards, updating their Q-values independently while interacting in a stochastic
environment. (Lu et al., 2021) study decentralized cooperative multi-agent setting with coupled safety
constraints.

Wei et al. (2017) rely on the framework of average-reward stochastic games to model single player
with a perfect adversary, yielding a two-player zero-sum game, in a Markov environment, and study
the regret bound.

B Additional Background

In this section, we further discuss VIs, and provide additional background and relevant algorithms.

B.1 VI Discussion

Variational Inequality. We first recall the definition of VIs. A VI(F,Z) is defined as:

find z⋆ ∈ Z s.t. ⟨z − z⋆, F (z⋆)⟩ ≥ 0, ∀z ∈ Z , (VI)

where F : Z → Rd, referred to as the operator, is continuous, and Z is a subset of the Euclidean
d-dimensional space Rd.

When F ≡ ∇f and f is a real-valued function f : Z → R, the problem VI is equivalent to standard
minimization. However, by allowing F to be a more general vector field, VIs also model problems
such as finding equilibria in zero-sum and general-sum games (Cottle & Dantzig, 1968; Rockafellar,
1970). We refer the reader to (Facchinei & Pang, 2003) for an introduction and examples.
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To illustrate the relevance of VIs to multi-agent problems, consider the following example. Suppose
we have n agents, each with a strategy zi ∈ Rdi , and let us denote the joint strategy with

z ≡

z1...
zn

 ∈ Rd, with d =

n∑
i=1

di .

Each agent i ∈ [n] aims to optimize its objective fi : Rd → R, which, in the general case, depends on
all players’ strategies. Then, finding an equilibrium in this game is equivalent to solving a VI where
the operator F corresponds to:

Fn-agents(z) ≡

∇z1
f1(z)
...

∇znfn(z)

 . (Fn-agents)

An instructive way to understand the difference between non-rotational and rotational learning
dynamics is to consider the second-derivative matrix J : Rd → Rd×d referred herein as the Jacobian.
For the above (Fn-agents) problem the Jacobian is as follows:

Jn-agents(z) ≡

 ∇
2
z2
1
f1(z) ∇2

z1z2
f1(z) . . . ∇2

z1zn
f1(z)

...
... . . .

...
∇2

znz1
fn(z) ∇2

znz2
fn(z) . . . ∇2

z2
n
fn(z)

 . (Jn-agents)

Notably, unlike in minimization, where the second-derivative matrix—the so-called Hessian—is
always symmetric, the Jacobian is not necessarily symmetric. Hence, its eigenvalues may belong to
the complex plane. In some cases, the Jacobian of the associated vector field can be decomposed
into a symmetric and antisymmetric component (Balduzzi et al., 2018), where each behaves as a
potential (Monderer & Shapley, 1996) and a Hamiltonian (purely rotational) game, resp.

In Section C we will also rely on a more general problem, referred to as the Quasi Variational
Inequality.

Quasi Variational Inequality. Given a map F : X → Rn—herein referred as an operator—the
goal is to:

find x⋆ s.t. ⟨x− x⋆, F (x⋆)⟩ ≥ 0, ∀x ∈ K(x⋆) , (QVI)

where K(x) ⊆ Rd is a point-to-set mapping from Rd into subsets of Rd such that for every x ∈ X ,
K(x) ⊆ Rd which can be possibly empty.

In other words, the constraint set for QVIs depends on the variable x. This contrasts with a standard
variational inequality (VI), where the constraint set K is fixed and does not depend on x. QVIs were
introduced in a series of works by Bensoussan & Lions (1973a;b; 1974).

B.1.1 VI classes and additional methods

The following VI class is often referred to as the generalized class for VIs to that of convexity in
minimization.

Definition B.1 (monotonicity). An operator F : Rd → Rd is monotone if ⟨z− z′, F (z)−F (z′)⟩ ≥
0, ∀z, z′ ∈ Rd . F is µ-strongly monotone if: ⟨z − z′, F (z) − F (z′)⟩ ≥ µ∥z − z′∥2 for all
z, z′ ∈ Rd.

The following provides an alternative but equivalent formulation of LA. LA was originally proposed
for minimization problems (Zhang et al., 2019b).

LA equivalent formulation. We can equivalently write (LA) as follows. At a step t:
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(i) a copy of the current iterate z̃t is made: z̃t ← zt,

(ii) z̃t is updated k ≥ 1 times using B, yielding z̃t+k, and finally

(iii) the actual update zt+1 is obtained as a point that lies on a line between the current zt iterate
and the predicted one z̃t+k:

zt+1 ← zt + α(z̃t+k − zt), α ∈ [0, 1] . (LA)

In addition to those presented in the main part, we describe the following popular VI method.

Optimistic Gradient Descent (OGD). The update rule of Optimistic Gradient Descent OGD ((OGD)
Popov, 1980) is:

zt+1 = zt − 2ηF (zt) + ηF (zt−1) , (OGD)

where η ∈ (0, 1) is the learning rate.

