Appendix A Datasets and Algorithms

A.1 Datasets

All of the public datasets used in our benchmark were previously published, either as graph repre-
sentation learning benchmarks or new datasets for specific graph tasks. The datasets cover various
downstream tasks and a multitude of domains: citation network, social network, bioinformatics,
website networks, computer vision, and co-occurrence network. Table 7, Table 8, and Table 9
provides the detailed statistics about diverse datasets. We adopt the following benchmark datasets
since i) they are widely applied to develop and evaluate GNN models; ii) they contain diverse graph
properties from small-scale to large-scale, from homogeneous to heterogeneous, from homophilic to
heterophilic, or from node-level to graph-level. The detailed descriptions of these datasets are listed
in the following:

* Cora, Citeseer, Pubmed. They are the scientific citation network datasets [47], where nodes
and edges represent the scientific publications and their citation relationships, respectively. Each
publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence
of the corresponding word from the dictionary. Each node is associated with a one-hot label, where
the node classification task is to predict which class the corresponding publication belongs to.

* Ogbn-arxiv. The ogbn-arxiv dataset is a benchmark citation network collected in open graph
benchmark (OGB) [15], which consists of a large number of nodes and edges, and has been widely
utilized to evaluate GNN models®. Each node represents an arXiv paper from the computer science
domain, and each directed edge indicates that one paper cites another one. The node is described
by a 128-dimensional word embedding extracted from the title and abstract in the corresponding
publication.

+ Cornell, Texas, Wisconsin. They are the website datasets from WebKB*, collected from computer
science departments of various universities by Carnegie Mellon University [34]. While nodes
represent webpages in the webpage datasets, edges are hyperlinks between them. The node feature
vectors are given by bag-of-word representation of the corresponding webpages. Each node is
associated with a one-hot label to indicate one of the following five categories, i.e., student, project,
course, staff, and faculty.

* Actor. This is an actor co-occurrence network, which is an actor-only induced subgraph of the
film-director-actor-writer network [37]. In the co-occurrence network, nodes correspond to actors
and edges denote the co-occurrence relationships on the same Wikipedia pages. Node feature
vectors are described by the bag-of-word representation of keywords in the actors’ Wikipedia

pages.
* Polblogs. This is a blog network, which consists of 1,222 vertexes and 16,716 edges. Each node

represents a blog page, and each edge denotes a hyperlink between pages. Every blog has a political
attribute: conservative or liberal, which is the label of each node.

* ACM, DBLP, Yelp. They are real-world heterogeneous graph datasets. DBLP and ACM [49] are
citation networks, where DBLP contains three types of nodes (papers (P), authors (A), conferences
(©)), four types of edges (PA, AP, PC, CP), and research areas of authors as labels; ACM contains
three types of nodes (papers (P), authors (A), subjects (S)), four types of edges (PA, AP, PS, SP),
and categories of papers as labels. Yelp [29] is a review dataset and contains three types of nodes
(businesses (B), users (U), services (S)), and 9rating levels (L). The business nodes are labeled by
their category.

« IMDB-B, IMDB-M, REDDIT-B, COLLAB. IMDB-BINARY and IMDB-MULTI are movie
collaboration datasets that consist of the ego-networks of 1,000 actors/actresses who played roles in
movies in IMDB. In each graph, nodes represent actors or actresses, and there is an edge between
them if they appear in the same movie. REDDIT-BINARY consists of graphs corresponding
to online discussions on Reddit. In each graph, nodes represent users, and there is an edge
between them if at least one of them responds to the other’s comment. COLLAB is a scientific
collaboration dataset. Each graph corresponds to a researcher’s ego network, i.e., the researcher
and its collaborators are nodes and an edge denotes collaboration between two researchers.

3https://ogb.stanford.edu
*http://www.cs.cmu.edu/afs/cs. cmu.edu/project/theo-11/www/wwkb
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* PROTEINS, MUTAG. PROTEINS represents macromolecules and it was derived from Dobson
and Doig [7]. The task of it is to predict whether a protein is an enzyme. Nodes represent the
amino acids and there is an edge if they are less than 6 Angstroms apart. MUTAG is a collection of
nitroaromatic compounds where nodes stand for atoms and edges between nodes represent bonds
between the corresponding atoms.

Peptides-func, Peptides-struct. They are proposed by recent long-range graph benchmark [8]
for exploring the ability of GNNs to capture long-range dependencies. Each graph in datasets is a
peptide (a short chain of amino acids), while nodes correspond to the heavy (non-hydrogen) atoms
and edges represent the bonds between them. Peptides-func is a multi-label graph classification
dataset. Graphs are divided into 10 classes based on the peptide functions. Peptides-struct is a
multi-label graph regression dataset based on the 3D structure of the peptides.

