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Abstract

Accurately predicting the popularity of a mu-001
sic is a critical challenge in the music industry002
given the potential benefits to artists, producers003
and streaming platforms. Historically, research004
on music success was focused on factors such005
as audio features and extrinsic metadata (e.g.,006
artist demographics, listener trends), or advanc-007
ing prediction model architecture. This paper008
addresses the under-explored area of exploiting009
lyrical content to predict music popularity. We010
present a novel automated pipeline that uses011
LLMs to extract mathematical representations012
from lyrics, capturing their semantic and syn-013
tactic structure, while preserving sequential in-014
formation. These features are then integrated015
into a novel multimodal architecture, HitMu-016
sicLyricNet, combining audio, lyrics, and so-017
cial metadata for predicting popularity score.018
Our method outperforms the available baseline019
in end-to-end deep learning architecture for mu-020
sic popularity prediction on the SpotGenTrack021
(SPD) dataset. We achieve an overall 9% and022
20% improvement in prediction model perfor-023
mance metrics MAE and MSE respectively. We024
confirm that the improvements result from the025
introduction of our lyrics feature engineering026
pipeline (LyricsAENet) in our model architec-027
ture, HitMusicLyricNet.028

1 Introduction029

In 2023, the global recorded music market gener-030

ated $28.6 billion1 in revenue. With the advent031

of social media and streaming services, defining032

a single metric for music success has become in-033

creasingly challenging (Cosimato et al., 2019; Lee034

et al., 2020). Music popularity prediction can help035

the industry and artists forecast and optimize the036

potential success of newly composed songs.037

Research in music popularity prediction has been038

driven by the advancements in machine learning039

with researchers applying classical ML approaches040
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to predict popularity using acoustic features, and 041

further with the growth of social networks, infor- 042

mation about music consumers’ tastes capturing 043

consumer response and their evolving music pref- 044

erences (Seufitelli et al., 2023). Advancements in 045

deep learning further sharpen the prediction model 046

capability of capturing and learning complex pat- 047

terns of evolving music taste, and researchers have 048

worked on incorporating multiple modalities such 049

as audio, lyrics and social metadata to predict song 050

success (Zangerle et al., 2019; Martín-Gutiérrez 051

et al., 2020). In all these works, the popularity 052

score is typically defined as the time the song re- 053

mains on the Billboard Top charts, and the eval- 054

uation metrics used include MAE, MSE, R2 for 055

regression, and accuracy, precision, recall, and F1 056

for classification. Recent developments in large 057

language models have led to further research in 058

music-related fields such as recommendation sys- 059

tems, sentiment/emotion analysis, data augmen- 060

tation, understanding and composing song lyrics, 061

using song lyrics text as the data source (Rossetto 062

et al., 2023; Sable et al., 2024; Ma et al., 2024; 063

Ding et al., 2024). Music Popularity Prediction 064

research has still not fully exploited the power of 065

lyrics in the models, while recent research have 066

shown lyrics contributing significantly to song pop- 067

ularity (Yu et al., 2023). Through our work, we 068

address the gap in the existing literature with the 069

following chief contributions: 070

1. A novel automated lyric feature extraction 071

pipeline that uses LLMs to encode music 072

lyrics into rich, learned representations. De- 073

tails discussed in 3.4.2 074

2. An end to end multimodal deep learning archi- 075

tecture which predicts the popularity score in 076

range (1,100) and outperformed current base- 077

line by 9% and 20% in MAE and MSE metrics 078

respectively. Details discussed in 3.4 079
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The next section reviews related work. This080

