
NEW ASPECTS OF BLACK BOX CONDITIONAL GRADI-
ENT: VARIANCE REDUCTION AND ONE POINT FEED-
BACK

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper deals with the black-box optimization problem. In this setup, we do not
have access to the gradient of the objective function, therefore, we need to estimate
it somehow. We propose a new type of approximation JAGUAR, that memorizes
information from previous iterations and requires O(1) oracle calls. We implement
this approximation in the Frank-Wolfe and Gradient Descent algorithms and prove
the convergence of these methods with different types of zero-order oracle. Our
theoretical analysis covers scenarios of non-convex, convex and PL-condition cases.
Also in this paper, we consider the stochastic minimization problem on the set Q
with noise in the zero-order oracle; this setup is quite unpopular in the literature,
but we prove that the JAGUAR approximation is robust not only in deterministic
minimization problems, but also in the stochastic case. We perform experiments
to compare our gradient estimator with those already known in the literature and
confirm the dominance of our methods.

1 INTRODUCTION

The projection-free methods, such as Conditional Gradient, known as the Frank-Wolfe (FW) Frank
& Wolfe (1956) algorithm, are widely used to solve various types of optimization problems. In the
last decade, Conditional Gradient methods have attracted increasing interest in the machine learning
community, since in many cases it is computationally cheaper to solve the linear minimization
problem over the feasible convex set (e.g. lp-balls or simplex ∆d), than to do a projection into it
LeBlanc et al. (1985); Jaggi (2011); Bubeck et al. (2015); Hazan et al. (2016); Goldfarb et al. (2017);
Dadras et al. (2022); Freund et al. (2017).
In the original Frank-Wolfe paper Frank & Wolfe (1956), the authors used true gradient in their
algorithm, but modern machine learning and artificial intelligence problems require the use of
other gradient estimators due to the significant increase in dataset size and complexity of state-of-
the-art models. Examples of such gradient estimators in FW-type algorithms include coordinate
methods Lacoste-Julien et al. (2013); Wang et al. (2016); Osokin et al. (2016) and stochastic gradient
approximation with batches Reddi et al. (2016); Zhang et al. (2020); Lu & Freund (2021).
But sometimes there are even more complicated setups where we can not compute the gradient in
general because it is not available for various reasons, e.g. the target function is not differentiable or
the computation of the gradient is computationally difficult Taskar et al. (2005); Chen et al. (2017);
Nesterov & Spokoiny (2017). This setting is called black-box optimization Lian et al. (2015), and
in this case we are forced to use zero-order (ZO) gradient estimation methods via finite differences
of the objective function (sometimes with additional noise) to approximate the gradient Nesterov
(2012); Duchi et al. (2012).
Over the last few years of research on the topic of black-box optimization, we can outline two main
methods for approximating the gradient using finite differences. The first estimates the gradient in m
coordinates Richtárik & Takáč (2014); Wright (2015); Nesterov & Stich (2017):

d

m

∑
i∈I

f(x+ τei)− f(x− τei)

2τ
ei., (1)

where I ⊂ 1, d : |I| = m, ei is a standard basis vector in Rd and τ is a smoothing parameter.

1

This finite difference approximates the gradient in m coordinates and requires O(m) oracle calls.
If m is small then this estimation would be inaccurate, if m is large then we need to make many
zero-order oracle calls at each iteration. In the case of m = d we call this method full-approximation.

Another finite difference does not use the standard basis, but random vectors e Duchi et al. (2012);
Nesterov & Spokoiny (2017); Gasnikov et al. (2022b;a); Statkevich et al. (2024):

d
f(x+ τe)− f(x− τe)

2τ
e, (2)

where e can be uniformly distributed on a lp-sphere RSd
p(1), then this scheme is called lp-smoothing.

In recent papers, authors usually use p = 1 Gasnikov et al. (2016); Akhavan et al. (2022) or p = 2
Nemirovskij & Yudin (1983); Shamir (2017); Gorbunov et al. (2022). Alternatively, e could be
sampled from normal distribution with zero mean and unit covariance matrix Nesterov & Spokoiny
(2017).
The approximations (1) and (2) have a very large variance or require many calls to the zero-order
oracle, therefore there is a necessity to somehow reduce the approximation error without increasing
the number of oracle calls. In stochastic optimization, the method of remembering information
from previous iterations is widely used, for example in SVRG Johnson & Zhang (2013), SAGA
Defazio et al. (2014), SARAH Nguyen et al. (2017) and SEGA Hanzely et al. (2018) authors
suggest memorizing the gradient from previous iterations for improve the convergence of the method.
We decided to use this technique in a black-box optimization problem, memorizing the gradient
approximations from previous iterations to reduce batch size without significant loss of accuracy.
In this concept paper, we seek to answer the following research questions:
• Can we create a zero-order method that uses information from previous iterations and approximates
the true gradient as accurately as the full-approximation (1), but requires O(1) calls to the zero-order
oracle?
• Can we implement this approximation method in the Frank-Wolfe algorithms for deterministic and
stochastic settings of the minimization problems?
• Whether the convergence estimates of this method are better than for the difference schemes (1)
and (2)?

In a more realistic setting, the zero-order oracle returns a noisy value of the objective function, i.e.
it yields not f(x) but f(x) + δ(x). Different types of noises δ(·) are considered in the literature: it
can be stochastic Bach & Perchet (2016); Gorbunov et al. (2022); Akhavan et al. (2020); Gasnikov
et al. (2022b) or deterministic Risteski & Li (2016); Bogolubsky et al. (2016); Lobanov et al. (2023b).
This raises another research question:
• How do different types of noise affect the theoretical guarantees and practical results of our
proposed approaches?

1.1 OUR CONTRIBUTIONS

According to the research questions, our contributions can be summarized as follows:
• We present the JAGUAR method, which approximates a true gradient of the objective function
∇f(x) at the point x. By using the memory of previous iterations we achieve an accuracy close to the
full-approximation (1), but JAGUAR does not require O(d), but O(1) calls to the zero-order oracle.
lp-smoothing (2) also requires O(1) oracle calls, but since there is no memory technique in it, this
method has large variance and is not robust.
• We prove theoretical estimates for this method (see Section 2.1). We consider both deterministic
and stochastic noises in the zero-order oracle. If the first setting is somehow obtained in the literature
Lobanov et al. (2023a;b), the second is rarely considered by authors, therefore our method is suitable
for various black-box optimization problems.
• We implement the JAGUAR approximation in the Frank-Wolfe algorithm for stochastic and de-
terministic minimization problems and prove its convergence in both cases (see Sections 2.2 and
2.4).
• We also implement JAGUAR in the Gradient Descent method and prove its convergence in the
non-convex and PL-condition cases (see Section 2.3).
• We perform several computational experiments, comparing the JAGUAR approximation with
l2-smoothing (2) and full-approximation (1) on different minimization problems (see Section 3).

2

1.2 RELATED WORK

In this section, we compare the problem statements and approximation methods in the literature
on zero-order methods in the Frank-Wolfe-based algorithms. Some authors consider coordinate
methods Lacoste-Julien et al. (2013) these are also gradient approximations, but these methods use
the true gradient of the observed function f , therefore we can not use them directly in black-box
optimization. In general, the lp-smoothing technique can approximate the gradient using O(1) oracle
calls Dvinskikh et al. (2022), but it may not be robust in the Frank-Wolfe setting, since in Lobanov
et al. (2023a) authors have to collect large batches of directions e to achieve convergence. Note that
in Lobanov et al. (2023a) the non-stochastic noise is taken into account. The full-approximation is
also used in the literature Sahu et al. (2019); Gao & Huang (2020); Akhtar & Rajawat (2022), but at
each iteration we need to make O(d) oracle calls, and since d is huge in modern applications, this can
be a problem. Also, this method requires the smoothness of the objective function f . We summarize
and compare the problem statements, approximation methods and results for them in Table 1.

Table 1: Adjustment of the various zero-order and coordinate FW methods.

Method
Setting Noise

Batch size Approximation
Smooth Zero-order Stochastic Deterministic

ZO-SCGS Lobanov et al. (2023a) ✗ ✓ ✗ ✓ O
(
1/ε2

)
l2-smoothing (2)

FZFW Gao & Huang (2020) ✓ ✓ ✗ ✗ O
(√

d
)

Full-approximation (1)

DZOFW Sahu et al. (2019) ✓ ✓ ✗ ✗ O (d) Full-approximation (1)

MOST-FW Akhtar & Rajawat (2022) ✓ ✓ ✗ ✗ O (d) Full-approximation (1)

BCFW Lacoste-Julien et al. (2013) ✓ ✗ ✗ ✗ O (1) Coordinate

SSFW Beznosikov et al. (2023) ✓ ✗ ✗ ✗ O (1) Coordinate

FW via JAGUAR (this paper) ✓ ✓ ✓ ✓ O (1) JAGUAR (Algorithms 1 and 5)

2 MAIN RESULTS

In this paper, we consider the following optimization problem
f∗ := min

x∈Q
f(x). (3)

We now provide several assumptions that are necessary for the analysis.
Assumption 1 (Compact domain). The set Q is compact and convex, i.e. ∃D > 0 : ∀x, y ∈ Q ↪→
∥x− y∥ ≤ D.

Assumption 2 (L-smoothness). The function f(x) is L-smooth on the set Q, i.e. ∃ L > 0 : ∀x, y ∈
Q ↪→ ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.
Assumption 3 (Convex). The function f(x) is convex on the set Q, i.e. ∀x, y ∈ Q ↪→ f(y) ≥
f(x) + ⟨∇f(x), y − x⟩.
We assume that we only have access to the zero-order oracle and that it returns the noisy value of the
function f(x): fδ(x) := f(x) + δ(x). Therefore, we make a common assumption about this noise
Dvinskikh et al. (2022); Lobanov et al. (2023b). For stochastic case see Section 2.4.
Assumption 4 (Bounded oracle noise). The noise in the zero-order oracle is bounded by a constant
∆ > 0, i.e. ∃∆ > 0 : ∀x ∈ Q ↪→ |δ(x)|2 ≤ ∆2.

2.1 JAGUAR GRADIENT APPROXIMATION. DETERMINISTIC CASE

Algorithm 1 JAGUAR gradient approximation.
Deterministic case

1: Input: x, h ∈ Rd

2: Sample i ∈ 1, d independently and uniform
3: Compute ∇̃ifδ(x) =

fδ(x+τei)−fδ(x−τei)
2τ ei

4: h = h− ⟨h, ei⟩ ei + ∇̃ifδ(x)

Above we reviewed the gradient approximation
techniques using finite differences (1) and (2).
In this section, we introduce the new gradient
estimation technique JAGUAR (Algorithm 1),
which is based on the already investigated meth-
ods and uses the memory of previous iterations.

The idea behind the JAGUAR method is similar
to well-known variance reduction techniques
such as SAGA Defazio et al. (2014) or SVRG Johnson & Zhang (2013). However, in zero-order

3

optimization we need to approximate the gradient, therefore we need to apply the variance reduction
technique to the coordinates Hanzely et al. (2018). Consequently, the JAGUAR method uses the
memory of some coordinates of the previous gradients instead of memorizing gradients by batches in
past points.