Table 7: Statistics of homogeneous node classification datasets.

Datasets Cora  Citeseer Pubmed ogbn-arxiv Cornell Texas Wisconsin  Actor  Polblogs
#Nodes 2,708 3,327 19,717 169,343 183 183 251 7,600 1,222
#Edges 5,278 4,614 44,325 1,157,799 277 279 450 26,659 16,716
#Classes 7 6 3 40 5 5 5 5 2
#Features 1,433 3,703 500 767 1,703 1,703 1,703 932 —
#Homophily 0.81 0.74 0.80 0.65 0.12 0.06 0.18 0.22 0.91
Avg. #Degree  3.90 277 4.50 13.67 3.03 3.05 3.59 7.02 27.36

Table 8: Statistics of heterogeneous node classification datasets.

Datasets #Nodes #Edge #Node Type #Edge Type #Features Avg. #Degree #Training #Validation #Test

ACM 8,994 25,922 3 4 1,902 1.51 600 300 2,125
DBLP 7,305 19,816 3 4 334 1.44 600 300 2,057
Yelp 3913 77,176 3 6 82 3.72 300 300 2,014

Table 9: Statistics of graph-level datasets.

Datasets IMDB-B IMDB-M REDDIT-B  COLLAB PROTEINS MUTAG Peptides-func ~ Peptides-struct
#Graphs 1,000 1,500 2,000 5,000 1,113 188 15,535 15,535
#Classes 2 3 2 3 2 2 10 —

Avg. #Nodes 19.8 13.0 429.7 74.5 39.1 17.9 150.9 150.9
Avg. #Edges 96.5 65.9 497.8 2,457.5 72.8 19.8 307.3 307.3
Avg. #Degree 4.9 5.1 1.2 33.0 1.9 1.1 2.0 2.0

Avg. #Diameter 1.9 1.5 — 1.9 — 8.2 27.6 27.6
Vertex labels X X X X v v X X

Task Class. Class. Class. Class. Class. Class. Class. Regre.
Domain Social Social Social Social Biochemical ~Biochemical  Biochemical Biochemical

A.2 Algorithms

In our developed GSLB, we integrate 16 state-of-the-art GSL algorithms, including 12 homogeneous
node classification models: LDS, GRCN, ProGNN, IDGL, GEN, CoGSL, SLAPS, SUBLIME,
STABLE, NodeFormer, GSR, HES-GSL; 2 heterogeneous node classification models: GTN and
HGSL; 2 graph-level models: VIB-GSL and HGP-SL. Each is a representative algorithm in its
respective task and covers both the early and recent work of GSL. In order to better organize and
understand the GSL, we demonstrate a high-level comparison of existing representative algorithms in
Table 10.

« LDS [11]. LDS is an early work in GSL. It proposes to approximately solving a bilevel program to
jointly learn the graph structure and parameters of GNNs.

* GRCN [48]. GRCN designs a graph revision module to predict missing edges and revise edge
weights. To reduce the complexity of GRCN, Fast-GRCN only calculates the similarity matrix in
the first epoch and then computes the values of the KNN-sparse matrix for the remaining epochs.
Therefore, the complexity of GRCN can be reduced to O(N K'), where K is the number of top-K
important neighbors of each node.

* ProGNN [18]. ProGNN treats the adjacency matrix as a learnable variable and directly optimizes
it with GNNss to learn a robust structure.

15



Table 10: Summary of representative Graph Structure Learning (GSL) methods. Task refers to
the downstream task that the corresponding method is applicable for. For Oriented, ‘Node’ means
deriving the edge connectivity based on pairwise node embeddings, and ‘Edge’ means directly
optimizing the graph adjacency matrix. Requirement means the required input data to models for
training. For Graph Regularization, ‘SP’ means sparsity, ‘SM’ means smoothness, ‘CON’ means
connectivity, and ‘CP’ means community preservation.