B.1.2 Pseudocode for Extragradient

In Algorithm 2 outlines the Extragradient optimizer (Korpelevich, 1976), which we employ in
EG-MARL. This method uses a gradient-based optimizer to compute the extrapolation iterate, then
applies the gradient at the extrapolated point to perform an actual update step. Unlike gradient descent,
EG converges in some simple game instances, such as in games linear in both players (Korpelevich,
1976).

The extragradient optimizer is used to update all agents’ actor and critic networks. In our experiments,
we use Adam for both the extrapolation and update steps, maintaining the same learning intervals
and parameters as in the baseline algorithm.

Algorithm 2 Extragradient optimizer; Can be used as B in algorithm 1.

1: Input: learning rate ηψ , initial weights ψ, loss ℓψ , extrapolation steps t
2: ψcopy ← ψ (Save current parameters)
3: for i ∈ 1, . . . , t do
4: ψ = ψ − ηψ∇ψℓψ(ψ) (Compute the extrapolated ψ)
5: end for
6: ψ = ψcopy − ηψ∇ψℓψ(ψ) (update ψ)
7: Output: ψ

B.1.3 Pseudocode for Nested Lookahead for a Two-Player Game

For completeness, in Algorithm 3 we give the details of adapted version of the nested Lookahead-
Minmax algorithm proposed in (Algorithm 6, Chavdarova et al., 2021) with two-levels.

In the given algorithm, the actor and critic parameters are first updated using a gradient-based
optimizer. At interval k(1), backtracking is done between the current parameters and first-level copies
(slow weights) and they get updated. At interval k(2) = cjk

(1) backtracking is performed again with
second-level copies (slower weights), updating both first- and second-level copies with the averaged
version.

B.2 MARL algorithms

B.2.1 Details on the MADDPG Algorithm

The MADDPG algorithm (Lowe et al., 2017) is outlined in Algorithm 4. An empty replay buffer D
is initialized to store experiences. In each episode, the environment is reset and agents choose actions
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Algorithm 3 Pseudocode of Two-Level Nested Lookahead–Minmax. (Chavdarova et al., 2021)

1: Input: number of episodes t, learning rates ηθ, ηw, initial weights {θ,θ(1),θ(2)} and
{(w,w(1),w(2))}, LA hyperparameters: levels l = 2, (k(1), k(2)) and (αθ, αw), losses ℓθ,
ℓw, real–data distribution pd, noise–data distribution pz .

2: for r ∈ 1, . . . , t do
3: x ∼ pd, z ∼ pz
4: w ← w − ηw∇wℓ

w(w,x, z) (update w)
5: θ ← θ − ηθ∇θℓ

θ(θ,x, z) (update θ )
6: if r%k(1) == 0 then
7: w ← w(1) + αw(w −w(1)) (backtracking on interpolated line w(1), w)
8: θ ← θ(1) + αθ(θ − θ(1)) (backtracking on interpolated line θ(1), θ)
9: (θ(1),w(1))← (θ,w) (update slow checkpoints)

10: end if
11: if r%k(2) == 0 then
12: w ← w(2) + αw(w −w(2)) (backtracking on interpolated line w(2), w)
13: θ ← θ(2) + αθ(θ − θ(2)) (backtracking on interpolated line θ(2), θ)
14: (θ(2),w(2))← (θ,w) (update super-slow checkpoints)
15: (θ(1),w(1))← (θ,w) (update slow checkpoints)
16: end if
17: end for
18: Output: θ(2), w(2)

to perform accordingly. After, experiences in the form of (state, action, reward, next state) are saved
to D.

After a predetermined number of random iterations, learning begins by sampling batches fromD. The
critic of agent i receives the sampled joint actions a of all agents and the state information of agent i
to output the predicted Q-value of agent i. Deep Q-learning (Mnih et al., 2015) is then used to update
the critic network; lines 20–21. Then, the agents’ policy network is optimized using policy gradient;
refer to 23. Finally, following each learning iteration, the target networks are updated towards current
actor and critic networks using a fraction τ . Then the process repeats until the end of training.

All networks are optimized using the Adam optimizer (Kingma & Ba, 2015). Once training is
complete, each agent’s actor operates independently during execution. This approach is applicable
across cooperative, competitive, and mixed environments.

B.2.2 MATD3 Algorithm

We provide a psuedo code for MATD3 algorithm from (Ackermann et al., 2019) in algorithm 5. As
discussed in the main section, MATD3 was introduced as an improvement to MADDPG and follows
a similar structure, except for the learning steps. After sampling a batch from the replay buffer D,
both critics of each agent are updated using Deep Q-learning, with the target computed using the
minimum of the two critic values (notice the difference in lines 20 and 20of the two algorithms). The
actor networks are then updated via policy gradient, using only the Q-value from the first critic; see
line 24.