There are already works in the literature that combine zero-order optimization and variance reduction,
but the essence of these papers is that they change the gradient calculation to the gradient-free
approximation (1) in the batch variance reduced algorithms such as SVRG or SPIDER Ji et al. (2019),
rather than using the variance reduction technique for coordinates as in Algorithm 1.
JAGUAR approximation algorithm can be used with any iterative scheme that return a new point xk
at each step k. Using these points, we obtain the sequence hk in line 4, which in a sense serves as
a memory of the gradient components from past moments. Therefore, it makes sense to use hk as
an estimator of the true gradient ∇f(xk) in incremental optimization methods. Using the following
unified scheme, we can describe such an iterative algorithm that solves (3) (Algorithm 2).

Algorithm 2 Iterative algorithm using gradient es-
timator via JAGUAR

1: Input: same as for Proc and h0
2: for k = 0, 1, 2, ..., N do
3: hk+1 = JAGUAR(xk, hk)
4: xk+1 = Proc(xk, grad_est = hk+1)
5: end for

In Algorithm 2, Proc(xk, grad_est) is a
sequence of actions that translates xk to xk+1

using grad_estimator as the true gradient.
Now we start to analyze JAGUAR gradient ap-
proximation (Algorithm 1). Our goal is to esti-
mate the closeness of the true gradient ∇f(xk)
and the output of the JAGUAR algorithm hk at
step k.

Lemma 1. For xk and hk, generated by Algorithm 2, the following inequality holds

Hk+1 ≤
(
1− 1

2d

)
Hk + 2dE

[∥∥∥∇f(xk+1)−∇f(xk)
∥∥∥2]+ E

[∥∥∥∇̃fδ(xk)−∇f(xk)
∥∥∥2], (4)

where we use notations Hk := E
[∥∥hk −∇f(xk)

∥∥2] and

∇̃fδ(x) :=
d∑

i=1

fδ(x+ τei)− fδ(x− τei)

2τ
ei. (5)

For a detailed proof of Lemma 1, see the proof of Lemma 5 in Appendix C.2 in the case of
σ2
∇ = σ2

f = 0 (see details in Section 2.4).

Discussion. We do not need to make any assumptions to satisfy Lemma 1, since in its proof
we have only used the form of Algorithm 1. This means that the performance of the JAGUAR
approximation depends only on the quality of the full-approximation ∇̃fδ(x) and the closeness of
the points xk+1 and xk, generated by the Algorithm 2. According to Lemma 4 in Appendix C.1,
we can estimate quality of the ∇̃fδ(x): under Assumptions 2 and 4 for all x ∈ Q it holds that
∥∇̃fδ(x)−∇f(x)∥2 ≤ dL2τ2 + (2d∆2/τ2).

Let us analyse the formula (4), and show that using JAGUAR gradient approximation (Algorithm 1)
gives us the same estimates as using ∇̃fδ(x). Many optimization algorithms use a sufficiently small
step size γ, i.e. Proc(xk,grad_est) ≈ xk. Therefore we can assume that ∇f(xk+1) ≈ ∇f(xk)
(for a specific choice of γ see Theorem 1). We can unroll (4) and, if we consider k ≫ d, then we can
obtain that E[∥hk −∇f(xk)∥2] = O(∥∇̃fδ(xk)−∇f(xk)∥2), i.e. it is the same estimate as for the
full-approximation (5), however now we make O(1) oracle calls at each iteration.
2.2 FRANK-WOLFE VIA JAGUAR Algorithm 3 FW via JAGUAR. Deter-

ministic case

1: Input: x0 ∈ Q, h0 = ∇̃fδ(x0), γk, τ
2: for k = 0, 1, 2, ..., N do
3: hk+1 = JAGUAR

(
xk, hk

)
4: sk = argmin

x∈Q

〈
s, hk+1

〉
5: xk+1 = xk + γk(s

k − xk)
6: end for

In this section, we introduce the Frank-Wolfe algorithm,
witch solves the problem (3) using the JAGUAR gradi-
ent approximation (Algorithm 3). Using a certain form
of the Proc function in Algorithm 3, we can unroll the
results of Lemma 1 to carefully tune the step size γk.
Theorem 1 (Step tuning for FW via JAGUAR (Algo-
rithm 3). Deterministic case). Consider Assumptions
1 and 2. For hk, generated by Algorithm 3, we can take
γk = 4/(k + 8d), then the following inequality holds:

E[∥hk −∇f(xk)∥2] = O
(
∥∇̃fδ(xk)−∇f(xk)∥2 + d2L2D2

(k + 8d)2

)
.

4

From Theorem 1 we can conclude that after O
(√

dD/τ
)

steps we get the same estimate as in the
full-approximation (5). We now examine the convergence of Algorithm 3.
Theorem 2 (Convergence rate of FW via JAGUAR (Algorithm 3)). Consider Assumptions 1, 2, 3,
4. If we take γk = 4/(k+8d), then FW via JAGUAR (Algorithm 3) has the following convergence
rate

E
[
f(xN)− f∗

]
= O

(dmax{LD2, F0}
N + 8d

+
√
dLDτ +

√
d∆D

τ

)
,

The results of Theorem 2 can be rewritten as an upper complexity bound on a number of iterations of
Algorithm 3, using the appropriate smoothing parameter τ and noise bound ∆.
Corollary 1. Under the conditions of Theorem 2, choosing γk, τ(ε),∆(ε) as in the Appendix B.1 in
order to achieve an ε-approximate solution (in terms of E[f(xN)− f∗] ≤ ε) it takes

O
(dmax{LD2, F0}

ε

)
iterations of Algorithm 3.

For a detailed proof of Theorems 1, 2 and Corollaries 1, 6, see Appendix D.1.

Discussion. The results of Theorem 2 match with results Frank & Wolfe (1956);
Jaggi (2013) in which the authors used a true gradient and got the result of the form
E
[
f(xN)− f∗

]
= O

(
max{LD2; f(x0)− f∗}/N

)
. In the zero-order case, terms of the form

O (poly(τ) + poly(∆/τ)) are inevitable, since they are crucial for the approximation of the true
gradient and always affect the convergence of zero-order methods Risteski & Li (2016); Sahu et al.
(2018); Liu et al. (2018); Beznosikov et al. (2020a). The factor d, which appears in our theoretical
estimates compared to the first-order result, is related to the zero-order structure of the method.

In Corollary 1, the dependence ∆(ε) was obtained, which may seem incorrect, because usually the
maximum noise is given by nature and we cannot reduce it. In this case, we should rewrite the
dependence in the form ε = ε(∆) and accordingly τ and N start to depend on ∆, not on ε (see
Appendix B.1). In the rest of the corollaries in this paper, we will write the dependence as ∆(ε) for
ease of presentation, but they can always be rewritten in terms of ε(∆).

2.3 GRADIENT DESCENT VIA JAGUAR

Algorithm 4 GD via JAGUAR

1: Input: x0 ∈ Rd, h0 = ∇̃fδ(x0), γ, τ
2: for k = 0, 1, 2, ..., N do
3: hk+1 = JAGUAR

(
xk, hk

)
4: xk+1 = xk − γhk+1

5: end for

In this section, we consider problem of the form

f∗ := min
x∈Rd

f(x).

We can not use FW-type algorithms in this setting be-
cause Q = Rd is not a bounded set, therefore, we con-
sider Gradient Descent with JAGUAR approximation.
We now examine the convergence of Algorithm 4.
Theorem 3 (Convergence rate of GD via JAGUAR (Algorithm 4). Non-convex case). Consider
Assumptions 2 and 4. If we take γ ≡ 1/(4dL), then GD via JAGUAR (Algorithm 4) in the
non-convex case has the following convergence rate

E
[
∥∇f(x̂N)∥2

]
= O

(
dLΦ0

N + 1
+ dL2τ2 +

d∆2

τ2

)
,

where x̂N is chosen uniformly from {xk}Nk=0 and Φ0 := f(x0)− f∗ + dγ
∥∥h0 −∇f(x0)

∥∥2.
Corollary 2. Under the conditions of Theorem 3, choosing γ, τ,∆ as in Appendix B.2 in order to
achieve an ε-approximate solution (in terms of E[∥∇f(x̂N)∥2] ≤ ε2, where x̂N is chosen uniformly
from {xk}Nk=0) it takes

O
(
dLΦ0

ε2

)
iterations of Algorithm 4.

Under the PL-condition we explore a better convergence rate.
Assumption 5 (PL condition). The function f(x) satisfies PL-condition if ∃ µ > 0 : ∀x ∈ Rd ↪→
∥∇f(x)∥22 ≥ 2µ(f(x)− f∗).

5

Theorem 4 (Convergence rate of GD via JAGUAR (Algorithm 4) PL-case). Consider Assumptions
2, 4 and 5. If we take γ ≡ 1/(4dL), then GD via JAGUAR (Algorithm 4) in the PL-condition case
(Assumption 5) has the following convergence rate

E
[
f(xk)− f∗

]
= O

(
F0 exp

[
− µN

4dL

]
+
dL2τ2 + d∆2/τ2

µ

)
,

Corollary 3. Under the conditions of Theorem 4, choosing γ, τ,∆ as in Appendix B.2 in order to
achieve an ε-approximate solution (in terms of E[f(xN)− f∗] ≤ ε) it takes

O
(
dL

µ
log

[
F0

ε

])
iterations of Algorithm 4.

For a detailed proof of Theorems 3, 4 and Corollaries 2, 3, see Appendix E.

Discussion. The results of Theorems 3 and 4 match with first-order results, but in such results
γ ≡ 1/L, therefore, in the zero-order case the factor d reappears in theoretical estimates. We also
obtain smoothing term of the form O (poly(τ) + poly(∆/τ)). The same estimates arise in previous
works when studying Gradient Descent in the zero-order oracle setting Bogolubsky et al. (2016);
Bayandina et al. (2018); Dvinskikh et al. (2022).

2.4 FRANK-WOLFE VIA JAGUAR. STOCHASTIC CASE

In this section, we consider the stochastic version of the problem (3):
f(x) := Eξ∼π[f(x, ξ)], (6)

where ξ is a random vector from a mostly unknown distribution π. For this problem we can not use
the values of the function f(x) in the difference schemes, since only f(x, ξ) is available. Again, we
assume that we do not have access to the true value of the gradient ∇f(x, ξ), and zero-order oracle
returns the noisy value of the function f(x, ξ): fδ(x, ξ) := f(x, ξ) + δ(x, ξ).