is followed by a discussion of our methods, the081

dataset and our experiments.082

2 Related Work083

Music Popularity Prediction. Studied as a clas-084

sification or regression problem in a supervised085

learning fashion, where a model learns to predict ei-086

ther binary class labels (hit or no-hit) or generate a087

continuous popularity score (Seufitelli et al., 2023).088

These predictions are derived using the song’s inter-089

nal characteristics (audio and lyrics) and associated090

social factors like artist, genre, user demographics,091

etc. Song popularity is primarily measured using092

charts like Billboard 2 and UK Singles Charts3093

(Bischoff et al., 2009a; Askin and Mauskapf, 2017;094

Kim et al., 2014; Lee and Lee, 2018) , which rank095

songs based on sales, radio airplay, and streaming096

activity. Researchers determine success metrics097

based on these rankings, time on top charts, and098

other measures, including economic metrics like099

merchandise sales and user engagement metrics100

on social media and streaming services (Seufitelli101

et al., 2023).102

Traditional research focused on using vari-103

ous machine learning techniques, including Lo-104

gistic Regression, Decision Trees, Support Vec-105

tor Machines (SVM), Bayesian Networks, Naive106

Bayes, Random Forest Ensemble, XGBoost, and107

K-Nearest Neighbors (KNN). These approaches ad-108

vanced further to neural networks and deep learning109

techniques, building much stronger predictive mod-110

els. A significant number of studies (Bischoff et al.,111

2009b; Dorien Herremans and Sörensen, 2014;112

Zangerle et al., 2019; Silva et al., 2022) focused113

on using acoustic characteristics of songs along114

with metadata that includes factors such as social115

influences. Other works such as (Dhanaraj and116

Logan, 2005; Singhi and Brown, 2015b; Martín-117

Gutiérrez et al., 2020) also emphasized the impor-118

tance of song lyrics in determining song success119

using handcrafted text-based features that captured120

sentiment, emotions, and the syntactic structure of121

lyrics. These studies were often limited by their122

capabilities to capture central expressions of the123

song’s lyrics.124

Multiple datasets have been released to drive re-125

search further and quench the thirst of data-heavy126

deep learning models. This includes Million Song127

2Billboard Hot 100
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Dataset4, SpotGenTrack5, and AcousticBrainz 6 128

sourced from different platforms like Spotify, Bill- 129

board, Genius 7, Youtube, and others. These 130

datasets comprise a wide range of features, from 131

low-level features like Mel-Frequency Cepstral Co- 132

efficients (MFCCs), lyrics text, and temporal fea- 133

tures to high-level audio features such as dance- 134

ability and loudness. Additionally, they include 135

metadata on artists, albums, genres, demographics, 136

and other relevant information. 137

Learned Representations of Lyrics. Lyrics 138

form an integral part of music and carry a deep 139

emotional meaning, which can strongly influence 140

how listeners feel—sometimes even more than the 141

song’s acoustic features alone (Singhi and Brown, 142

2015a). Yet, lyrics have often been overlooked 143

as compared to acoustic attributes and social met- 144

rics of songs (Seufitelli et al., 2023). Earlier stud- 145

ies used methods like Probabilistic Latent Seman- 146

tic Analysis (PLSA) (Hofmann, 1999) to capture 147

the semantic content of lyrics, which helped re- 148

searchers understand their role in defining a “hit” 149

song (Dhanaraj and Logan, 2005). Later work 150

moved beyond basic semantic analysis, focusing 151

on more detailed features. For instance, (Hirjee 152

and Brown, 2010) and (Singhi and Brown, 2014) 153

relied on various rhyme and syllable characteristics 154

to predict hit songs using only their lyrics, while 155

other researchers applied Latent Dirichlet Alloca- 156

tion (LDA) (Blei et al., 2003) to discover thematic 157

topics within lyrics (Ren et al., 2016). 158

Progress of deep learning techniques advanced 159

the use of multimodal approaches that combine 160

lyrics with audio and metadata, using stylomet- 161

ric analysis to extract lyric text features (Martín- 162

Gutiérrez et al., 2020). Sentiment analysis also 163

emerged as a way to glean emotional insights 164

from lyrics when predicting popularity (Raza and 165

Nanath, 2020). More recent research has turned to 166

learned lyric representations, such as embeddings 167

(Kamal et al., 2021; McVicar et al., 2022), which 168

offer a more robust way to capture lyrical mean- 169

ing. (Barman et al., 2019) demonstrated that these 170

distributed representations can effectively predict 171

both genre and popularity, reducing the need for 172

handcrafted features. Datasets such as Music4All- 173

Onion (Moscati et al., 2022) provide lyric embed- 174

dings that make it easier to study how lyrical con- 175
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tent relates to a song’s success. Finally, a recent176