B.2.3 Counterfactual multi-agent policy gradients (COMA, (Foerster et al., 2018))

COMA is an actor-critic multi-agent algorithm based on the CTDE paradigm, with one centralized
critic and n decentralized actors. Additionally, COMA directly addresses the credit assignment
problem in multi-agent settings by:

(i) computing a counterfactual baseline for each agent bi(s,a−i),

(ii) using this baseline to estimate the advantage Ai of the chosen action over all others in Ai, and
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Algorithm 4 Pseudocode for MADDPG (Lowe et al., 2017).
1: Input: Environment E , number of agents n, number of episodes t, action spaces {Ai}ni=1,

number of random steps trand before learning, learning interval tlearn, actor networks {µi}ni=1,
with initial weights θ ≡ {θi}ni=1, critic networks {Qi}ni=1 with initial weights w ≡ {wi}ni=1,
learning rates ηθ, ηw, optimizer B (e.g., Adam), discount factor γ, soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: for all episode e ∈ 1, . . . , t do
5: x← Sample(E) (sample from environment E)
6: step← 1
7: repeat
8: if e ≤ trand then
9: for each agent i, ai ∼ Ai (sample actions randomly)

10: else
11: for each agent i, select action ai = µi(oi) + Nt using current policy and exploration

noise
12: end if
13: Execute actions a = (a1, . . . , an), observe rewards r and new state x′ (apply actions and

record results)
14: replay buffer D ← (x,a, r,x′)
15: x← x′

16: (apply learning step if applicable)
17: if step%tlearn = 0 then
18: for all agent i ∈ 1, . . . , n do
19: sample batch B : {(xj ,aj , rj ,x′j)}|B|

j=1 from D
20: yj ← rji + γQµ̄(x′j , a′1, . . . , a

′
n), where a′k = µ̄k(o

′j
k )

21: Update critic by minimizing the loss (using optimizer B ):

ℓ(wi) =
1
|B|
∑
j

(
yj −Qµ

i (x
j , aj1, . . . , a

j
n)
)2

22: Update actor policy using policy gradient formula and optimizer B
23: ∇θi

J ≈ 1
|B|
∑
j ∇θi

µi(o
j
i )∇aiQµ

i (x
j , aj1, . . . , ai, . . . , a

j
n), where ai = µi(o

j
i )

24: end for
25: for all agent i ∈ [n] do
26: θ̄i ← τθi + (1− τ)θ̄i (update target networks)
27: w̄i ← τwi + (1− τ)w̄i

28: end for
29: end if
30: step← step+ 1
31: until environment terminates
32: end for
33: Output: θ, w
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Algorithm 5 Pseudocode for MATD3 (Ackermann et al., 2019).
1: Input: Environment E , number of agents n, number of episodes t, action spaces {Ai}ni=1,

number of random steps trand before learning, learning interval tlearn, actor networks {µi}ni=1,
with initial weights θ ≡ {θi}ni=1, both critic networks, {Qi,1,Qi,2}ni=1 with initial weights
w ≡ {wi,1,wi,2}ni=1, learning rates ηθ, ηw, optimizer B (e.g., Adam), discount factor γ, soft
update parameter τ , policy update frequency p.

2: Initialize:
3: Replay buffer D ← ∅
4: for all episode e ∈ 1, . . . , t do
5: x← Sample(E) (sample from environment E)
6: step← 1
7: repeat
8: if e ≤ trand then
9: for each agent i, ai ∼ Ai (sample actions randomly)

10: else
11: for each agent i, select action ai = µi(oi)+ ϵ using current policy with some exploration

noise
12: end if
13: Execute actions a = (a1, . . . , an), observe rewards r and new state x′ (apply actions and

record results)
14: replay buffer D ← (x,a, r,x′)
15: x← x′

16: (apply learning step if applicable)
17: if step%tlearn = 0 then
18: for all agent i ∈ [n] do
19: sample batch {(xj ,aj , rj ,x′j)}|B|

j=1 from D
20: yj ← rji + γminm=1,2 Q

µ̄
i,m(x′j , a′1, . . . , a

′
n), where a′k = µ̄k(o

′j
k ) + ϵ

21: Update both critics, m = 1, 2 by minimizing the loss (using optimizer B ):

ℓ(wi,m) = 1
|B|
∑
j

(
yj −Qµ

i,m(xj , aj1, . . . , a
j
n)
)2

22: if step%p = 0 then
23: Update actor policy using policy gradient formula and optimizer B
24: ∇θi

J ≈ 1
|B|
∑
j ∇θi

µi(o
j
i )∇aiQµ

i,1(x
j , aj1, . . . , ai, . . . , a

j
n), where ai = µi(o

j
i )

25: θ̄i ← τθi + (1− τ)θ̄i (update target networks)
26: w̄i,m ← τwi,m + (1− τ)w̄i,m

27: end if
28: end for
29: end if
30: step← step+ 1
31: until environment terminates
32: end for
33: Output: θ, w
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(iii) leveraging this advantage to update individual policies.

This ensures that policy updates reflect each agent’s true contribution to the overall reward.

B.2.4 Multi-agent Trust Region Policy Optimization (MATRPO, (Li & He, 2023))

Trust Region Policy Optimization (TRPO, Schulman et al., 2015) is a policy optimization method
that ensures stable updates by constraining policy changes within a trust region. This constraint is
enforced using the KL-divergence, and the update step is computed using natural gradient descent.

Extending TRPO to the cooperative multi-agent setting introduces challenges due to non-stationarity.
To address this, MATRPO employs a centralized critic, represented by a central value function V (s),
which leverages shared information among agents to estimate the Generalized Advantage Estimator
(GAE) Ai. The advantage function is then used in the policy gradient update, while ensuring that the
KL-divergence constraint is respected, maintaining stable and coordinated learning across agents.