In the stochastic setup (6), there are two versions of the differences of the scheme (1) appear. The
first one is called Two Point Feedback (TPF) Duchi et al. (2015); Shamir (2017); Gorbunov et al.
(2022); Beznosikov et al. (2020b); Gasnikov et al. (2022b). In this case, we define such gradient
approximations of the function f(x):

∇̃ifδ(x, ξ) :=
fδ(x+ τei, ξ)− fδ(x− τei, ξ)

2τ
ei. (7)

The second one is called One Point Feedback (OPF) Nemirovskij & Yudin (1983); Flaxman et al.
(2004); Gasnikov et al. (2017); Akhavan et al. (2020); Beznosikov et al. (2021). In this case, we
define a slightly different gradient approximation of the function f(x):

∇̃ifδ(x, ξ
±) :=

fδ(x+ τei, ξ
+)− fδ(x− τei, ξ

−)
2τ

ei. (8)

The main difference between the approximations (7) and (8) is that the scheme (7) is more accurate,
but difficult to implement in practice, because we have to get the same realization of ξ at two different
points x+ τe and x− τe, hence the scheme (8) is more interesting from a practical point of view. To
further simplify, we consider that in the case of two point feedback (7) we have the same inscription
as for the one point feedback (8), but only ξ+ = ξ− = ξ. We provide several assumptions required
for the analysis.
Assumption 6 (Smoothness). The functions f(x, ξ) are L(ξ)-smooth on the set Q, i.e. ∀x, y ∈
Q ↪→ ∥∇f(x, ξ) − ∇f(y, ξ)∥ ≤ L(ξ)∥x − y∥. We also assume that exists constant L such that
L2 := E[L(ξ)2]. Then function f(x) is L-smooth on the set Q.

Assumption 7 (Bounded oracle noise). The noise in the oracle is bounded by some constant ∆ > 0,
i.e. ∃ ∆ > 0 : ∀x ∈ Q ↪→ E[|δ(x, ξ)|2] ≤ ∆2. If we define δ(x) := E[δ(x, ξ)], then it holds that
|δ(x)|2 ≤ ∆2.

Now we present two assumptions that are only needed in the stochastic case.
Assumption 8 (Bounded variance of gradient). The variance of the ∇f(x, ξ) is bounded, i.e. ∃ σ∇ ≥
0 : ∀x ∈ Q ↪→ E[∥∇f(x, ξ)−∇f(x)∥2] ≤ σ2

∇.

Assumption 9 (Bounded variance of function). The variance of the f(x, ξ) is bounded, i.e. ∃ σf ≥
0 : ∀x ∈ Q ↪→ E[∥f(x, ξ)− f(x)∥2] ≤ σ2

f .

6

Assumptions 8 and 9 are classical in the stochastic optimization literature Agarwal et al. (2011);
Bach & Perchet (2016); Akhavan et al. (2020); Dvurechensky et al. (2021). In the case of two point
feedback (7), we do not need Assumption 9, therefore, for the sake of simplicity we will assume that
in this case Assumption 9 is satisfied with σf = 0. Now we can present the Frank-Wolfe algorithm,
witch solves the problem (3) + (6) using JAGUAR gradient approximation.

Algorithm 5 FW via JAGUAR. Stochastic case

1: Input: γk, ηk, τ , x0 ∈ Q, h0 = g0 = 1/(2τ)
∑d

i=1(fδ(x
0 + τei, ξ

+
i)− fδ(x

0 − τei, ξ
−
i))ei

2: for k = 0, 1, 2, ..., N do
3: Sample ik ∈ 1, d independently and uniform
4: Sample ξ+k , ξ

−
k ∼ π independently (in TPF ξ+k = ξ−k)

5: Compute ∇̃ikfδ(x
k, ξ±k) = 1/(2τ)(fδ(x

k + τeik , ξ
+
k)− fδ(x

k − τeik , ξ
−
k))eik

6: hk+1 = hk −
〈
hk, eik

〉
eik + ∇̃ikfδ(x

k, ξ+k , ξ
−
k)

7: ρk = hk − d ·
〈
hk, eik

〉
eik + d · ∇̃ikfδ(x

k, ξ+k , ξ
−
k)

8: gk+1 = (1− ηk)g
k + ηkρ

k

9: sk = argmin
s∈Q

〈
s, gk+1

〉
10: xk+1 = xk + γk(s

k − xk)
11: end for

Algorithm 5 is similar to FW via JAGUAR in the deterministic case (Algorithm 3), but in lines 7
and 8 we use SEGA Hanzely et al. (2018) and momentum Mokhtari et al. (2020) parts to converge in
the stochastic case.

• We need the SEGA part Hanzely et al. (2018) ρk in Algorithm 5, because in the stochastic case we
care about the "unbiased" property (see proof of Lemma 7 in Appendix C), i.e.

Ek[ρ
k] = ∇̃fδ(xk) :=

d∑
i=1

fδ(x+ τei)− fδ(x− τei)

2τ
ei,

where Ek[·] is a conditional mathematical expectation at step k. Using the SEGA part ρk degrades
our estimates by a factor of d compared to using hk as a gradient approximation (see Lemmas 5 and
6 in Appendix C), but we have to accept this factor.

• We need the momentum part Mokhtari et al. (2020) ηk in Algorithm 5, because when evaluating
the expression of E[∥∇̃fδ(x, ξ±1,d)−∇f(x)∥2] in the stochastic case, terms containing σ2

∇ appear

and σ2
f and interfere with convergence (see Lemma 4 in Appendix C). This is a common problem in

the stochastic Frank-Wolfe-based methods (see Mokhtari et al. (2020)). We can provide a theorem
similar to the one in Section 2.2 (Theorem 1), where we carefully choose the step sizes γk and ηk.
Theorem 5 (Step tuning for FW via JAGUAR. Stochastic case). Consider Assumptions 1, 6, 7,
8 and 9 in the one point feedback case. For xk generated by Algorithm 5, we can take γk =
4/(k + 8d3/2) and ηk = 4/(k + 8d3/2)2/3, then, the following inequality holds:

Gk = O
(∥∥∥∇̃fδ(xk)−∇f(xk)

∥∥∥2 + L2D2 + d2σ2
f/τ

2 + d2σ2
∇

(k + 8d3/2)2/3

)
,

where we use the notation Gk := E[∥gk −∇f(xk)∥2]. In the two point feedback case, σ2
f = 0.

We get worse estimates compared to the deterministic case in Theorem 1 because we consider a more
complicated setup. We now examine the convergence of Algorithm 5.
Theorem 6 (Convergence rate of FW via JAGUAR (Algorithm 5). Stochastic case). Con-
sider Assumptions 1, 3, 6, 7, 8 and 9 in the one point feedback case. We can take γk =
4/(k + 8d3/2) and ηk = 4/(k + 8d3/2)2/3, then we FW via JAGUAR (Algorithm 5) has
the following convergence rate

FN = O
(LD2 + dσfD/τ + dσ∇D +

√
dF0

(N + 8d3/2)1/3
+

√
dLDτ +

√
d∆D

τ

)
,

where we use the notation FN := E[f(xN)− f∗]. In the two point feedback case, σ2
f = 0.

7

Corollary 4. Under the conditions of Theorem 6, choosing γk, ηk, τ,∆ as in Appendix B.3 in order
to achieve an ε-approximate solution (in terms of E[f(xN)− f∗] ≤ ε) it takes

O
(
max

{[
LD2 + dσ∇D +

√
d(f(x0)− f∗)

ε

]3
;
d9/2σ3

fL
3D6

ε6

})
iterations of Algorithm 5.

In the two point feedback case, σ2
f = 0 and the last equation takes form

O

[LD2 + dσ∇D +
√
d(f(x0)− f∗)

ε

]3 iterations of Algorithm 5.

For a detailed proof of Theorems 5, 6 and Corollary 4, see Appendix D.2.

Discussion. Since we used SEGA and momentum parts in the JAGUAR approximation algorithm
(Algorithm 5) we do not get the same convergence rate as in Theorems 1 and 2, even if we switch
from stochastic to deterministic setups, i.e, when we set σ∆ = σf = 0 in Theorems 5 and 6. The
same problems arise in the first-order case Mokhtari et al. (2020); Zhang et al. (2020), due to the
difficulty of implementing the stochastic gradient in FW-type algorithms.
We can apply the deterministic JAGUAR method (Algorithm 1) to the stochastic problem (6)
and obtain the same estimates as in Theorems 1 and 2, only the smoothed term of the form
O (poly(τ) + poly(∆/τ)) will contain summands of the form O

(
poly(σ2

∆) + poly(σ2
f/τ)

)
There-

fore, if σ2
∆, σ

2
f ∼ ∆, then deterministic Algorithm 1 is suitable for the stochastic problem (6).

However, this means that we need to use big batches, therefore, we forced to use SEGA and momen-
tum parts in the JAGUAR approximation.

3 EXPERIMENTS

In this section, we present and discuss the results of our experiments on the application of JAGUAR
gradient approximation to a variety of black-box optimization problems. Our results include opti-
mization with Frank-Wolfe (FW) and Gradient Descent (GD) algorithms. In FW we consider both
deterministic and stochastic cases, in GD we consider only the deterministic case.

3.1 EXPERIMENT SETUP

We perform optimization on classification tasks with the SVM model on the set Q of the form:

min
w∈Q,b∈R

{
f(w, b) =

1

m

m∑
k=1

(1− yk[(Xw)k − b])+ +
1

2C
∥w∥2

}
. (9)

We also consider a logistic regression model on the set Q of the form:

min
w∈Q

{
f(w) =

1

m

m∑
k=1

log (1 + exp [−yk(Xw)k]) +
1

2C
∥w∥2

}
. (10)

In both problems we use the regularization term C = 10. As minimization set Q we consider the
simplex ∆d and l2-ball in the Frank-Wolfe algorithm and Rd in Gradient Descent algorithm. For the
classification problem we use the classical datasets MNIST Deng (2012) and Mushrooms Chang &
Lin (2011). We incorporate different approximation methods into optimization algorithms, solving
(9) and (10) problems and show that the algorithm that uses the JAGUAR method (Algorithms 1 and
5) performs best. We consider l2-smoothing (2) and full-approximation (1) as baseline estimators of
the gradients. The results of the experiments are provided in the Apppendix ??.

8

3.2 DETERMINISTIC
FRANK-WOLFE

In this section, we consider deter-
ministic noise of the form fδ(x) =
round(f(x), 5), i.e. we round all val-
ues of the function f to the fifth deci-
mal place. Figure 1 shows the conver-
gence over zero-order oracle calls of the
deterministic FW algorithm. FW via
JAGUAR (3 algorithm) shows better re-
sults than the baseline algorithms. This
observation confirms our theoretical find-
ings.

3.3 STOCHASTIC FRANK-WOLFE

In this section, we consider stochastic
noise of the form fδ(x, ξ) = f(x) +
ξ; ξ ∼ N (0, 0.1). Figure 2 shows the
convergence over zero-order oracle calls
of the stochastic FW algorithm. Our the-
oretical findings are supported by obser-
vations. FW via JAGUAR (5 algorithm)
is robust to noise and outperforms the
baseline algorithms.

3.4 GRADIENT DESCENT

In this section, we again consider de-
terministic noise of the from fδ(x) =
round(f(x), 5). Figure 3 shows conver-
gence over zero-order oracle calls of the
deterministic GD algorithm. GD via
JAGUAR (algorithm 4) outperforms the
baseline algorithms, albeit by a small
margin, and this observation confirms
our theoretical findings.