study found that a song’s lyrical uniqueness has177

a significant contribution towards its popularity178

(Yu et al., 2023), using TF–IDF for lyric vector179

representation; however, this approach inherently180

lacks the capacity to capture deeper sequential and181

contextual nuances, emphasizing the growing im-182

portance of learning robust, richer representations183

of lyrics to better understand what makes certain184

songs resonate with audiences.185

To the best of our knowledge, there are limita-186

tions in existing literature for efficient automated187

lyrics feature extraction that are expressive and cap-188

ture the underlying complexity of song lyrics. Thus,189

we have built a novel pipeline to exploit the power190

of Large Language Models. It has the potential to191

provide rich lyric representations that encapsulate192

both semantic and syntactic understanding, while193

preserving the sequential structure of the lyrics.194

3 Methodology195

In this section, we provide the theoretical founda-196

tion of our approach. We begin by defining the197

problem of music popularity prediction in mathe-198

matical equations. This is followed by explaining199

the baseline approach and its implementation, in-200

cluding details of the dataset. Finally, we present a201

formal description of our proposed architecture.202

3.1 Problem Formulation203

Given a song S, its features are represented in204

a multi-dimensional space X ∈ Rd, which com-205

prises three key modalities: audio waveform w ∈206

Rk, lyrical text l ∈ Rm, and metadata attributes207

m ∈ Rp, where d = k+m+ p represents the total208

dimensionality of our feature space. Our primary209

objective is to extract meaningful features from the210

song lyrics to effectively encode each song into a211

unique vector representation. Next, the prediction212

task is formulated as learning a mapping function213

f : X → Y, where we minimize the expected pre-214

diction error: E[(f(X)− Y )2] across the training215

distribution. Here, Y ∈ R represents the continu-216

ous popularity score.217

3.2 Baseline Methodology218

We trained HitMusicNet, a multimodal end-to-end219

Deep Learning architecture as proposed by (Martín-220

Gutiérrez et al., 2020) and validated the results us-221

ing the SpotGenTrack Popularity Dataset (SPD).222

The model outputs a popularity score between 1223

Figure 1: Diagram of the HitMusicNet pipeline outlin-
ing the principal functionalities and data components.
Image src (Martín-Gutiérrez et al., 2020).

and 100, using audio features, text features, and 224

metadata containing artist and demographic infor- 225

mation as inputs. A complete description of the 226

feature set used is provided in Table 1. 227

Feature Type Features
Text Features Sentence count, Avg words,

Word count, Avg syllables/word,
Sentence similarity, Vocabulary
wealth

High-Level Audio Danceability, Energy, Key, Loud-
ness, Mode, Speechiness, Acous-
ticness, Instrumentalness, Live-
ness, Valence, Tempo, Duration,
Time Signature

Low-Level Audio Mel-spectrogram, MFCCs, Ton-
netz, Chromagram, Spectral Con-
trast, Centroid, Bandwidth, Zero-
Crossing Rate

Meta-Data Features Artist followers, Artist popularity,
Available markets

Table 1: Summary of features used in the HitMusicNet
architecture (Martín-Gutiérrez et al., 2020).

HitMusicNet architecture as shown in Fig 1, 228

employs an autoencoder for feature compression 229

through two encoder layers with dimensions d/2 230

and d/3, followed by a bottleneck layer of d/5. 231

Each layer uses ReLU activation, and the output 232

layer employs a sigmoid activation for reconstruc- 233

tion. The autoencoder was trained using the Adam 234

optimizer and an MSE loss function. The com- 235

pressed features are then passed through a fully 236

connected neural network with four layers, where 237

the number of neurons in each layer is scaled by 238

factors α = 1, β = 1/2, and γ = 1/4. The 239

model is trained using an 80%-20% train-test split 240

with stratified cross-validation (SCV) using k = 5. 241

These settings helped us in effectively replicating 242

the baseline results on the SPD dataset. 243

3.3 Dataset 244

The SpotGenTrack Popularity Dataset (SPD) pro- 245

posed by (Martín-Gutiérrez et al., 2020) and used 246
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Figure 2: Popularity Distribution in cleaned SpotGen-
Track(SPD) with µ = 41.11 and a standard deviation of
σ = 17.51.