B.2.5 Multi-agent Proximal policy Optimization (MAPPO, Yu et al., 2021)

One of the widely used algorithms in practice is MAPPO, an extension of Proximal Policy Opti-
mization (PPO, Schulman et al., 2017) to the multi-agent setting. Similar to TRPO, PPO ensures
that policy updates remain within a small, stable region, but instead of enforcing a KL-divergence
constraint, it uses clipping. This clipping mechanism simplifies the optimization process, allowing
updates to be performed efficiently using standard gradient ascent methods.

MAPPO is an on-policy algorithm that employs a centralized critic while maintaining decentralized
actor networks for each agent. Its critic update follows the same rule as MATRPO, but for the policy
update, it optimizes a clipped surrogate objective, which restricts the policy update step size, ensuring
stable and efficient learning.

C VI MARL Convergence, Perspectives & Details on the Proposed
Algorithms

In this section we extend our discussion on the convergence on VI-MARL operator, then we present
the VI operators of additional MARL algorithms within the centralized critic CTDE paradigm. After,
we provide detailed versions of Algorithm 1 for MADDPG and MATD3, outlining the full training
process when incorporating LA or LA-EG.

C.1 VI MARL Convergence

Under the standard assumption that the operator is monotone (see Appendix B.1.1 for the definition),
the standard gradient descent method diverges, as shown in prior work (see for instance, Korpelevich,
1976). This class of operators is broader than—but includes—the case where each agents’ and
critics’ objective functions are convex with respect to their own parameters. In contrast, the LA-EG-
MARL methods provably converge for this class of problems(LA-)EG-MARL methods provably
converge (Korpelevich, 1976; Chavdarova et al., 2021; Gorbunov et al., 2022; Pethick et al., 2023).
The key mechanism is that LA increases the contractiveness of the baseline algorithm’s fixed-point
operator. When applied recursively (nested LA), it further enhances contractiveness, preventing
divergence in rotational (competitive) learning dynamics.

We first recall the abstract multi-player operator definition from Appendix B.1. Each agent i ∈ [n]
aims to optimize its objective fi : Rd → R, which, in the general case, depends on all players’
strategies. Then, we have the following operator F :

Fn-agents(z) ≡

∇z1f1(z)
...

∇zn
fn(z)

 , (Fn-agents)
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with the game Jacobian as follows:

Jn-agents(z) ≡

 ∇
2
z2
1
f1(z) ∇2

z1z2
f1(z) . . . ∇2

z1zn
f1(z)

...
... . . .

...
∇2

znz1
fn(z) ∇2

znz2
fn(z) . . . ∇2

z2
n
fn(z)

 . (Jn-agents)

More precisely, for multi-agent actor-critic RL we have the following operator:

FMAAC

(


...
wi

θi
...


)
≡



...

∇wi

(
1
|B|

|B|∑
j=1

ℓwi (·;wi,θ)
)

∇θi

(
1
|B|

|B|∑
j=1

ℓθi (·;wi,θi)
)

...


, (FMAAC)

where the parameter space is Z ≡ Rd, with d =
∑n
i=1(d

Q
i + dµi ); and MAAC stands for

multi-agent-actor-critic.

Then, we can notice by computing the Jacobian of the above operator that the eigenvalues are in the
complex plane. Applying lookahead results in interpolating the largest eigenvalue (in magnitude) with
the point (1,0) in the complex plane, thus reducing the spectral radius of the Jacobian. Furthermore,
applying this recursively (nested Lookahead) leads to larger contraction.

To make this more precise, consider the gradient descent operator as a base optimizer

TGD ≡ I − αF ,

where α is the step size vector.

Let λ denote the eigenvalue of Jbase ≜ ∇TGD(·) with largest modulus, i.e. ρ(Jbase(·) = |λ|, let u
be its associated eigenvector: Jbaseu = λu.

The Jacobian of Lookahead is then:

JLA = ∇FLA(·) = (1− α)I + α(Jbase)k .

The power k rotates the eigenvector in the complex plane; see (Chavdarova et al., 2021). By noticing
that:

JLAu =((1− α)I + α(Jbase)k)u

=((1− α) + αλk)u ,

we deduce u is an eigenvector of JLA with eigenvalue 1− α+ αλk. Thus, this is strictly closer to
the unit ball in the complex plane, increasing the contractiveness.

C.2 VI MARL Perspectives

In the main text, we introduced the general VI operator for multi-agent actor-critic algorithms
(FMAAC) and provided the specific equations for MADDPG in (ℓwMADDPG & ℓθMADDPG), with the
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operator corresponding to:

FMADDPG

(


...
wi

θi
...


)
≡



...

∇wi

(
1
|B|

|B|∑
j=1

(
rji + γQµ̄

i (x′j ,a′;w′
i)
∣∣
a′=µ̄(o′j)

−Qµ
i (x

j ,aj ;wi)
)2)

∇θi

(
1
|B|

|B|∑
j=1

µi(o
j
i ;θi)∇ai Qµ

i (x
j , aj1, . . . , ai, . . . , a

j
n;wi)

∣∣∣
ai=µi(o

j
i )

)
...