Requirement Graph Regularization
Method Task  Oriented —— —  Structure Modeling ~—————— Complexity Code
Structure  Labels SP SM CON CP
GRCN [48] NC Node v v Inner product v O(N?)or O(NK) Link
IDGL [4] NC Node v v Cosine similarity v v v O(N?)or O(Nm) Link
HGSL [53] HNC Node v v Cosine similarity v O(N?) Link
HGP-SL [52] GC Node v v Attention v O(N?) Link
Metric GEN [39] NC Node v v Cosine similarity O(N?) Link
STABLE [21] NC Node v Cosine similarity O(NQ) Link
NodeFormer [43]  NC Node v Attention v O(N)or O(E) Link
GSR [54] NC Node v Cosine similarity O(NB) Link
HES-GSL [42] NC Node v Cosine similarity O(N?) Link
GLCN [16] NC Node v One-layer neural net v v O(N2) Link
PTDNet [30] NC Node v v Multilayer perceptron v v O(E) Link
Neural VIB-GSL [36] GC Node v v Multilayer perceptron v O(N?) Link
NeuralSparse [55] NC Node v v Multilayer perceptron O(E) —
GTN [49] HNC Edge v v Convolutional layers O(N?) Link
CoGSL [26] NC Node v v Multilayer perceptron O(N?) Link
GLNN [12] NC Edge v v Free variables v v O(N?) —
Direct LDS [11] NC Edge v Free variables v O(N?) Link
LRGNN [44] NC Edge v v Free variables v v O(N?) —
ProGNN [18] NC Edge v v Free variables v v v O(N?) Link
Hybird SLAPS [10] NC — v Multiple learners O(N?) Link
SUBLIME [28] NC — Multiple learners O(N?) Link

* IDGL [4]. IDGL jointly and iteratively learns graph structures and graph embeddings. In addition,
it also provides a scalable version, namely IDGL-ANCH, which randomly samples m anchors
from the node set for each node to calculate affinity scores.

* GEN [39]. GEN designs a structure model characterizing the underlying graph generation and an
observation model injecting multi-order neighborhood information to accurately infer the graph
structure based on Bayesian inference.

* CoGSL [26]. CoGSL utilizes mutual information compression to extract compact and robust
graph structure, namely "minimal sufficient structure", which maximizes the information about
downstream tasks.

* SLAPS [10]. SLAPS focuses on topology inference task and provides more supervision signals for
inferring a graph structure through self-supervision learning.

* SUBLIME [28]. To prevent the reliance on labels, bias of edge distribution, and the limitation on
application tasks, SUBLIME learns graph structure in an unsupervised manner. It first generates
a learning target graph, anchor graph, and maximizes the agreement between the anchor graph
and the learned graph by contrastive learning. It also designs a variety of graph learners and
post-processors.

* STABLE [21]. STABLE optimizes the learned graph structure through an unsupervised pipeline to
avoid using unreliable supervision signals.

* NodeFormer [43]. NodeFormer introduces a novel all-pair message-passing scheme for efficiently
propagating node signals between arbitrary nodes. Because of the high complexity of Transformer-
style architecture, it uses a kernelized Gumbel-Softmax operator to reduce the complexity to
linearity.

* GSR [54]. GSR first estimates the underlying graph structure by a multi-view contrastive learning
framework and then fine-tunes a GNN on the learned structure.

* HES-GSL [42]. HES-GSL proves that the task-specific supervision signals may be insufficient
to support the learning of both graph structure and parameters of GNNs. Therefore, it proposes
homophily-enhanced self-supervision for GSL to provide more supervision information for topol-
ogy inference.
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Table 11: Average Precision (AP) &= STD comparison (%) for Peptides-func and Mean Absolute
Error (MAE) =+ STD comparison for Peptides-struct. Each result was obtained from 3 repeated
experiments with different random seeds. 1 represents the larger, the better while | represents the
smaller, the better.

Method Peptides-Func (AP1) Peptides-Struct (MAE |)
GCN 58.31+0.28 0.3566+0.0014
GAT 45.59+035 0.4375+0.0036
GIN 60.92+0.88 0.3647+0.0028
SAGE 59.41+0.57 0.3716-£0.0011
VIB-GSL (GCN) 52.05+2.40 0.3089-0.0036
VIB-GSL (GAT) 42.64+033 0.3992+0.0129
VIB-GSL (GIN) 47.61+093 0.3032+0.0011
VIB-GSL (SAGE) 54.11+0.74 0.3063+0.0014
HGP-SL (GCN) 52.16+0.94 0.2935-+0.0104
HGP-SL (GIN) 55.30+0.88 0.2786+0.0018
HGP-SL (SAGE) 53.48+0.71 0.2794+0.0058

* GTN [49]. GTN learns a soft selection of edge types and composite relations for generating useful
multi-hop connections for heterogeneous graphs.