in this research contains 101,939 tracks, 56,129247

artists, and 75,511 albums sourced using Spotify248

and Genius APIs. The data was gathered from249

26 countries where Spotify is available, including250

the top 50 playlists per category for each country.251

Popularity scores for tracks range between 1 and252

100 and are provided by Spotify based on internal253

metrics. The scores follow a Gaussian distribu-254

tion with µ = 40.02 and a standard deviation of255

σ = 16.79. The dataset contains low-level audio256

features extracted using audio waveform, text fea-257

tures extracted using stylometric analysis of lyrics.258

High-level audio features and metadata are sourced259

from Spotify. The lyrics in the SPD dataset had260

to be cleaned and pre-processed to align with the261

objectives of this research. We inspected long tails262

of lyrics length distribution and observed that ex-263

tremely short or long entries typically contained264

irrelevant content such as random numbers, out-265

of-context text, or placeholder text. Based on this266

analysis, we retained songs with lyrics lengths be-267

tween 100 and 7000 characters. Furthermore, we268

filtered the dataset to include only English lyrics,269

which comprised approximately 60% of the total270

data. These steps resulted in a clean dataset com-271

prising 51,319 tracks, 30,024 unique artists, and272

39,371 unique albums. The resulting popularity273

distribution, as shown in Fig 2, had µ = 41.11274

and a standard deviation of σ = 17.51, retaining275

original data characteristics.276

We further considered multiple open-source mu-277

sic popularity datasets for benchmarking HitMu-278

sicLyricNet, but none of them meet our multimodal279

data requirements: the TPD dataset (Karydis et al.,280

2016) lacked lyrical and social metadata; the MSD281

dataset (Bertin-Mahieux et al., 2011) offered only282

bag-of-words lyrics; HSP-S and HSP-L datasets283

(Vötter et al., 2021) omitted full lyrical content; the284

MUSICOSET (Silva et al., 2019) included lyrics 285

but lacked detailed audio-level features. Further, 286

the LFM-2B dataset (Schedl et al., 2022), has copy- 287

right issues. 288

3.4 HitMusicLyricNet 289

This section details our proposed HitMusicLyric- 290

Net, an end-to-end multimodal deep learning ar- 291

chitecture built upon the foundation of HitMusic- 292

Net. HitMusicLyricNet comprises of three key 293

components: AudioAENet, LyricsAENet, and Mu- 294

sicFuseNet. AudioAENet compresses the low-level 295

audio features. LyricsAENet compresses the lyric 296

embeddings into a fixed-size representation us- 297

ing an Autoencoder, thereby encoding information 298

while reducing noise. MusicFuseNet then com- 299

bines these compressed audio and lyric representa- 300

tions with metadata and high-level audio features 301

as described in Table 1. 302

In the HitMusicNet architecture, a single auto- 303

encoder compressed the combined feature vector 304

of audio, lyrics, and metadata. We hypothesize that 305

this can lead to information loss, particularly for 306

the less abundant lyrics and metadata features. We 307

believe that lyrics and metadata features should be 308

fed directly into the popularity prediction network 309

to retain their predictive power for song popular- 310

ity. Furthermore, our reasoning behind the new 311

approach of introducing distinct Autoencoders for 312

audio and lyrics is based on the bipolar and di- 313

rectional nature of lyrics embeddings, requiring a 314

different architecture for compression(Bałazy et al., 315

2021). 316

3.4.1 AudioAENet 317

The Autoencoder used for compression has a sim- 318

ilar architecture to that of MusicAENet, but takes 319

in only low-level audio features as described in Ta- 320

ble 1 for compression. For input dimension d = 209, 321

it gradually compresses the data to dimension d/2, 322

d/3, and d/5. The output layer employs a sigmoid 323

activation for reconstruction, whereas all remaining 324

layers use ReLU activation functions. The model 325

is trained using the Adam optimizer with a MSE 326

loss function, achieving a loss value in the range of 327

1e-5, indicating negligible loss in compression. 328

3.4.2 LyricsAENet 329

LyricsAENet implements a tied-weights autoen- 330

coder architecture (Li and Nguyen, 2019) designed 331

to reduce parameter size and risk of overfitting. 332

Compressing lyric embeddings is susceptible to 333

4



Figure 3: Block schematic of the HitMusicLyricNet architecture comprising of two Autoencoders and a Fully
Connected NN predicting popularity score. ’HL’ stands for high-level and ’LL’ stands for low-level.