4 CONCLUSION

This paper introduces the JAGUAR al-
gorithm, a novel gradient approxima-
tion method designed for black-box
optimization problems, utilizing mem-
ory from previous iterations to estimate
the true gradient with high accuracy
while requiring only O(1) oracle calls.
The study provides rigorous theoretical
proofs and extensive experimental val-
idation, demonstrating JAGUAR supe-
rior performance in both deterministic
and stochastic settings. Key contribu-
tions include convergence proofs for the
Frank-Wolfe and Gradient Descent al-
gorithms, with detailed theorems estab-
lishing convergence rates. Experimen-
tal results show that JAGUAR outper-
forms baseline methods in SVM and lo-
gistic regression optimization problems.
The results highlight JAGUAR efficiency
and accuracy, making it a promising ap-
proach for future research and applica-
tions in zero-order optimization.

0 2000 4000 6000 8000 10000

The number of oracle calls

10−3

10−2

10−1

100

f
(x

k
)/
f

(x
0)

SVM on l2-ball
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

10−3

10−2

10−1

100

f
(x

k
)/
f

(x
0)

SVM on Simplex
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

100

5× 10−1

6× 10−1

7× 10−1

8× 10−1

9× 10−1

f
(x

k
)/
f

(x
0)

LogReg on l2-ball
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

f
(x

k
)/
f

(x
0)

LogReg on Simplex
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

Figure 1: Deterministic FW Algorithm.

0 2000 4000 6000 8000 10000

The number of oracle calls

10−2

10−1

100

f
(x

k
)/
f

(x
0)

SVM on l2-ball
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

10−3

10−2

10−1

100

f
(x

k
)/
f

(x
0)

SVM on Simplex
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

100

5× 10−1

6× 10−1

7× 10−1

8× 10−1

9× 10−1

f
(x

k
)/
f

(x
0)

LogReg on l2-ball
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

f
(x

k
)/
f

(x
0)

LogReg on Simplex
MNIST dataset

JAGUAR

l2-smoothing

full-approximation

Figure 2: Stochastic FW Algorithm.

0 2000 4000 6000 8000 10000

The number of oracle calls

10−3

10−2

10−1

100

f
(x

k
)/
f

(x
0)

SVM on Rd

Mushrooms dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

10−2

10−1

100

f
(x

k
)/
f

(x
0)

SVM on Rd

MNIST dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

100

4× 10−1

6× 10−1

f
(x

k
)/
f

(x
0)

LogReg on Rd

Mushrooms dataset

JAGUAR

l2-smoothing

full-approximation

0 2000 4000 6000 8000 10000

The number of oracle calls

10−1

100

f
(x

k
)/
f

(x
0)

LogReg on Rd

MNIST dataset

JAGUAR

l2-smoothing

full-approximation

Figure 3: GD Algorithm.

9

REFERENCES

Alekh Agarwal, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Alexander Rakhlin. Stochastic
convex optimization with bandit feedback. Advances in Neural Information Processing Systems,
24, 2011.

Arya Akhavan, Massimiliano Pontil, and Alexandre Tsybakov. Exploiting higher order smoothness in
derivative-free optimization and continuous bandits. Advances in Neural Information Processing
Systems, 33:9017–9027, 2020.

Arya Akhavan, Evgenii Chzhen, Massimiliano Pontil, and Alexandre Tsybakov. A gradient estimator
via l1-randomization for online zero-order optimization with two point feedback. Advances in
Neural Information Processing Systems, 35:7685–7696, 2022.

Zeeshan Akhtar and Ketan Rajawat. Zeroth and first order stochastic frank-wolfe algorithms for
constrained optimization. IEEE Transactions on Signal Processing, 70:2119–2135, 2022.

Francis Bach and Vianney Perchet. Highly-smooth zero-th order online optimization. In Conference
on Learning Theory, pp. 257–283. PMLR, 2016.

Anastasia Sergeevna Bayandina, Alexander V Gasnikov, and Anastasia A Lagunovskaya. Gradient-
free two-point methods for solving stochastic nonsmooth convex optimization problems with small
non-random noises. Automation and Remote Control, 79:1399–1408, 2018.

Aleksandr Beznosikov, Eduard Gorbunov, and Alexander Gasnikov. Derivative-free method
for composite optimization with applications to decentralized distributed optimization. IFAC-
PapersOnLine, 53(2):4038–4043, 2020a.

Aleksandr Beznosikov, Abdurakhmon Sadiev, and Alexander Gasnikov. Gradient-free methods with
inexact oracle for convex-concave stochastic saddle-point problem. In International Conference
on Mathematical Optimization Theory and Operations Research, pp. 105–119. Springer, 2020b.

Aleksandr Beznosikov, Vasilii Novitskii, and Alexander Gasnikov. One-point gradient-free methods
for smooth and non-smooth saddle-point problems. In Mathematical Optimization Theory and
Operations Research: 20th International Conference, MOTOR 2021, Irkutsk, Russia, July 5–10,
2021, Proceedings 20, pp. 144–158. Springer, 2021.

Aleksandr Beznosikov, David Dobre, and Gauthier Gidel. Sarah frank-wolfe: Methods for constrained
optimization with best rates and practical features. arXiv preprint arXiv:2304.11737, 2023.

Lev Bogolubsky, Pavel Dvurechenskii, Alexander Gasnikov, Gleb Gusev, Yurii Nesterov, Andrei M
Raigorodskii, Aleksey Tikhonov, and Maksim Zhukovskii. Learning supervised pagerank with
gradient-based and gradient-free optimization methods. Advances in neural information processing
systems, 29, 2016.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Ali Dadras, Karthik Prakhya, and Alp Yurtsever. Federated frank-wolfe algorithm. In Workshop on
Federated Learning: Recent Advances and New Challenges (in Conjunction with NeurIPS 2022),
2022.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information
processing systems, 27, 2014.

10

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Darina Dvinskikh, Vladislav Tominin, Iaroslav Tominin, and Alexander Gasnikov. Noisy zeroth-order
optimization for non-smooth saddle point problems. In International Conference on Mathematical
Optimization Theory and Operations Research, pp. 18–33. Springer, 2022.

Pavel Dvurechensky, Eduard Gorbunov, and Alexander Gasnikov. An accelerated directional deriva-
tive method for smooth stochastic convex optimization. European Journal of Operational Research,
290(2):601–621, 2021.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007, 2004.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Robert M Freund, Paul Grigas, and Rahul Mazumder. An extended frank–wolfe method with “in-face”
directions, and its application to low-rank matrix completion. SIAM Journal on optimization, 27
(1):319–346, 2017.

Hongchang Gao and Heng Huang. Can stochastic zeroth-order frank-wolfe method converge faster
for non-convex problems? In International conference on machine learning, pp. 3377–3386.
PMLR, 2020.

Alexander Gasnikov, Anastasia Lagunovskaya, Ilnura Usmanova, and Fedor Fedorenko. Gradient-
free proximal methods with inexact oracle for convex stochastic nonsmooth optimization problems
on the simplex. Automation and Remote Control, 77:2018–2034, 2016.

Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksander
Beznosikov, and Alexander Lobanov. Randomized gradient-free methods in convex optimization.
arXiv preprint arXiv:2211.13566, 2022a.

Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov,
Aleksandr Beznosikov, Martin Takac, Pavel Dvurechensky, and Bin Gu. The power of first-order
smooth optimization for black-box non-smooth problems. In International Conference on Machine
Learning, pp. 7241–7265. PMLR, 2022b.

Alexander V Gasnikov, Ekaterina A Krymova, Anastasia A Lagunovskaya, Ilnura N Usmanova, and
Fedor A Fedorenko. Stochastic online optimization. single-point and multi-point non-linear multi-
armed bandits. convex and strongly-convex case. Automation and remote control, 78:224–234,
2017.

Donald Goldfarb, Garud Iyengar, and Chaoxu Zhou. Linear convergence of stochastic frank wolfe
variants. In Artificial Intelligence and Statistics, pp. 1066–1074. PMLR, 2017.

Eduard Gorbunov, Pavel Dvurechensky, and Alexander Gasnikov. An accelerated method for
derivative-free smooth stochastic convex optimization. SIAM Journal on Optimization, 32(2):1210–
1238, 2022. doi: 10.1137/19M1259225. URL https://doi.org/10.1137/19M1259225.

Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. Sega: Variance reduction via gradient
sketching. Advances in Neural Information Processing Systems, 31, 2018.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

Martin Jaggi. Sparse convex optimization methods for machine learning. 2011.

11

https://doi.org/10.1137/19M1259225

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In International
conference on machine learning, pp. 427–435. PMLR, 2013.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In International conference on machine learning, pp.
3100–3109. PMLR, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate frank-
wolfe optimization for structural svms. In International Conference on Machine Learning, pp.
53–61. PMLR, 2013.

Larry J LeBlanc, Richard V Helgason, and David E Boyce. Improved efficiency of the frank-wolfe
algorithm for convex network programs. Transportation Science, 19(4):445–462, 1985.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International conference on
machine learning, pp. 6286–6295. PMLR, 2021.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in neural information processing systems, 28, 2015.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Aleksandr Lobanov, Anton Anikin, Alexander Gasnikov, Alexander Gornov, and Sergey Chukanov.
Zero-order stochastic conditional gradient sliding method for non-smooth convex optimization.
arXiv preprint arXiv:2303.02778, 2023a.

Aleksandr Lobanov, Andrew Veprikov, Georgiy Konin, Aleksandr Beznosikov, Alexander Gasnikov,
and Dmitry Kovalev. Non-smooth setting of stochastic decentralized convex optimization problem
over time-varying graphs. Computational Management Science, 20(1):48, 2023b.

Haihao Lu and Robert M Freund. Generalized stochastic frank–wolfe algorithm with stochastic
“substitute” gradient for structured convex optimization. Mathematical Programming, 187(1):
317–349, 2021.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods: From
convex minimization to submodular maximization. The Journal of Machine Learning Research,
21(1):4232–4280, 2020.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012. doi: 10.1137/100802001. URL https:
//doi.org/10.1137/100802001.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17:527–566, 2017.

Yurii Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent method on
structured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017. doi:
10.1137/16M1060182. URL https://doi.org/10.1137/16M1060182.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In International conference on machine
learning, pp. 2613–2621. PMLR, 2017.

Anton Osokin, Jean-Baptiste Alayrac, Isabella Lukasewitz, Puneet Dokania, and Simon Lacoste-
Julien. Minding the gaps for block frank-wolfe optimization of structured svms. In international
conference on machine learning, pp. 593–602. PMLR, 2016.

12

https://doi.org/10.1137/100802001
https://doi.org/10.1137/100802001
https://doi.org/10.1137/16M1060182

Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic frank-wolfe methods for
nonconvex optimization. In 2016 54th annual Allerton conference on communication, control, and
computing (Allerton), pp. 1244–1251. IEEE, 2016.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

Andrej Risteski and Yuanzhi Li. Algorithms and matching lower bounds for approximately-convex
optimization. Advances in Neural Information Processing Systems, 29, 2016.

Anit Kumar Sahu, Dusan Jakovetic, Dragana Bajovic, and Soummya Kar. Distributed zeroth order
optimization over random networks: A kiefer-wolfowitz stochastic approximation approach. In
2018 IEEE Conference on Decision and Control (CDC), pp. 4951–4958. IEEE, 2018.

Anit Kumar Sahu, Manzil Zaheer, and Soummya Kar. Towards gradient free and projection free
stochastic optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 3468–3477. PMLR, 2019.

Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. The Journal of Machine Learning Research, 18(1):1703–1713, 2017.

Ekaterina Statkevich, Sofiya Bondar, Darina Dvinskikh, Alexander Gasnikov, and Aleksandr Lobanov.
Gradient-free algorithm for saddle point problems under overparametrization. Chaos, Solitons &
Fractals, 185:115048, 2024.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning structured prediction
models: A large margin approach. In Proceedings of the 22nd international conference on Machine
learning, pp. 896–903, 2005.

Yu-Xiang Wang, Veeranjaneyulu Sadhanala, Wei Dai, Willie Neiswanger, Suvrit Sra, and Eric Xing.
Parallel and distributed block-coordinate frank-wolfe algorithms. In International Conference on
Machine Learning, pp. 1548–1557. PMLR, 2016.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. One sample
stochastic frank-wolfe. In International Conference on Artificial Intelligence and Statistics, pp.
4012–4023. PMLR, 2020.

13

Supplementary Material
CONTENTS

B Full versions of Corollaries from Section 2 17

B.1 Full version of Corollary 1 . 17

B.2 Full version of Corollaries 2 and 3 . 18

B.3 Full version of Corollary 4 . 18

C Proof of converge rate of JAGUAR. Deterministic and stochastic cases. 19

C.1 Result for the full-approximation (stochastic case) 19

C.2 Result for the JAGUAR approximation (Algorithm 1) (stochastic case) 20

C.3 Result for the SAGA approximation (line 7 of Algorithm 3) 22

C.4 Result for the JAGUAR approximation (Algorithm 3) 23

D Proof of converge rate of FW via JAGUAR 24

D.1 Results for the deterministic case (Algorithm 3) 24

D.2 Results for the stochastic case (Algorithm 5) . 25

E Proof of converge rate of GD via JAGUAR (Algorithm 4) 28

E.1 Results for the non-convex case . 28

E.2 Results for the PL-condition case . 29

14

A AUXILIARY LEMMAS AND FACTS

In this section we list auxiliary facts and our results that we use several times in our proofs.

A.1 SQUARED NORM OF THE SUM

For all x1, ..., xn ∈ Rn, where n ∈ {2, 4}

∥x1 + x2 + ...+ xn∥2 ≤ n ∥x1∥2 + ...+ n ∥xn∥2 .

A.2 CAUCHY–SCHWARZ INEQUALITY

For all x, y ∈ Rd

⟨x, y⟩ ≤ ∥x∥ ∥y∥ .

A.3 FENCHEL-YOUNG INEQUALITY

For all x, y ∈ Rd and β > 0

2 ⟨x, y⟩ ≤ β−1∥x∥2 + β∥y∥2.

A.4 RECURSION LEMMA

Lemma 2. For all x ∈ [0; 1) consider a function

ϕ(x) := 1− (1− x)α −max{1, α}x.

Then for all 0 ≤ x < 1 and α ∈ R we can obtain that ϕ(x) ≤ 0.

Proof. First consider the case of α /∈ (0; 1). Then we can write out Bernoulli’s inequality: for all
x < 1 it holds that

(1− x)α ≥ 1− αx.

Therefore for 0 ≤ x < 1:

ϕ(x) = 1− (1− x)α −max{1, α}x ≤ 1− (1− x)α − αx ≤ 0.

Now we consider case 0 < α < 1, therefore ϕ(x) takes the form

ϕ(x) = 1− (1− x)α − x.

Note that

ϕ′′(x) = α(1− α)(1− x)α−2 > 0.

Therefore ϕ(x) is convex on a segment [0; 1] and ψ(0) = ψ(1) = 0, that means that ϕ(x) ≤ 0 for all
x ∈ [0; 1). This finishes the proof.

Lemma 3 (Recursion Lemma). Suppose we have the following recurrence relation for variables
{rk}Nk=0 ⊂ R

rk+1 ≤
(
1− β0

(k + k0)α0

)
rk +

m∑
i=1

βi
(k + k0)αi

, (11)

15

where βi > 0 ∀i ∈ 0,m, 0 ≤ α0 ≤ 1, αi ∈ R ∀i ∈ 1,m.

Then we can estimate the convergence of the sequence {rk}Nk=0 to zero:

rk ≤ 2 ·
m∑
i=1

Qi

(k + k0)αi−α0
, (12)

where Qi∗ = max{βi∗/β0, r0kαi∗−α0

0 } and Qi = βi/β0 if i ̸= i∗, where i∗ we can choose
arbitrarily from the set 1,m, and

• if 0 ≤ α0 < 1:

k0 ≥
(

2

β0
max{1,max{αi} − α0}

) 1
1−α0

and β0 > 0.

• if α0 = 1:

k0 ∈ N and β0 ≥ 2max{1,max{αi} − 1}.

Proof. We prove the claim in (12) by induction. First, note that

r0 = r0 ·
(

k0
0 + k0

)αi∗−α0

≤ Qi∗

(0 + k0)αi∗−α0
≤ 2 ·

m∑
i=0

Qi

(0 + k0)αi−α0
.

and therefore the base step of the induction holds true.

Now assume that the condition in (12) holds for some k. Now we will show that this condition will
hold for k + 1.

We start by fitting (12) into the original recurrence relation (11) and using that βi ≤ Qiβ0:

rk+1 ≤
(
1− β0

(k + k0)α0

)
·
(
2

m∑
i=1

Qi

(k + k0)αi−α0

)
+

m∑
i=1

βi
(k + k0)αi

≤ 2

m∑
i=1

Qi

(k + k0)αi−α0
−

m∑
i=1

Qiβ0
(k + k0)αi

=

m∑
i=1

(
2Qi

(k + k0)αi−α0
− Qiβ0

(k + k0)αi

)
.

Our goal is to show that for all i ∈ 1,m it holds that

2Qi

(k + k0)αi−α0
− Qiβ0

(k + k0)αi
≤ 2Qi

(k + k0 + 1)αi−α0
. (13)

Let us rewrite this inequality in such a way that it takes a more convenient form:

2

β0

[
1−

(
1− 1

k + k0 + 1

)αi−α0
]

︸ ︷︷ ︸
①

≤
(

1

k + k0

)α0

.

Using Lemma 2 with x = (k + k0 + 1)−1 ∈ [0; 1) and α = αi − α0 we can obtain that

① ≤ max{1, αi − α0}
1

k + k0 + 1
≤ max{1, αi − α0}

1

k + k0
.

16

Now our desired inequality (13) takes form

2

β0
max{1, αi − α0}

1

k + k0
≤
(

1

k + k0

)α0

.

Again, we rewrite it in a more convenient form:

2

β0
max{1, αi − α0} ≤ (k + k0)

1−α0 . (14)

Now consider two cases

• If 0 ≤ α0 < 1.

In this case (k + k0)
1−α0 ≥ k1−α0

0 and if we take

k0 ≥
(

2

β0
max{1,max{αi} − α0}

) 1
1−α0

,

then according to (14) desired inequality (13) will be fulfilled for all i ∈ 1,m for all β0 > 0.

• If α0 = 1, then inequality (14) takes form

2

β0
max{1, αi − 1} ≤ 1.

Therefore if we take

β0 ≥ 2max{1,max{αi} − 1},

then again according to (14) desired inequality (13) will be fulfilled for all i ∈ 1,m for all
k0 ∈ N.

This finishes the proof.

B FULL VERSIONS OF COROLLARIES FROM SECTION 2

B.1 FULL VERSION OF COROLLARY 1

Corollary 5. Under the conditions of Theorem 2, choosing γk, τ,∆ as

γk =
4

k + 8d
, τ = O

(
ε√
dLD

)
, ∆ = O

(
ε2

dLD2

)
,

in order to achieve an ε-approximate solution (in terms of E
[
f(xk)− f∗

]
≤ ε) it takes

O
(
dmax{LD2, F0}

ε

)
iterations of Algorithm 3.

We can re-write this corollary in terms of ε(∆).

17

Corollary 6. Under the conditions of Theorem 2, choosing γk, τ, ε as

γk =
4

k + 8d
, τ = O

(√
∆/L

)
, ε = O

(√
dLD2∆

)
,

in order to achieve an ε-approximate solution (in terms of E
[
f(xk)− f∗

]
≤ ε) it takes

O
(√

dmax{LD2, F0}√
LD2∆

)
iterations of Algorithm 3.

B.2 FULL VERSION OF COROLLARIES 2 AND 3

Corollary 7 (Full version of Corollary 2). Under the conditions of Theorem 3, choosing γ, τ,∆ as

γ ≡ 1

4dL
, τ = O

(
ε√
dL

)
, ∆ = O

(
ε2

dL

)
,

in order to achieve an ε-approximate solution (in terms of E
[
∥∇f(x̂N)∥2

]
≤ ε2, where x̂N is

chosen uniformly from {xk}Nk=0) it takes

O
(
dLΦ0

ε2

)
iterations of Algorithm 4.

Corollary 8 (Full version of Corollary 3). Under the conditions of Theorem 4, choosing γ, τ,∆ as

γ ≡ 1

4dL
, τ = O

(√
εµ√
dL

)
, ∆ = O

(εµ
dL

)
.

in order to achieve an ε-approximate solution (in terms of E
[
f(xN)− f∗

]
≤ ε) it takes

O
(
dL

µ
log

[
F0

ε

])
iterations of Algorithm 4.

B.3 FULL VERSION OF COROLLARY 4

Corollary 9. Under the conditions of Theorem 6, choosing γk, ηk, τ,∆ as

γk =
4

k + 8d3/2
, ηk =

4

(k + 8d3/2)2/3
, τ = O

(
ε√
dLD

)
, ∆ = O

(
ε2

dLD2

)
,

in order to achieve an ε-approximate solution (in terms of E
[
f(xN)− f∗

]
≤ ε) it takes

O
(
max

{[
LD2 + dσ∇D +

√
d(f(x0)− f∗)

ε

]3
;
d9/2σ3

fL
3D6

ε6

})
iterations of Algorithm 5.

In the two point feedback case, σ2
f = 0 and the last equation takes form

O

[LD2 + dσ∇D +
√
d(f(x0)− f∗)

ε

]3 .

18

C PROOF OF CONVERGE RATE OF JAGUAR. DETERMINISTIC AND
STOCHASTIC CASES.

C.1 RESULT FOR THE FULL-APPROXIMATION (STOCHASTIC CASE)

Lemma 4. Under Assumptions 6, 7, 8 and 9 in the OPF case (8) the following inequality holds

E
[∥∥∥∇̃fδ(x, ξ+1 , ξ−1 , ..., ξ+d , ξ−d)−∇f(x)

∥∥∥2] ≤ dL2τ2 +
8dσ2

f

τ2
+ 2dσ2

∇ +
2d∆2

τ2
. (15)

In the case of two point feedback σ2
f = 0 and in the deterministic case (3) σ2

∇ = σ2
f = 0.