,

(FMADDPG)
where the parameter space is Z ≡ Rd, with d =

∑n
i=1(d

Q
i + dµi ).

We now show how update equations for several well-known MARL algorithms—that follow the
CTDE paradigm with a centralized critic—can be written as a VI. Our VI-based methods can also be
applied to these algorithms using the operators below.

For a more general notation, for each agent i ∈ [n] we assume:

(i) central critic network (one or multiple) that estimates either action value Q–Network(s,a):
Qi(xt,at;wi), or state value V –network(s): Vi(xt;wi), and

(ii) a decentralized policy network that can be deterministic µi(oi;θi) or stochastic πi(oi;θi),
depending on the algorithm.

Given a batch of experiences B: (xj ,aj , rj ,x′j), sampled from a replay buffer (D), we provide the
necessary equations and the final operator (F ) for each of the following popular MARL algorithms.

C.2.1 MATD3

The VI formulation for MATD3 is very similar to MADDPG, except here, for each agent, we have
two critic networks; we write: wi ≡ {wi,1,wi,2}. Accordingly, target computation for the critic
(Qi,m) is calculated by taking the minimum of both critic networks, but only the value of critic 1 is
used for the actor (policy network) update. We have:

FMATD3

(


...
wi,1

wi,2

θi
...


)
≡



...

∇wi,1

(
1
|B|

|B|∑
j=1

rji + γ min
m∈{1,2}

Qµ̄
i,m (x′j , a′1, . . . , a

′
n)
∣∣
a′=µ̄(o′j)︸ ︷︷ ︸

target yi

−Qµ
i,1(x

j ,aj ;wi,1)


2)

∇wi,2

(
1
|B|

|B|∑
j=1

rji + γ min
m∈{1,2}

Qµ̄
i,m (x′j , a′1, . . . , a

′
n)
∣∣
a′=µ̄(o′j)︸ ︷︷ ︸

target yi

−Qµ
i,2(x

j ,aj ;wi,2)


2)

(
1
|B|

|B|∑
j=1

∇θi
µi(o

j
i ;θi)∇ai Qµ

i,1(x
j , aj1, . . . , ai, . . . , a

j
n)
∣∣∣
ai=µi(o

j
i )

)
...



.

(FMATD3)
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C.2.2 COMA

In COMA, critic is trained using a TD(λ) target (yλ) computed from a target network parameterized
by w̄ that get updated to main network weights every couple iterations. Given the following
Advantage Ai calculations:

Ai(x,a) = Q(x,a)− bi(x,a−i)

bi(x,a−i) =
∑
ai

πi(ai|oi)Q(x, (ai,a−i)) ,

the operator for COMA corresponds to:

FCOMA

(


...
wi

θi
...


)
≡


...

∇wi
E
[(
yλi −Qi(xj ,a;wi)

)2]
E [∇θi

∑
iAi(x,a) logπθi

(ai|oi)]
...

 . (FCOMA)

C.2.3 MAPPO

As previously noted, MAPPO can be seen as a simplified version of MATRPO. It shares a similar
critic loss with MATRPO but simplifies the actor loss by using a clipped objective instead of a KL
constraint, making the optimization problem more tractable. This allows it to be formulated as a VI,
as shown below:

V̂t = (1− λ)
T∑
n=1

λn−1

(
n−1∑
k=0

γkrt+k + γnV(o′
i))

)
,

FMAPPO

(


...
wi

θi
...


)
≡



...

∇wi
E
[(

V(x;wi)− V̂t
)2]

∇θiE
[
min

{
πθi

(ai|oi)

π
θold
i

(ai|oi)
A
θoldi
i , clip

(
πθi

(ai|oi)

π
θold
i

(ai|oi)
, 1− ϵ, 1 + ϵ

)
A
θoldi
i

}]
...


.

(FMAPPO)

C.3 Detailed Algorithms

Herein we provide procedure NestedLookahead called from algorithm 1 to compute the extrapolations
and after present two pseudocodes considered as extended versions of the main algorithm in algorithm
1; in which we detail how the lookahead approach can be integrated in the training process of
MADDPG and MATD3.

C.3.1 Nested Lookahead algorithm

In algorithm 6 below we share a detailed version of Nested lookahead procedure called from
algorithms 1, 7 and 8. In Algorithm 6, the parameter k(j) at level j ∈ [l] is defined as the multiple
of k(j−1) from the previous level j − 1, specifically k(j) = cj · k(j−1). For l = 1, k = 2, LA has
connections to EG (Chavdarova et al., 2023), however for higher values of k and l the resulting
operator exhibits stronger contraction (Chavdarova et al., 2021; Ha & Kim, 2022), which effectively
addresses rotational learning dynamics.
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Algorithm 6 Pseudocode for LA-VI, called from Algorithm 1. Updates the parameters in-place.
1: procedure NESTEDLOOKAHEAD:
2: Input: #agents n, episode counter e, actor and critic weights and snapshots:

{(θi,θ(1)
i , . . . ,θ

(l)
i )}ni=1 and {(wi,w

(1)
i , . . . ,w

(l)
i )}ni=1, LA hyperparameters: levels l, (k(1),

. . . , k(l)) and (αθ, αw).
3: for all j ∈ [l] do
4: if e%k(j) == 0 then
5: for all agent i ∈ [n] do
6: wi ← w

(j)
i + αw(wi −w

(j)
i ) LA jth level

7: θi ← θ
(j)
i + αθ(θi − θ

(j)
i )

8: (θ
(1)
i , . . . ,θ

(j)
i ,w

(1)
i , . . . ,w

(j)
i )← ({θi}×j , {wi}×j) Update copies up to jth

9: end for
10: end if
11: end for
12: end procedure

C.3.2 Extended version of LA-MADDPG pseudocode

We include an extended version for the LA-MADDPG algorithm without VI notations in algorithm 7.

C.3.3 Extended version of LA-MATD3 pseudocode

We include an extended version for the LA-MATD3 algorithm without VI notations in algorithm 8.

D Details On The Implementation

We used the configurations and hyperparameters from the original MADDPG paper for our imple-
mentation. For completeness, these are listed in Table 3. We ran t = 60000 training episodes for all
environments, with a maximum of 25 environment steps (step) per episode.

In all experiments, we used a 2-layer MLP with 64 units per layer. ReLU activation was applied
between layers for both the policy and value networks of all agents.

D.1 Hyperparameter Selection for Lookahead

In this section, we discuss and share guidelines for hyperparameter selection based on our experiments.

Summary.

• We observed two- or three-level of Lookahead outperform single-level Lookahead.

• Each level j ∈ [l] has different k, denoted here with k(j). These should be selected as multiple of
the selected k for the level before, that is, k(j) = cj · k(j−1), where cj is positive integer.

• We observed that for the innermost lookahead, small values for k(1), such as smaller than 50,
perform better than using large values. For the outer k(j), j > 1 large values work well, such as in
the range between 5− 10 for the cj ,.

• We typically used α = 0.5, and we observed lower values, such as α = 0.3, give better perfor-
mances then α > 0.5.

Discussion.

• To give an intuition regarding the above-listed conclusions, small values for k(1) help because the
MARL setting is very noisy and the vector field is rotational. If large values are used for ks, then



Finding the Frame Workshop, held at RLC2025

Algorithm 7 Pseudocode for LA–MADDPG: MADDPG with (Nested) Lookahead.
1: Input: Environment E , number of agents n, number of episodes t, action spaces {Ai}ni=1, number

of random steps trand before learning, learning interval tlearn, actor networks {µi}ni=1, with initial
weights θ ≡ {θi}ni=1, critic networks {Qi}ni=1 with initial weights w ≡ {wi}ni=1, learning
rates ηθ, ηw, base optimizer B (e.g., Adam), discount factor γ, lookahead hyperparameters
L ≡ (l, {k(j)}lj=1, αθ, αw), soft update parameter τ .

2: Initialize:
3: Replay buffer D ← ∅
4: LA parameters: φ← {θ}×l, {w}×l (store snapshots for LA)
5: for all episode e ∈ 1, . . . , t do
6: x← Sample(E) (sample from environment E)
7: step← 1
8: repeat
9: if e ≤ trand then

10: for each agent i, ai ∼ Ai (sample actions randomly)
11: else
12: for each agent i, select action ai using current policy and exploration
13: end if
14: (apply actions and record results)
15: Execute actions a = (a1, . . . , an), observe rewards r and new state x′

16: replay buffer D ← (x,a, r,x′)
17: x← x′

18: (apply learning step if applicable)
19: if step%tlearn = 0 then
20: for all agents i ∈ 1, . . . , n do
21: sample batch {(xj ,aj , rj ,x′j)}|B|

j=1 from D
22: yj ← rji + γQµ̄(x′j , a′1, . . . , a

′
n), where a′k = µ̄k(o

′j
k )

23: Update critic by minimizing the loss ℓ(wi) =
1
|B|
∑
j

(
yj −Qµ

i (x
j , aj1, . . . , a

j
n)
)2

using B
24: Update actor policy using policy gradient formula B
25: ∇θi

J ≈ 1
|B|
∑
j ∇θi

µi(o
j
i )∇aiQµ

i (x
j , aj1, . . . , ai, . . . , a

j
n), where ai = µi(o

j
i )

26: end for
27: for all agents i ∈ [n] do
28: θ̄i ← τθi + (1− τ)θ̄i (update target networks)
29: w̄i ← τwi + (1− τ)w̄i

30: end for
31: end if
32: step← step+ 1
33: until environment terminates
34: NESTEDLOOKAHEAD(n, e,φ,L)
35: end for
36: Output: θ, w
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Algorithm 8 Pseudocode for LA–MATD3: MATD3 with (Nested) Lookahead.
1: Input: Environment E , number of agents n, number of episodes t, action spaces {Ai}ni=1,

number of random steps trand before learning, learning interval tlearn, actor networks {µi}ni=1,
with initial weights θ ≡ {θi}ni=1, both critic networks, {Qi,1,Qi,2}ni=1 with initial weights
w ≡ {wi,1,wi,2}ni=1, learning rates ηθ, ηw, base optimizer B (e.g., Adam), discount factor γ,
lookahead hyperparameters L ≡ (l, {k(j)}lj=1, αθ, αw), soft update parameter τ , policy update
frequency p.