* HGSL [53]. HGSL firstly attempts to learn heterogeneous graph structure and GNNss jointly. It
considers the feature similarity by generating a feature similarity graph and optimizes the complex
heterogeneous interactions by generating a feature propagation graph and semantic graph.

* HGP-SL [52]. HGP-SL is a graph-level model. It adaptively selects a subset of nodes to form an
induced subgraph and utilizes structure learning to refine subgraphs at each layer.

* VIB-GSL [36]. VIB-GSL firstly attempts to advance the Information Bottleneck (IB) principle
for graph structure learning and proposes to use dot-product self-attention to refine dynamic
connections.

Appendix B Additional Experimental Results

B.1 Performance on long-range datasets

Whether GSL can capture long-range dependencies is an interesting topic. Traditional message-
passing GNNs simply rely on local neighbors to produce node representations and are hard to learn
higher-order information. Recently, LRGB [8] presents a series of graph learning datasets, which
arguably require the ability of long-range interactions to achieve strong performance. Table 11 shows
the experimental results of graph-level GSL algorithms on two long-range datasets. We can observe
that VIB-GSL and HGP-SL do not exhibit promising results on Peptides-Func dataset, but show
evidently better results on Peptides-Struct dataset than the baseline model. We suspect that this
may be related to whether the GSL algorithm is suitable for specific downstream tasks. We only
investigate the long-range capability of graph-level GSL models. The investigation of long-range
capability at the node-level is our future work.

B.2 Visualiuzation

In order to more intuitively understand the ability and characteristics of GSL, we visualize the original
graph structure of Cora and the learned graphs of various GSL algorithms in Figure 6. We select
four categories of Cora and randomly sample 10 labeled nodes and 10 unlabeled nodes to extract a
subgraph. The elements inside the red rectangle are the intra-class connections, and the elements on
the diagonal are self-loops. We can observe that i) most of the learned structures are much denser than
the original structure (especially the learned structure of IDGL); ii) in the TI scenarios, SLAPS and
HES-GSL will prefer to connect labeled nodes. Moreover, we also make statistics on the properties
of the original structure and the learned structures. As shown in Table 12, we list node homophily
ratio [34], edge homophily ratio [56], class insensitive edge homophily ratio [24] of the structures.
They can be calculated as follows:
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Table 12: Graph property statistics of the original and the learned graphs on Cora.Node Homo.
represents node homophily ratio; Edge Homo. represents edge homophily ratio; EI Homo. represents
class insensitive edge homophily ratio; Assor. represents the degree assortativity coefficient.

Method Node Homo. Edge Homo. EIHomo. Assor. Density
Original 0.8252 0.8100 0.7657 -0.0659  0.0014
LDS 0.7636 0.7500 0.6842 -0.0571  0.0019
GRCN 0.5948 0.5941 0.4857 -0.0720  0.0816
ProGNN 0.2208 0.2041 0.0309 -0.0246  0.5666
IDGL 0.1796 0.1796 0.0000 / 1.0000
GEN 0.7425 0.7612 0.7055 0.0560  0.0085
CoGSL 0.7300 0.7081 0.6343 0.0469  0.0180
SUBLIME 0.1796 0.1796 0.0000 / 1.0000
STABLE 0.5259 0.5228 0.4049 -0.0153  0.0057
NodeFormer 0.1796 0.1796 0.0000 / 1.0000
SLAPS 0.5683 0.5755 0.4820 0.0709  0.0107
HESGSL 0.6353 0.6635 0.5835 0.0989  0.0171
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where V and £ denotes the set of nodes and edges, C' is the number of classes, |Cx| denotes the
number of nodes of class k, and h¥, 4e denotes the edge homophily ratio of class k. And we also
present the degree assortativity coefficient [32] of structures, which refers to the tendency of nodes to
connect with other similar nodes over dissimilar nodes. According to Table 12, we can observe that
the learned graph structures do not increase the homophily ratio, thus the homophily ratio may not be
the main reason for the improved performance of GSL. We also find that all GSL algorithms make
the graph structure mode dense, which indicates that real-world datasets may be too sparse. Finally,
we plot the degree distribution of the original graph of Cora and the learned graphs by various GSL
algorithms in Figure 7. We can observe that the learned graph structure still follows the long-tail
distribution. How to use the GSL to alleviate the unfairness of the classification performance of nodes
with different degrees is also a problem worth exploring.
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Figure 6: Visualization of the original graph of Cora and the learned graphs by various GSL
algorithms.
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Figure 7: Degree distribution of the original graph of Cora and the learned graphs by various GSL
algorithms.
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