Proof. Let’s start by writing out a definition of gradient approximation ∇̃fδ(x, ξ±1,d):

E
[∥∥∥∇̃fδ(x, ξ±1,d)−∇f(x)

∥∥∥2] = E

∥∥∥∥∥
d∑

i=1

fδ(x+ τei, ξ
+
i)− fδ(x− τei, ξ

−
i)

2τ
ei −∇f(x)

∥∥∥∥∥
2

= E

∥∥∥∥∥
d∑

i=1

(
fδ(x+ τei, ξ

+
i)− fδ(x− τei, ξ

−
i)

2τ
− ⟨∇f(x), ei⟩

)
ei

∥∥∥∥∥
2

(⋆)
=

d∑
i=1

E

[∥∥∥∥(fδ(x+ τei, ξ
+
i)− fδ(x− τei, ξ

−
i)

2τ
− ⟨∇f(x), ei⟩

)
ei

∥∥∥∥2
]

=

d∑
i=1

E

[∣∣∣∣fδ(x+ τei, ξ
+
i)− fδ(x− τei, ξ

−
i)

2τ
− ⟨∇f(x), ei⟩

∣∣∣∣2
]
.

The (⋆) equality holds since ⟨ei, ej⟩ = 0 if i ̸= j. Now let’s estimate the value under the summation:

E

[∣∣∣∣fδ(x+ τei, ξ
+
i)− fδ(x− τei, ξ

−
i)

2τ
− ⟨∇f(x), ei⟩

∣∣∣∣2
]

= E

[∣∣∣∣∣f(x+ τei, ξ
+
i)− f(x− τei, ξ

−
i)

2τ
− ⟨∇f(x), ei⟩+

δ(x+ τei, ξ
+
i)− δ(x− τei, ξ

−
i)

2τ

∣∣∣∣∣
2]

A.1
≤ 1

2τ2
E
[∣∣f(x+ τei, ξ

+
i)− f(x− τei, ξ

−
i)− ⟨∇f(x), 2τei⟩

∣∣2]︸ ︷︷ ︸
①

+
2∆2

τ2
.

Last inequality holds since noise is bounded . Consider ①. Using A.1 with n = 4 we get:

E
[∣∣f(x+ τei, ξ

+
i)− f(x− τei, ξ

−
i)− ⟨∇f(x), 2τei⟩

∣∣2]
≤ 4E

[∣∣f(x+ τei, ξ
+
i)− f(x, ξ+i)−

〈
∇f(x, ξ+i), τei

〉∣∣2]
+ 4E

[∣∣−f(x− τei, ξ
−
i) + f(x, ξ−i) +

〈
∇f(x, ξ−i),−τei

〉∣∣2]
+ 4E

[∣∣f(x, ξ+i)− f(x, ξ−i)
∣∣2]

+ 4E
[∣∣〈∇f(x, ξ+i) +∇f(x, ξ−i)− 2∇f(x), τei

〉∣∣2] .
(16)

19

Let’s evaluate all these four components separately. Since functions f(x, ξ+i) and f(x, ξ−i) are
L(ξ±i)-smooth we have estimates for first and second:

∣∣f(x+ τei, ξ
+
i)− f(x, ξ+i)−

〈
∇f(x, ξ+i), τei

〉∣∣ ≤ L(ξ+i)

2
τ2 ≤ L

2
τ2,∣∣−f(x− τei, ξ

−
i) + f(x, ξ−i) +

〈
∇f(x, ξ−i),−τei

〉∣∣ ≤ L(ξ−i)

2
τ2 ≤ L

2
τ2.

(17)

If we consider TPF approximation (7), then third term in (16) equals to zero, since ξ+i = ξ−i , if we
consider the OPF case (8), then we can obtain

E
[∣∣f(x, ξ+i)− f(x, ξ−i)

∣∣2] ≤ 2E
[∣∣f(x, ξ+i)− f(x)

∣∣2]+ 2E
[∣∣f(x, ξ−i)− f(x)

∣∣2] ≤ 4σ2
f . (18)

Consider the last point in (16) and using Cauchy–Schwarz inequality A.2 we can obtain:

E
[∣∣〈∇f(x, ξ+i)−∇f(x), τei

〉∣∣2] ≤ E
[∥∥∇f(x, ξ+i)−∇f(x)

∥∥2 τ2] ≤ σ2
∇τ

2. (19)

Combining (17), (18) and (19) we obtain

E
[∥∥∥∇̃fδ(x, ξ+1 , ξ−1 , ..., ξ+d , ξ−d)−∇f(x)

∥∥∥2] ≤ dL2τ2 +
8dσ2

f

τ2
+ 2dσ2

∇ +
2d∆2

τ2
.

In the case of two point feedback σ2
f = 0 and in the deterministic case (3) σ2

∇ = σ2
f = 0. This

finishes the proof.

C.2 RESULT FOR THE JAGUAR APPROXIMATION (ALGORITHM 1) (STOCHASTIC CASE)

Lemma 5. Under Assumptions 6, 7, 8 and 9 in the OPF case (8) the following inequality holds

E
[∥∥hk+1 −∇f(xk+1)

∥∥2] ≤ (1− 1

2d

)
E
[∥∥hk −∇f(xk)

∥∥2]+ 2dL2E
[∥∥xk+1 − xk

∥∥2]
+ L2τ2 +

8σ2
f

τ2
+ 2σ2

∇ +
2∆2

τ2
.

(20)

In the case of two point feedback σ2
f = 0 and in the deterministic case (3) σ2

∇ = σ2
f = 0.

Proof. Let us start by writing out a definition of hk using line 6 of Algorithm 5

20

E
[∥∥hk −∇f(xk)

∥∥2] = E
[∥∥∥hk−1 + ∇̃ifδ(x

k, ξ+, ξ−)−
〈
hk−1, ei

〉
ei −∇f(xk)

∥∥∥2]
= E

[∥∥∥∥∥ (I − eie
T
i

) (
hk−1 −∇f(xk−1)

)
+ eie

T
i

(
∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)

)
−
(
I − eie

T
i

) (
∇f(xk)−∇f(xk−1)

) ∥∥∥∥∥
2]

= E
[∥∥(I − eie

T
i

) (
hk−1 −∇f(xk−1)

)∥∥2]︸ ︷︷ ︸
①

+ E
[∥∥∥eieTi (∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)

)∥∥∥2]︸ ︷︷ ︸
②

+ E
[∥∥(I − eie

T
i

) (
∇f(xk)−∇f(xk−1)

)∥∥2]︸ ︷︷ ︸
③

+ E
[
2
〈(
I − eie

T
i

) (
hk−1 −∇f(xk−1)

)
,
(
I − eie

T
i

) (
∇f(xk)−∇f(xk−1)

)〉2]︸ ︷︷ ︸
④

.

In the last equality the two remaining scalar products are zero, since eieTi
(
I − eie

T
i

)
= eTi ei −

eTi ei = 0. Consider the ①. Using notation v := hk−1 −∇f(xk−1) we obtain

E
[∥∥(I − eie

T
i

) (
hk−1 −∇f(xk−1)

)∥∥2] = E
[
vT
(
I − eie

T
i

)T (
I − eie

T
i

)
v
]

= E
[
vT
(
I − eie

T
i

)
v
]
= E

[
Ek−1

[
vT
(
I − eie

T
i

)
v
]]
,

where Ek−1[·] is the conditional expectation with fixed randomness of all steps up to k − 1. Since at
step k the vectors ei are generated independently, we obtain

E
[
Ek−1

[
vT
(
I − eie

T
i

)
v
]]

= E
[
vTEk−1

[(
I − eie

T
i

)]
v
]

=

(
1− 1

d

)
E
[∥∥hk−1 −∇f(xk−1)

∥∥2] .
Consider ②. Since we generate i independently, xk is independent of the ei generated at step k, then
we can apply the same technique as in estimation ①:

E
[∥∥∥eieTi (∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)

)∥∥∥2]
=

1

d
E
[∥∥∥∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)

∥∥∥2] .
Using Lemma 4 we obtain

1

d
E
[∥∥∥∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)

∥∥∥2] ≤ L2τ2 +
8σ2

f

τ2
+ 2σ2

∇ +
2∆2

τ2
.

21

Consider ③. Using the same technique as in estimation ①:

E
[∥∥(I − eie

T
i

) (
∇f(xk)−∇f(xk−1)

)∥∥2] ≤ (1− 1

d

)
L2E

[∥∥xk − xk−1
∥∥2] .

Consider ④. Using Fenchel-Young inequality A.3 with β = 2d we obtain

④ ≤
(
1− 1

d

)(
1

2d
E
[∥∥hk−1 −∇f(xk−1)

∥∥2]+ 2dL2E
[∥∥xk − xk−1

∥∥2]) .
Therefore it holds that

E
[∥∥hk −∇f(xk)

∥∥2] ≤ (1− 1

2d

)
E
[∥∥hk−1 −∇f(xk−1)

∥∥2]+ 2dL2E
[∥∥xk − xk−1

∥∥2]
+ L2τ2 +

8σ2
f

τ2
+ 2σ2

∇ +
2∆2

τ2
.

This finishes the proof.

C.3 RESULT FOR THE SAGA APPROXIMATION (LINE 7 OF ALGORITHM 3)

Lemma 6. Under Assumptions 6, 7, 8 and 9 in the OPF case (8) the following inequality holds

E
[∥∥ρk −∇f(xk)

∥∥2] ≤ 4dE
[∥∥hk−1 −∇f(xk−1)

∥∥]
+ 4d2

(
L2τ2 +

8σ2
f

τ2
+ 2σ2

∇ +
2∆2

τ2

)
+ 2dL2E

[∥∥xk − xk−1
∥∥2] .

In the case of two point feedback σ2
f = 0.

Proof. Let’s start by writing out a definition of ρk using line 7 of Algorithm 5

E
[∥∥ρk −∇f(xk)

∥∥2] = E
[∥∥∥hk−1 + d∇̃ifδ(x

k, ξ+, ξ−)− d
〈
hk−1, ei

〉
ei −∇f(xk)

∥∥∥2]
= E

[∥∥∥∥∥(I − deie
T
i)
(
hk−1 −∇f(xk−1)

)
+ deie

T
i

(
∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)

)

+ (I − deie
T
i)
(
∇f(xk−1)−∇f(xk)

) ∥∥∥∥∥
2]

⋆
≤ 4(d− 1)E

[∥∥hk−1 −∇f(xk−1
∥∥]+ 4dE

[∥∥∥∇̃fδ(xk, ξ+, ξ−, ..., ξ+, ξ−)−∇f(xk)
∥∥∥2]

+ 2(d− 1)E
[∥∥∇f(xk−1)−∇f(xk)

∥∥2] .
The ⋆ inequality is correct due to similar reasoning as in the proof of Lemma 5 and due to Fenchel-
Young inequality A.3. Now we can estimate all three summands using Lemmas 5 and 4 and using
Assumption 6:

E
[∥∥ρk −∇f(xk)

∥∥2] ≤ 4dE
[∥∥hk−1 −∇f(xk−1

∥∥]
+ 4d2

(
L2τ2 +

8σ2
f

τ2
+ 2σ2

∇ +
2∆2

τ2

)
+ 2dL2E

[∥∥xk − xk−1
∥∥2] .

22

This finishes the proof.