overfitting due to high dimensionality. The encoder334

follows a progressive compression with the follow-335

ing dimensions (d/2, d/4, d/8), followed by bottle-336

neck layers (d/12 or d/16). The decoder mirrors the337

structure in reverse order, utilizing the tranpose of338

the encoder weight. The progressive dimensional339

reduction is designed to minimize reconstruction340

losses in compressed embeddings extracted out of341

language models and LLMs such as BERT (De-342

vlin et al., 2019), LLaMA 3 Herd (Grattafiori et al.,343

2024), and OpenAI’s embedding models8.344

We use Scaled Exponential Linear Unit (SELU)345

(Klambauer et al., 2017) as the activation func-346

tion for its self-normalizing characteristics and the347

ability to handle the bipolar nature of embeddings.348

Comparative analyses include alternate activation349

functions such as the Sigmoid Linear Unit (SiLU)350

(Elfwing et al., 2018) and the Gaussian Error Lin-351

ear Unit (GELU) (Hendrycks and Gimpel, 2016).352

LyricsAENet was trained using the Adam optimizer353

with a MSE loss function, achieving loss values of354

approximately 1e-5. To further refine the training355

process, we incorporated a directional loss func-356

tion inspired by (Bałazy et al., 2021) to preserve357

the directional characteristics of the embeddings358

during compression. This combined loss function359

is defined as:360

L(Y, Ȳ ) = α1 ·MSE(Y, Ȳ )+α2 ·CD(Y, Ȳ ), (1)361

where MSE(Y, Ȳ ) represents the Mean Squared362

8Open AI text Embedding Model

Error. CD(Y, Ȳ ) denotes the Cosine Distance, 363

which captures the angular similarity between the 364

vectors Y and Ȳ . The constants α1 and α2 control 365

the relative importance of the two loss terms. 366

3.4.3 MusicFuseNet 367

We employ a similar architecture configuration as 368

MusicPopNet by (Martín-Gutiérrez et al., 2020) for 369

our MusicFuseNet. It uses a concatenation of com- 370

pressed audio feature vectors from AudioAENet, 371

compressed lyrics embeddings vectors from Lyric- 372

sAENet, high-level audio features and metadata as 373

mentioned in Table 1. The output of this neural 374

net is a popularity score in the range [0, 1]. The 375

architecture consists of a fully connected network 376

with scaling parameters of (1, 1/2, 1/3) and ReLU 377

activation functions, followed by a Sigmoid acti- 378

vation in the final layer, as empirically validated 379

by (Martín-Gutiérrez et al., 2020). To train the 380

model, we used the Adam optimizer with an MSE 381

loss function and applied dropout regularization to 382

mitigate overfitting. 383

4 Experiments and Results 384

Using the Code9 to implement HitMusicNet and 385

selecting the configuration details described in 386

Section 3.2, we trained HitMusicNet on the SPD 387

dataset with an 80-20 split. To replicate the results 388

obtained by (Martín-Gutiérrez et al., 2020), we em- 389

ployed Stratified Cross-Validation (SCV) with k=5 390

9Github: HitMusicNet

5

https://platform.openai.com/docs/guides/embeddings
https://github.com/dmgutierrez/hitmusicnet


LyricsAENet
Config

MAE
(Train)

MAE
(Val)

MAE
(Test)

SELU, MSE 0.0769 0.0746 0.0775
SiLU, MSE 0.0736 0.0731 0.0790

GELU, MSE 0.0740 0.0731 0.0792
SELU, Dir. 0.0741 0.0740 0.0799

Table 2: Results of training and testing HitMusicLyric-
Net on cleaned SPD data with various LyricAENet con-
figurations (activation function, loss function), using
BERT Large embeddings throughout. ‘Dir’ indicates
directional loss 1.

Embeddings
Model

MAE
(Train)

MAE
(Val)

MAE
(Test)

BERT large 0.0793 0.0784 0.0786
Llama 3.1 8B 0.0774 0.0759 0.0795
Llama 3.2 1B 0.0775 0.0754 0.0800
Llama 3.2 3B 0.0781 0.0766 0.0798
OpenAI Small 0.0746 0.0738 0.0788
OpenAI Large 0.0761 0.0743 0.0772

Table 3: Results of training and testing HitMusicLyric-
Net on cleaned SPD data with different lyric embed-
dings sent to LyricAENet (Selu activation, MSE loss).

Model Config Dataset
Config

MSE
(Train)

MSE
(Val)

MAE
(Train)

MAE
(Val)

MAE
(Test)

HitMusicNet SPD 0.0116 0.0115 0.0836 0.0851 0.0862
HitMusicNet w/o lyrics SPD 0.0114 0.0116 0.0843 0.0859 0.0870

HitMusicLyricNet *SPD 0.0095 0.0091 0.0761 0.0743 0.0772
HitMusicLyricNet w/o lyrics *SPD 0.0109 0.0113 0.0818 0.0841 0.0852

Table 4: Performance comparisons with the baseline (HitMusicNet) on SPD and SPD* data respectively, where
SPD* denotes cleaned SPD data. Here, we report the best results from Table 3.