2: Initialize:
3: Replay buffer D ← ∅
4: LA parameters: φ← {θ}×l, {w}×l (store snapshots for LA)
5: for all episode e ∈ 1, . . . , t do
6: x← Sample(E) (sample from environment E)
7: step← 1
8: repeat
9: if e ≤ trand then

10: for each agent i, ai ∼ Ai (sample actions randomly)
11: else
12: for each agent i, select action ai using current policy and exploration
13: end if
14: (apply actions and record results)
15: Execute actions a = (a1, . . . , an), observe rewards r and new state x′

16: replay buffer D ← (x,a, r,x′)
17: x← x′

18: (apply learning step if applicable)
19: if step%tlearn = 0 then
20: for all agent i ∈ [n] do
21: sample batch {(xj ,aj , rj ,x′j)}|B|

j=1 from D
22: yj ← rji + γminm=1,2 Q

µ̄
i,l(x

′j , a′1, . . . , a
′
n), where a′k = µ̄k(o

′j
k ) + ϵ

23: Update both critics, m = 1, 2 by minimizing the loss (using optimizer B ):

ℓ(wi,m) = 1
|B|
∑
j

(
yj −Qµ

i,m(xj , aj1, . . . , a
j
n)
)2

24: if step%p = 0 then
25: Update actor policy using policy gradient formula and optimizer B
26: ∇θi

J ≈ 1
|B|
∑
j ∇θi

µi(o
j
i )∇aiQµ

i,1(x
j , aj1, . . . , ai, . . . , a

j
n), where ai = µi(o

j
i )

27: θ̄i ← τθi + (1− τ)θ̄i (update target networks)
28: w̄i,m ← τwi,m + (1− τ)w̄i,m

29: end if
30: end for
31: end if
32: step← step+ 1
33: until environment terminates
34: NESTEDLOOKAHEAD(n, e,φ,L)
35: end for
36: Output: θ, w



Finding the Frame Workshop, held at RLC2025

Table 3: Hyperparameters used for LA-MADDPG experiments.

Name Description

Adam lr 0.01
Adam β1 0.9
Adam β2 0.999
Batch-size 1024
Update ratio τ 0.01
Discount factor γ 0.95
Replay Buffer 1.5× 106

learning step tlearn 100
trand 1024
Policy update ratio (MATD3) p 2
Noise std (MATD3) 0.2
Noise clip (MATD3) 0.5
Lookahead α 0.5

the algorithm will diverge away. It is known that the combination of noise and rotational vector
field can cause methods to diverge away (Chavdarova et al., 2019).

• Relative to the analogous conclusions for GANs (Chavdarova et al., 2021), the differences is that:

– The better-performing values for k(1) are of a similar range as for Lookahead with GD for GANs;
however they are smaller than those used for Lookahead with EG for GANs.

D.2 Compute resources

We ran experiments on Google Colab enterprise using an e2-standard-8 type machine with 100 GB
Standard disk (pd-standard).

E Additional Results Discussions

E.1 Comparison among VI methods & insights from GANs.

The widely used (EG) for solving VIs is known to converge for monotone VIs. However, in
our experiments, EG performs only slightly better than the baseline because it introduces only a
minor local adjustment compared to gradient descent (GD). This aligns with expectations: while
EG occasionally outperforms GD, its improvements are often marginal. In contrast, Lookahead,
introduces a significantly stronger contraction, improving both stability and convergence. As the
number of nested levels increases, performance gains become more pronounced—particularly in
preventing the last iterate from diverging. However, too many nested levels can lead to overly
conservative or slow updates. Based on our experiments, three levels of nested LA yielded the best
balance between stability and convergence speed (see Fig. 2 for a comparison of VI methods). Our
findings are consistent with those observed in GAN training (Chavdarova et al., 2021), where EG also
provides only slight improvements over the baseline, while more contractive methods consistently
yield better performance.

These results further confirm that MARL vector fields in these environments exhibit strong rotational
dynamics. For scenarios with highly competitive reward structures, we recommend using VI methods
with greater contractiveness, such as employing multiple levels of LA.
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Figure 2: Comparison between GD, LA, EG,
and LA-EG optimization methods on the Rock–
paper–scissors game. x-axis: training episodes.
y-axis: squared norm of the learned policy proba-
bilities relative to the equilibrium. EG uses solely
one extrapolation, and thus, as a method, is very
close to GD; refer to Section 5.2 for a discussion.

E.2 Rock–paper–scissors: Buffer Structure

For the Rock–paper–scissors (RPS) game, using a buffer size of 1M wasn’t sufficient to store all
experiences from the 60K training episodes. We observed a change in algorithm behavior around
40K episodes. To explore the impact of buffer configurations, we experimented with different sizes
and structures, as experience storage plays a critical role in multi-agent reinforcement learning.