C.4 RESULT FOR THE JAGUAR APPROXIMATION (ALGORITHM 3)

Lemma 7. Under Assumption 6 the following inequality holds

E
[∥∥gk −∇f(xk)

∥∥2] ≤ (1− ηk)E
[∥∥∇f(xk−1)− gk−1

∥∥2]+ 4L2

ηk
E
[∥∥xk − xk−1

∥∥2]
+ η2kE

[∥∥∇f(xk)− ρk
∥∥2]+ 3ηkE

[∥∥∥∇̃fδ(xk)−∇f(xk)
∥∥∥2] .

Proof. We start by writing out a definition of gk using line 8 of Algorithm 5

E
[∥∥gk −∇f(xk)

∥∥2] = E
[∥∥∇f(xk−1)− gk−1 +∇f(xk)−∇f(xk−1)−

(
gk − gk−1

)∥∥2]
= E

[∥∥∇f(xk−1)− gk−1 +∇f(xk)−∇f(xk−1)− ηk
(
ρk − gk−1

)∥∥2]
= E

[∥∥(1− ηk)(∇f(xk−1)− gk−1) + (1− ηk)(∇f(xk)−∇f(xk−1)) + ηk
(
∇f(xk)− ρk

)∥∥2]
= (1− ηk)

2 E
[∥∥∇f(xk−1)− gk−1

∥∥2]︸ ︷︷ ︸
①

+(1− ηk)
2 E
[∥∥∇f(xk)−∇f(xk−1)

∥∥2]︸ ︷︷ ︸
②

+ η2k E
[∥∥∇f(xk)− ρk

∥∥2]︸ ︷︷ ︸
③

+2(1− ηk)
2 E
[〈
∇f(xk−1)− gk−1,∇f(xk)−∇f(xk−1)

〉]︸ ︷︷ ︸
④

+ 2ηk(1− ηk)E
[〈
∇f(xk−1)− gk−1,∇f(xk)− ρk

〉]︸ ︷︷ ︸
⑤

+ 2ηk(1− ηk)E
[〈
∇f(xk)−∇f(xk−1),∇f(xk)− ρk

〉]︸ ︷︷ ︸
⑥

.

Consider ⑤. Since we generate ξ+ and ξ− independently, we obtain

⑤ = E
[〈
∇f(xk−1)− gk−1,Ek−1

[
∇f(xk)− ρk

]〉]
,

where Ek−1[·] is the conditional expectation with fixed randomness of all steps up to k − 1. Using
fact that

Ek−1

[
∇f(xk)− ρk

]
= ∇f(xk)− ∇̃f(xk) = ∇f(xk)−

d∑
i=1

f(x+ τei)− f(x− τei)

2τ
ei.

Fact that for ∇̃fδ(x) Lemma 4 holds true with σ2
f = σ2

∇ = 0 and using Cauchy Schwarz inequality
A.2 with β = 2(1− ηk) we can assume

⑤ ≤ 1

4(1− ηk)
E
[∥∥∇f(xk−1)− gk−1

∥∥2]+ (1− ηk)E
[∥∥∥∇̃fδ(xk)−∇f(xk)

∥∥∥2] . (21)

Similarly it can be shown that

⑥ ≤ 1

2(1− ηk)η2k
E
[∥∥∇f(xk)−∇f(xk−1)

∥∥2]+ (1− ηk)η
2
k

2
E
[∥∥∥∇̃fδ(xk)−∇f(xk)

∥∥∥2] . (22)

23

Using Assumption 6 we can obtain that

② ≤ L2E
[∥∥xk − xk−1

∥∥2] . (23)

Consider ④. Using auchy Schwarz inequality A.2 with β = 2 (1−ηk)
2

ηk
we can assume

④ ≤ ηk
4(1− ηk)2

E
[∥∥gk −∇f(xk)

∥∥2]+ (1− ηk)
2

ηk
L2E

[∥∥xk − xk−1
∥∥2] . (24)

Putting (21), (22), (23) and (24) all together and using the fact that (1− ηk)
2 ≤ 1− ηk, we obtain

E
[∥∥gk −∇f(xk)

∥∥2] ≤ (1− ηk)E
[∥∥∇f(xk−1)− gk−1

∥∥2]+ 4L2

ηk
E
[∥∥xk − xk−1

∥∥2]
+ η2kE

[∥∥∇f(xk)− ρk
∥∥2]+ 3ηkE

[∥∥∥∇̃fδ(xk)−∇f(xk)
∥∥∥2] .

This finishes the proof.

D PROOF OF CONVERGE RATE OF FW VIA JAGUAR

D.1 RESULTS FOR THE DETERMINISTIC CASE (ALGORITHM 3)

Proof of Theorem 1. We start by writing out result from Lemma 5 with σ2
f = σ2

∇ = 0 and setting up
γk = 4

k+k0
:

E
[∥∥hk+1 −∇f(xk+1)

∥∥2] ≤ (1− 1

2d

)
E
[∥∥hk −∇f(xk)

∥∥2]+ 32dL2D2

(k + k0)2

+ L2τ2 +
2∆2

τ2
.

Now we use Lemma 3 with α0 = 0, β0 = 1/2d; α1 = 2, β1 = 32dL2D2; α2 = 0, β2 = L2τ2+ 2∆2

τ2

and i∗ = 1.

E
[∥∥hk −∇f(xk)

∥∥2] = O
(
dL2τ2 +

d∆2

τ2
+

max{d2L2D2,
∥∥h0 −∇f(x0)

∥∥2 · k20}
(k + k0)2

)
,

where k0 = (4d · 2)1 = 8d. If h0 = ∇̃fδ(x0) we can obtain

E
[∥∥hk −∇f(xk)

∥∥2] = O
(
dL2τ2 +

d∆2

τ2
+

d2L2D2

(k + 8d)2

)
.

This finishes the proof.

Proof of Theorem 2. We start by writing our the result of Lemma 2 from Mokhtari et al. (2020).
Under Assumptions 6, 3 the following inequality holds

E
[
f(xk+1)− f(x∗)

]
≤ (1− γk)E

[
f(xk)− f(x∗)

]
+ γkDE

[∥∥hk −∇f(xk)
∥∥]+ LD2γ2k

2
.

24

We can evaluate E
[∥∥hk −∇f(xk)

∥∥] using Jensen’s inequality:

E
[∥∥hk −∇f(xk)

∥∥] ≤√E
[
∥hk −∇f(xk)∥2

]
.

Using result from Theorem 1 we can obtain

E
[∥∥hk −∇f(xk)

∥∥] = O
(
dLD

k + 8d
+

√
dLτ +

√
d∆

τ

)
.

Using Lemma 3 with α0 = 1, β0 = 4, k0 = 8d; α1 = 2, β1 = 8LD2 + dLD2; α2 = 1, β2 =√
dLτD +

√
d∆D
τ and i∗ = 1, we get:

E
[
f(xk)− f(x∗)

]
= O

(
dmax{LD2, f(x0)− f(x∗)}

k + 8d
+

√
dLDτ +

√
d∆D

τ

)
.

In Lemma 3 if α0 = 1 we need to take β0 ≥ 2 · 1 = 2, we take β0 = 4. This finishes the proof.

Proof of Corollary 1. We aim to achieve precision ε, i.e.

E
[
f(xN)− f(x∗)

]
= O

(
dmax{LD2, f(x0)− f(x∗)}

N + 8d
+
√
dLDτ +

√
d∆D

τ

)
≤ ε.

Therefore we need to take

N = O
(
dmax{LD2, f(x0)− f(x∗)}

ε

)
,

τ = O
(

ε√
dLD

)
, ∆ = O

(
ετ√
dD

)
= O

(
ε2

dLD2

)
.

This finishes the proof.

D.2 RESULTS FOR THE STOCHASTIC CASE (ALGORITHM 5)

Proof of Theorem 5. Consider E
[∥∥hk −∇f(xk)

∥∥2]. We start by writing out result from Lemma 5

and setting up γk = 4
k+k0

:

E
[∥∥hk+1 −∇f(xk+1)

∥∥2] ≤ (1− 1

2d

)
E
[∥∥hk −∇f(xk)

∥∥2]+ 32dL2D2

(k + k0)2

+ L2τ2 +
8σ2

f

τ2
+ 2σ2

∇ +
2∆2

τ2
.

Now we use Lemma 3 with α0 = 0, β0 = 1/2d; α1 = 2, β1 = 32dL2D2; α2 = 0, β2 =

L2τ2 +
8σ2

f

τ2 + 2σ2
∇ + 2∆2

τ2 and i∗ = 1.

E
[∥∥hk −∇f(xk)

∥∥2]
= O

(
dL2τ2 +

dσ2
f

τ2
+ dσ2

∇ +
d∆2

τ2
+

max{d2L2D2,
∥∥h0 −∇f(x0)

∥∥2 · k20}
(k + k0)2

)
,

25

where k0 = (4d · 2)1 = 8d. For simplicity of calculations further we take k0 = 8d3/2 > 8d. If
h0 = ∇̃fδ(x0, ξ+1 , ξ−1 , ..., ξ+d , ξ−d) we can obtain

E
[∥∥hk −∇f(xk)

∥∥2] = O
(
dL2τ2 +

dσ2
f

τ2
+ dσ2

∇ +
d∆2

τ2
+

d2L2D2

(k + 8d3/2)2

)
.

Consider E
[∥∥ρk −∇f(xk)

∥∥2]. Using Lemmas 6 and 4 we obtain

E
[∥∥ρk −∇f(xk)

∥∥2]
= O

(
d2L2τ2 +

d2σ2
f

τ2
+ d2σ2

∇ +
d2∆2

τ2
+
d3 max{L2D2, d

∥∥h0 −∇f(x0)
∥∥2}

(k + 8d3/2)2

)
.

Consider E
[∥∥gk −∇f(xk)

∥∥2]. We write out result from Lemma 7 and setting up ηk = 4
(k+8d3/2)2/3

:

E
[∥∥gk −∇f(xk)

∥∥2] ≤ (1− ηk)E
[∥∥∇f(xk−1)− gk−1

∥∥2]+ 4L2D2

(k + 8d3/2)4/3

+
4

(k + 8d3/2)4/3
O
(
d2L2τ2 +

d2(σ2
f +∆2)

τ2
+ d2σ2

∇ +
d3 max{L2D2, d

∥∥h0 −∇f(x0)
∥∥2}

(k + 8d3/2)2

)

+
12

(k + 8d3/2)2/3

(
dL2τ2 +

d∆2

τ2

)
.

Using Lemma 3 with α0 = 2/3, β0 = 4; α1 = 4/3, β1 = 4L2D2; α2 = 4/3, β2 = 4d2L2τ2 +
4d2σ2

f

τ2 + 4d2σ2
∇ + 4d2∆2

τ2 ; α3 = 10/3, β3 = 4d3 max{L2D2, d
∥∥h0 −∇f(x0)

∥∥2}; α4 = 2/3, β4 =

dL2τ2 + d∆2

τ2 and i∗ = 2 we get:

E
[∥∥gk −∇f(xk)

∥∥2]
= O

(
L2D2 +max{d2L2τ2 + d2σ2

f/τ
2 + d2σ2

∇ + d2∆2/τ2, d
∥∥g0 −∇f(x0)

∥∥2}
(k + 8d3/2)2/3

+
d3 max{L2D2, d

∥∥h0 −∇f(x0)
∥∥2}

(k + 8d3/2)8/3
+ dL2τ2 +

d∆2

τ2

)
.