folds and used MAE and MSE as performance met-391

rics. As Table 4 shows, we achieved similar results392

on all performance metrics, validating our training393

and testing strategy. Further, removing the lyrics394

text features proposed by (Martín-Gutiérrez et al.,395

2020) did not degrade the metrics, so we dropped396

those features for further experiments.397

To train HitMusicLyricNet, we extracted lyric398

embeddings from language models. For open-399

source models (BERT, Llama), we downloaded400

vanilla weights from Hugging Face10 and loaded401

its vanilla configuration. We used Nvidia A100402

GPU for compute requirements. After tokeniz-403

ing lyrics, we forward-passed them through each404

model, extracted the last hidden-layer states, and405

applied max/mean pooling to obtain fixed-size vec-406

tors for our Autoencoder. Specifically for BERT,407

we considered mean pooling and concat (max +408

CLS token). To get embeddings from OpenAI text409

models, we used the API endpoint, costing $3 for410

the small model and $6 for the large. Obtaining em-411

beddings via the OpenAI API took ∼5 hours due412

to rate limits, while the open-source took less than413

an hour. We then studied LLM model architecture414

and its training corpus effects on music popular-415

ity prediction with BERT, BERT Large, Llama 3.1416

8B, Llama 3.2 1B, Llama 3.2 3B, and OpenAI text417

embeddings (small and large).418

After extracting these embeddings, we examined419

different activation layers (Selu, Silu, Gelu) for em-420

bedding compression using LyricsAENet and in-421

10Hugging Face

troduced a directional loss function with α1 = 0.5 422

and α2 =
0.5
5 as suggested by (Bałazy et al., 2021), 423

alongside our standard MSE loss for LyricsAENet, 424

to see their impact on the HitMusicLyricNet perfor- 425

mance metric MAE. As reported in Table 2, using 426

SELU with the MSE loss function in LyricsAENet 427

yielded the least MAE error while training HitMu- 428

sicLyricNet on popularity prediction. Directional 429

loss produced comparable metrics but not enough 430

improvement to be included further. Other activa- 431

tion functions performed closely, but for simplicity 432

and observing 1–2% randomness error, we pro- 433

ceeded with SELU and MSE. 434

Next, we compressed embeddings for different 435

LLM models. While we experimented with two 436

variants of BERT (small and large) and considered 437

mean embeddings and concat (max + CLS token) 438

embeddings, here we only report results for BERT 439

large with mean embeddings, as it yielded the best 440

results as seen in Table 3. All the Llama variants 441

had very close performance metrics, whereas the 442

OpenAI large text embedding model surpassed all 443

of them. We attribute these small differences (∼ 444

2% variation) in HitMusicLyricNet’s performance 445

to variations in each model’s training data and ar- 446

chitecture, since none was specifically trained for 447

our downstream task, leading to large differences 448

in rich embedding representation. 449

Hence with HitMusicLyricNet, we used the Ope- 450

nAI large text embeddings and the SELU activation 451

with MSE loss function in lyricsAENet. Overall, 452

we achieved close to a 9% improvement compared 453
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to the SOTA architecture, despite training on 40%454

less data. Dropping the lyrics feature pipeline and455

retraining and testing HitMusicLyricNet led to per-456

formance metrics comparable to that of HitMusic-457

Net, validating the effectiveness of our proposed458

lyric feature extraction pipeline using LLMs and459

the overall enhancements in the music popularity460

prediction pipeline. A detailed ablation study for461

each feature set is provided in Appendix A.462

5 Error Analysis463

While HitMusicLyricNet surpasses the state-of-the-464

art baseline, an in-depth error analysis is neces-465

sary for real-world applications and future enhance-466

ments. In this section, we examine global residual467

errors, assess feature interpretability and impact468

via SHAP and LIME, and analyze social metadata469

to uncover any systematic biases and error patterns.470

All analyses are performed using the test set.471

Figure 4: Actual (blue) vs. predicted (red) mu-
sic popularity distributions on test set, showing pre-
diction compression at both tails with aligned means
(µactual = 0.422, µpredicted = 0.428).

5.1 Global Residual Error Analysis472

Figure 4 compares the actual and predicted mu-473

sic popularity distributions. Although the means474

are nearly identical (µactual = 0.422, µpredicted =475

0.428), the predicted distribution’s tails are com-476

pressed. The model predicts only 8.3% of songs477

with popularity below 0.2 (compared to 12.6% in478

the actual data) and fails to predict any songs with479

popularity above 0.8 (versus 1.2% in the actual480

data). This regression towards the mean reflects481

both the limited representation of extreme popu-482

larity cases in SPD dataset and also the model’s483

particular difficulty in capturing patterns of highly484

popular songs.485

The calibration plot (Fig. 5) also indicates a486

strong alignment between predicted and actual mu-487

sic popularity within most bins, with the highest488

precision in the 0.4-0.6 range where data density489

peaks.490

Figure 5: Model calibration plot showing alignment
between mean predicted and actual popularity per bin.

5.2 Interpretability Analysis 491

To understand the overall impact of non- 492

interpretable latent representation of music audio 493

and lyrics and the explicit metadata, we used SHAP 494

(SHapley Additive exPlanations)(Lundberg and 495

Lee, 2017), and LIME (Local Interpretable Model- 496

agnostic Explanations) (Ribeiro et al., 2016) tech- 497

niques on a randomly sampled 10% of test data. 498

On analyzing the outcome of SHAP (Fig 6), 499

artist popularity was the strongest predictor of mu- 500

sic popularity with SHAP values ranging from 501

−0.2 to +0.2. The compressed audio features 502

showed a decreasing impact across sequential lay- 503

ers, indicating that earlier layers captured more 504

predictive patterns. Lyric embeddings showed a 505

moderate but consistent impact unless there is a sig- 506

nificant deviation from the typical pattern. LIME 507

analysis supported these findings and substantiated 508

detailed insights on decision boundaries within fea- 509

ture values as presented in Appendix B. 510

5.3 Metadata and Artist-Level Analysis 511

In the previous section, we observed that artist pop- 512

ularity is a dominant predictor of song popularity. 513

To assess its impact and bias, we segmented the test 514

set into three groups (low, medium, and high) based 515

on artist popularity using quantiles. As shown in 516

Fig.7, songs composed by artists with low popu- 517

larity have an MAE 20% below the global MAE, 518

while those in the medium and high segments ex- 519

hibit MAEs 6.7% and 14.7% above it, respectively. 520

Furthermore, LIME analysis (appendix B) identi- 521

fied decision boundaries for artist popularity were 522

at 0.19 and 0.39. Combined with the challenge 523

of predicting the extreme right tail (Fig. 4), these 524

findings indicate that while artist popularity is a 525
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Figure 6: SHAP value distributions for top 15 features
across all modalities, with artist-related features show-
ing highest impact on model predictions.