Full buffer. The buffer is configured to store all experiences from the beginning to the end of training
without any loss.

Buffer clearing. In this setup, a smaller buffer is used, and once full, the buffer is cleared completely,
and new experiences are stored from the start.

Buffer shifting. Similar to the small buffer setup, but once full, old experiences are replaced by new
ones in a first-in-first-out (FIFO) manner.

Results. Figure 3 depicts the results when using different buffer options for the RPS game.
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(a) Full buffer
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(b) Clearing buffer (20K)
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(c) Shifting buffer (20K)
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(d) Shifting buffer (40K)

Figure 3: Comparison of different buffer configurations (see Appendix E.2) and methods on Rock–paper–
scissors game. x-axis: training episodes. y-axis: 5-seed average norm between the two players’ policies and
equilibrium policy ( 1

3
, 1
3
, 1
3
)2. The dotted line indicates the point at which the buffer begins to change, either

through shifting or clearing.

E.3 Rock–paper–scissors: Scheduled learning rate

We experimented with gradually decreasing the learning rate (LR) during training to see if it would
aid convergence to the optimal policy in RPS. While this approach reduced noise in the results, it
also led to increased variance across all methods except for LA-MADDPG.

Figure 4 depicts the average distance to the equilibrium policy over 5 different seeds for each methods,
using periodically decreased step sizes.

E.4 MPE: Predator-prey Full results

We also evaluated the trained models of all methods on an instance of the environment that runs for
50 steps to compare learned policies. We present snapshots from it in Figure 6. Here, you can clearly
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Figure 4: Compares MADDPG with different LA-MADDPG configurations to the baseline MADDPG with
(Adam) in Rock–paper–scissors with a scheduled learning rate. x-axis: training episodes. y-axis: 5-seed
average norm between the two players’ policies and equilibrium policy ( 1

3
, 1
3
, 1
3
)2. The dotted lines depict the

times when the learning rate was decreased by a factor of 10.

anticipate the difference between the policies from baseline and our optimization methods. As in the
baseline, only one agent will chase at the beginning of episode. Moreover, for the baseline (topmost
row), the agents move further away from the landmarks and the good agent, which is suboptimal.
This can be noticed from the decreasing agents’ size in the figures. While in ours, both adversary
agents engage in chasing the good agent until the end.
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Figure 5: Comparison on the MPE–Predator-prey game between the GD-MADDPG, LA-MADDPG, EG-
MADDPG and LA-EG-MADDPG optimization methods, denoted as Baseline, LA, EG, LA-EG, resp. x-axis:
evaluation episodes. y-axis: mean adversaries win rate, averaged over 5 runs with different seeds.
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t = 1 t = 10 t = 20 t = 30 t = 40 t = 50

Figure 6: Agents’ trajectories of fully trained models with all considered optimization methods on the
same environment seed of MPE: Predator-prey. Snapshots show the progress of agents as time progresses in
a 50 steps long environment. Each row contains snapshots of one method, from top to bottom: GD-MADDPG,
LA-MADDPG, EG-MADDPG and LA-EG-MADDPG. Big dark circles represent landmarks, small red circles are
adversary agents and green one is the good agent.

.
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Figure 7: Rewards (left) vs. sampled actions from learned policies (right), of (LA-)MADDPG in the
Rock–paper–scissors game. The baseline has saturating rewards (in the last part), however, that is not indicative
of the agents’ performances. Refer to Section 5.2 for a discussion, and Figure ?? for more detailed plots and
larger action samples.
E.5 On the Rewards as Convergence Metric

Based on our experiments and findings from the multi-agent literature (Bowling, 2004), we observe
that average rewards offer a weaker measure of convergence compared to policy convergence in
multi-agent games. This implies that rewards can reach a target value even when the underlying
policy is suboptimal. For example, in the Rock–paper–scissors game, the Nash equilibrium policy
leads to nearly equal wins for both players, resulting in a total reward of zero. However, this same
reward can also be achieved if one player always wins while the other consistently loses, or if both
players repeatedly select the same action, leading to a tie. As such, relying solely on rewards during
training can be misleading.

Figure 7 depicts a case with the baseline where, despite rewards converging during training, the
agents ultimately learned to play the same action repeatedly, resulting in ties. Although this matched
the expected reward, it falls far short of equilibrium and leaves the agents vulnerable to exploitation
by more skilled opponents. In contrast, the same figure shows results from LA-MADDPG under the
same experimental conditions. Notably, while the rewards did not fully converge, the agents learned
a near-optimal policy during evaluation, alternating between all three actions as expected. These
results also align with the findings shown in Figure 1a.

We explored the use of gradient norms as a potential metric in these scenarios but found them to be
of limited utility, as they provided no clear indication of convergence for either method. We include
those results in Figure 8, where we compare the gradient norms of Adam and LA across the networks
of different players.

This work highlights the need for more robust evaluation metrics in multi-agent reinforcement
learning, a point also emphasized in (Lanctot et al., 2023), as reward-based metrics alone may be
inadequate, particularly in situations where the true equilibrium is unknown.
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Figure 8: Gradient norms across training in the Rock–paper–scissors game.