(25)

Since

d3L2D2

(k + 8d3/2)8/3
≤ L2D2

(k + 8d3/2)2/3
and

d2L2τ2 + d2∆2/τ2

(k + 8d3/2)2/3
≤ dL2τ2 +

d∆2

τ2
,

we can simplify (25):

E
[∥∥gk −∇f(xk)

∥∥2] = O
(
L2D2 +max{d2σ2

f/τ
2 + d2σ2

∇, d
∥∥g0 −∇f(x0)

∥∥2}
(k + 8d3/2)2/3

+
d4
∥∥h0 −∇f(x0)

∥∥2
(k + 8d3/2)8/3

+ dL2τ2 +
d∆2

τ2

)
.

26

If h0 = g0 = ∇̃fδ(x0, ξ+1 , ξ−1 , ..., ξ+d , ξ−d) we can obtain

E
[∥∥gk −∇f(xk)

∥∥2] = O
(
L2D2 + d2σ2

f/τ
2 + d2σ2

∇
(k + 8d3/2)2/3

+ dL2τ2 +
d∆2

τ2

)
.

This finishes the proof.

Proof of Theorem 6. Again we write out result of Lemma 2 from Mokhtari et al. (2020):

E
[
f(xk+1)− f(x∗)

]
≤ (1− γk)E

[
f(xk)− f(x∗)

]
+ γkDE

[∥∥gk −∇f(xk)
∥∥]+ LD2γ2k

2
. (26)

We can evaluate E
[∥∥gk −∇f(xk)

∥∥] using Jensen’s inequality:

E
[∥∥gk −∇f(xk)

∥∥] ≤√E
[
∥gk −∇f(xk)∥2

]
.

Using result from Theorem 5 we can obtain

E
[∥∥gk −∇f(xk)

∥∥] = O
(
LD + dσf/τ + dσ∇

(k + 8d3/2)1/3
+
√
dLτ +

√
d∆

τ

)
.

Set up γk = 4
k+8d3/2 into (26):

E
[
f(xk+1)− f(x∗)

]
≤ (1− γk)E

[
f(xk)− f(x∗)

]
+

8LD2

(k + 8d3/2)2

+
4D

k + 8d3/2
O
(
LD + dσf/τ + dσ∇

(k + 8d3/2)1/3
+
√
dLτ +

√
d∆

τ

)
.

Using Lemma 3 with α0 = 1, β0 = 4, k0 = 8d3/2; α1 = 2, β1 = 8LD2; α2 = 4/3;β2 =

LD + dσf/τ + dσ∇; α3 = 1, β3 =
√
dLτ +

√
d∆
τ and i∗ = 2, we get:

E
[
f(xk)− f(x∗)

]
= O

(
LD2

k + 8d3/2
+

max{LD2 + dσfD/τ + dσ∇D,
√
d(f(x0)− f(x∗))}

(k + 8d3/2)1/3

+
√
dLDτ +

√
d∆D

τ

)
.

In Lemma 3 if α0 = 1 we need to take β0 ≥ 2 · 1 = 2, we take β0 = 4. Since k + 8d3/2 >
(k + 8d3/2)1/3, we can obtain:

E
[
f(xk)− f(x∗)

]
= O

(
LD2 + dσfD/τ + dσ∇D +

√
d(f(x0)− f(x∗))

(k + 8d3/2)1/3
+

√
dLDτ +

√
d∆D

τ

)
.

This finishes the proof.

27

Proof of Corollary 4. We aim to achieve precision ε, i.e.

E
[
f(xk)− f(x∗)

]
= O

(
LD2 + dσfD/τ + dσ∇D +

√
d(f(x0)− f(x∗))

(k + 8d3/2)1/3
+

√
dLDτ +

√
d∆D

τ

)
≤ ε.

Therefore we need to take

N = O

max

[
LD2 + dσ∇D +

√
d(f(x0)− f(x∗))
ε

]3
,
d9/2σ3

fL
3D6

ε6

 ,

τ = O
(

ε√
dLD

)
, ∆ = O

(
ε2

dLD2

)
.

This finishes the proof.

E PROOF OF CONVERGE RATE OF GD VIA JAGUAR (ALGORITHM 4)

E.1 RESULTS FOR THE NON-CONVEX CASE

Proof of Theorem 3. We start by writing our the result of Lemma 2 from Li et al. (2021). Under
Assumption 6 the following inequality holds

E
[
f(xk+1)− f(x∗)

]
≤ E

[
f(xk)− f(x∗)

]
− γk

2
E
[∥∥∇f(xk)∥∥2]

−
(

1

2γk
− L

2

)
E
[∥∥xk+1 − xk

∥∥2]+ γk
2
E
[∥∥hk −∇f(xk)

∥∥2] . (27)

Using results from Lemma 1:

E
[∥∥hk+1 −∇f(xk+1)

∥∥2] ≤ (1− 1

2d

)
E
[∥∥hk −∇f(xk)

∥∥2]+ 2dL2E
[∥∥xk+1 − xk

∥∥2]
+ L2τ2 +

2∆2

τ2
.

(28)

Let us introduce notations for shortness:

rk := E
[
f(xk)− f(x∗)

]
, ψk := E

[∥∥hk −∇f(xk)
∥∥2] ,

qk := E
[∥∥∇f(xk)∥∥2] , pk := E

[∥∥xk+1 − xk
∥∥2] , c := L2τ2 +

2∆2

τ2
.

Now equations (27) and (28) take form

rk+1 ≤ rk − γk
2
qk −

(
1

2γk
− L

2

)
pk +

γk
2
ψk,

ψk+1 ≤
(
1− 1

2d

)
ψk + 2dL2pk + c.

Summarizing these two inequalities by multiplying the second by γkd and introducing the notation
Φk := rk + γkdψk, we obtain:

28

Φk+1 ≤ Φk −
(

1

2γk
− L

2
− 2γkd

2L2

)
pk − γk

2
qk + γkdc. (29)

If we consider γk ≡ γ0 = 1
4dL , when

1

2γk
− L

2
− 2γkd

2L2 = 2dL− L

2
− dL

2
> 0.

Therefore equation (29) takes form

Φk+1 ≤ Φk − γ0
2
qk + γ0dc. (30)

Summing (30) from k = 0 to k = N we obtain

0 ≤ ΦN+1 ≤ Φ0 −
γ0
2

N∑
k=0

qk + γ0dc(N + 1).

Therefore

N∑
k=0

E
[∥∥∇f(xk)∥∥2] ≤ 2Φ0

γ0
+ dc(N + 1).

Since we choose x̂N chosen uniformly from {xk}Nk=0 we can obtain

E
[
∥∇f(x̂N)∥2

]
≤ 8LdΦ0

N + 1
+ dL2τ2 +

2d∆2

τ2
.

This finishes the proof.

Proof of Corollary 2. We aim to achieve precision ε, i.e.

E
[
∥∇f(x̂N)∥2

]
≤ 8LdΦ0

N + 1
+ dL2τ2 +

2d∆2

τ2
≤ ε2.

Therefore we need to take

N = O
(
LdΦ0

ε2

)
, τ = O

(
ε√
dL

)
, ∆ = O

(
ετ√
d

)
= O

(
ε2

dL

)
.

This finishes the proof.

E.2 RESULTS FOR THE PL-CONDITION CASE

Proof of Theorem 4. We start by writing our the result of Lemma 5 from Li et al. (2021). Under
Assumption 6 the following inequality holds

E
[
f(xk+1)− f(x∗)

]
≤ (1− µγk)E

[
f(xk)− f(x∗)

]
−
(

1

2γk
− L

2

)
E
[∥∥xk+1 − xk

∥∥2]+ γk
2
E
[∥∥hk −∇f(xk)

∥∥2] . (31)

Using results from Lemma 1 and introducing same notations as in proof of Theorem 3 equations (31)
and (28) take form

29

rk+1 ≤ (1− µγk)rk −
(

1

2γk
− L

2

)
pk +

γk
2
ψk,

ψk+1 ≤
(
1− 1

2d

)
ψk + 2dL2pk + c.

Summarizing these two inequalities by multiplying the second by 2γkd and introducing the notation
Φk := rk + 2γkdψk, we obtain:

Φk+1 ≤ (1− µγk)rk +

(
1− 1

4d

)
2γkdψk −

(
1

2γk
− L

2
− 4γkd

2L2

)
pk + 2γkdc. (32)

If we consider γk ≡ γ0 = 1
4dL , when 1− 1

4d ≤ 1− µγ0, since L ≥ µ and

1

2γ0
− L

2
− 4γ0d

2L2 = 2dL− L

2
− dL > 0.

Therefore equation (29) takes form

Φk+1 ≤ (1− µγ0)Φk + 2γ0dc. (33)

Using recursion and inequality (33) , we can obtain:

ΦN = O
(
Φ0 exp

[
− µN

4dL

]
+
dL2τ2 + d∆2/τ2

µ

)
.

Using the fact that Φk ≥ E
[
f(xk)− f(x∗)

]
and h0 = ∇̃fδ(x0) we get the desired inequality:

E
[
f(xN)− f(x∗)

]
= O

(
r0 exp

[
− µN

4dL

]
+
dL2τ2 + d∆2/τ2

µ

)
,

where r0 = f(x0)− f(x∗). This finishes the proof.

Proof of Corollary 3. We aim to achieve precision ε, i.e.

E
[
f(xN)− f(x∗)

]
= O

(
r0 exp

[
− µN

4dL

]
+
dL2τ2 + d∆2/τ2

µ

)
≤ ε.

Therefore we need to take

N = O
(
Ld

µ
log

[
f(x0)− f(x∗)

ε

])
, τ = O

(√
εµ√
dL

)
, ∆ = O

(√
εµτ√
d

)
= O

(εµ
dL

)
.

This finishes the proof.

30

	Introduction
	Our contributions
	Related work

	Main results
	JAGUAR gradient approximation. Deterministic case
	Frank-Wolfe via JAGUAR
	Gradient Descent via JAGUAR
	Frank-Wolfe via JAGUAR. Stochastic case

	Experiments
	Experiment setup
	Deterministic Frank-Wolfe
	Stochastic Frank-Wolfe
	Gradient descent

	Conclusion
	Auxiliary Lemmas and Facts
	Squared norm of the sum
	Cauchy–Schwarz inequality
	Fenchel-Young inequality
	Recursion Lemma

	Full versions of Corollaries from Section 2
	Full version of Corollary 1
	Full version of Corollaries 2 and 3
	Full version of Corollary 4

	Proof of converge rate of JAGUAR. Deterministic and stochastic cases.
	Result for the full-approximation (stochastic case)
	Result for the JAGUAR approximation (Algorithm 1) (stochastic case)
	Result for the SAGA approximation (line 7 of Algorithm 3)
	Result for the JAGUAR approximation (Algorithm 3)

	Proof of converge rate of FW via JAGUAR
	Results for the deterministic case (Algorithm 3)
	Results for the stochastic case (Algorithm 5)

	Proof of converge rate of GD via JAGUAR (Algorithm 4)
	Results for the non-convex case
	Results for the PL-condition case