Figure 7: Error distribution across artist popularity
segments, showing MAE increase from low (µ = 0.062)
to high (µ = 0.089) versus overall MAE (µ = 0.077).

strong predictor for low- and mid-popularity songs,526

it falls short for highly popular tracks. Therefore,527

identifying patterns and strong predictors for highly528

popular songs still remains a research challenge.529

Additionally, a year-wise error analysis (Fig. 15)530

shows that both MAE and its variance were signifi-531

cantly higher in the 1990s and early 2000s. Since532

2005, however, errors have stabilized—likely re-533

flecting a training bias towards recent years and534

also aligning with Spotify’s song popularity score535

calculation, which emphasizes more on recent time536

metrics.537

6 Conclusion and Future Work538

The work presented in this paper showcases the539

power of leveraging lyrics to predict the popular-540

ity of a song, with the help of LLMs with capa-541

bilities of capturing the deeper meaning of sen-542

tences using embeddings. We believe that ad- 543

vancements in music-aware language models will 544

lead to more explainable and expressive lyric fea- 545

tures based on domain-specific knowledge. This 546

research presented a novel architecture, HitMu- 547

sicLyricNet, along with an ablation study. Hit- 548

MusicLyricNet beats the SOTA by 9% by incorpo- 549

rating lyric embeddings and improving upon the 550

SOTA architecture. With advancements in com- 551

pression techniques and multimodal learning archi- 552

tecture, we believe accuracy and commercial use 553

can be improved. Furthermore, with advancements 554

in audio representation learning using neural audio 555

codecs, richer music audio representations can be 556

scoped into the study. Current research aggregates 557

features over an entire song. However, contem- 558

porary phenomena of virality suggest that local 559

features within different musical segments need 560

to be studied deeply and cannot be ignored given 561

the micro-content consumption driven by platforms 562

like Instagram and SnapChat. 563

7 Limitation 564

Our research results are potentially limited to the 565

music genres represented in our dataset and may 566

not generalize across genres, demographics, and 567

cultural contexts. Some limitations arise as a result 568

of the choice of dataset used in our study, SpotGen- 569

Track. The findings are highly dependent on the 570

quality and size of the SpotGenTrack dataset. The 571

dataset has been cleaned to filter out lyrics that are 572

not in the English language. Though this reduced 573

the size of the raw dataset by 40%, it limits the 574

model’s ability to be generalized across different 575

languages and associated cultural contexts. The 576

use of LLMs such as BERT and Llama 3 in our 577

model will lead to a lack of domain-specific con- 578

text, as horizontal LLMs are not typically trained 579

or fine-tuned on music-focused data. While ade- 580

quate measures have been made to address the risk 581

of overfitting, the risk cannot be completely elim- 582

inated due to the high dimensionality of the data. 583

The lyric embedding vectors are flowing down- 584

stream and are used to predict the popularity of a 585

song. Finally, since we are assessing the quality 586

of lyric embeddings using the performance metrics 587

of downstream tasks (music popularity prediction), 588

this requires a further examination to evaluate the 589

intrinsic qualities of lyric embeddings vector in 590

capturing rich representation. We are limited by 591

the explanability of our lyrics feature vector. 592
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A Ablation Study986

In this section, we study how different modalities987

contribute to our model’s music popularity predic-988

tive strength. Table 5 shows model performance for989

each combination of our four feature types: high-990

level audio (HH), low-level audio (LL), lyrics em-991

beddings (LR), and metadata (M).992

The model works best when it uses all modalities,993

with a test MAE of 0.0772. If we exclude lyrics994

embeddings, the test MAE increases by 10.4% to995

0.0852, highlighting the usefulness of our proposed996

lyrics feature pipeline. Notably, using only high-997

level features and metadata along with lyrics (HH,998

LR, M) gives comparable performance to using 999

all the modalities features, indicating some redun- 1000

dancy in low-level audio features. The role of so- 1001

cial context is apparent when we strip metadata by 1002

utilizing only audio and lyrics features (HH, LL, 1003

LR), which makes the test MAE rise by 40.2% to 1004

0.1082. Performance suffers most significantly if 1005

we use only audio features (HH, LL) and obtain a 1006

test MAE of 0.1196. 1007

Modality Config MAE
(Train)

MAE
(Val)

MAE
(Test)

HH, LL, LR, M 0.0761 0.0743 0.0772
HH, LL, M 0.0818 0.0841 0.0852
HH, LL, LR 0.1059 0.1037 0.1082
HH, LR, M 0.0767 0.0765 0.0795

HH, LL 0.1188 0.1175 0.1196
LR, M 0.0810 0.0811 0.0805

Table 5: Results of training and testing HitMusicLyric-
Net with different modality combinations. HH: High-
level audio features, LL: Low-level audio features, LR:
Lyrics embeddings features, M: Metadata features.

To further understand individual modality perfor- 1008

mance, we conducted isolated training experiments 1009

as shown in Table 6. Single-modality tests ascertain 1010

that metadata features (M) alone achieve the high- 1011

est single-modality performance with a test MAE 1012

of 0.0968, verifying our initial observation about 1013

the importance of social context in music popular- 1014

ity prediction. Lyrics embeddings (LR) are sim- 1015

ilarly predictive to low-level audio features (LL), 1016

with test MAEs of 0.1193 and 0.1229, respectively. 1017

High-level audio features (HH) are slightly worse 1018

in isolation with a test MAE of 0.1272. These re- 1019

sults show that while each modality contains valu- 1020

able information, their combination creates syner- 1021

gistic effects that significantly improve prediction 1022

accuracy, as evidenced by the better performance 1023

of the full model in Table 5. 1024

Modality Config MAE
(Train)

MAE
(Val)

MAE
(Test)

LL 0.1234 0.1218 0.1229
HH 0.1260 0.1266 0.1272
LR 0.1208 0.1189 0.1193
M 0.1026 0.0956 0.0968

Table 6: Performance comparison of individual modali-
ties in predicting song popularity, showing the relative
strength of each feature type in isolation.

B Error and Feature Importance Analysis 1025

To supplement our error analysis discussed in Sec- 1026

tion 5, we conducted a detailed investigation of 1027
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model behavior through two complementary ap-1028

proaches: (1) analysis of prediction residuals and1029

their distribution patterns, and (2) assessment of1030

feature importance across different modalities us-1031

ing SHAP and LIME techniques.1032

Figure 8: Distribution of prediction residuals centered
at µ ≈ 0.0, showing approximately normal spread with
slight negative skewness.
.

Analysis of the residual distribution (Figure 8)1033

shows a quasi-normal pattern centered at zero, with1034

about 95% of forecasts falling within ±0.2 of actual1035

values. The distribution shows minimal negative1036

skewness, suggesting a small inclination toward un-1037

derestimating in extreme conditions. With variance1038

amplification in the mid-popularity range (0.3–0.6)1039

and more limited errors at the extremes, the resid-1040

ual scatter plot against predicted popularity (Figure1041

9) shows heteroscedastic behavior.1042

Figure 9: Scatter plot of residuals vs predicted popular-
ity values showing error distribution across popularity
ranges.

The LIME study shows varied trends in feature1043

relevance over multiple modalities. With artist pop-1044

ularity thresholds (≤ 0.19 and > 0.39) display-1045

Figure 10: Aggregated global LIME feature importance
scores across the test set, demonstrating artist popularity
thresholds as dominant predictors. Values represent ab-
solute LIME coefficients with 95% confidence intervals,
n indicates per-feature sample size.

ing the highest importance scores (∼0.13), artist- 1046

related metadata dominates the prediction process 1047

in the general feature landscape (Figure 10). This 1048

division implies that the algorithm has learnt differ- 1049

ent behavioral patterns for artists at various degrees 1050

of popularity. 1051

Early compressed dimensions (especially 1052

feat_compressed_15) have higher predictive 1053

weight than later ones, therefore displaying a 1054

hierarchical importance structure in the low-level 1055

audio characteristics (Figure 11). This trend 1056

shows that in its first compression layers, our 1057

AudioAENet efficiently retains fundamental 1058

acoustic information. 1059

Figure 11: LIME importance scores for compressed
low-level audio features, showing early compressed
dimensions (particularly feat_compressed_15) having
higher predictive power.

A deeper interpretation of the LIME results 1060

for lyric-embedding characteristics shows that al- 1061

though some compressed dimensions (such as 1062

52 and 54) often show themselves as most es- 1063

sential, their impact on the prediction is not 1064

13



consistent across all samples. Particularly sev-1065

eral threshold splits for these dimensions (e.g.,1066

compressed_dim_52 > 0.05 vs. ≤ 0.03) point1067

to a non-linear or boundary-based relationship: the1068

model may be using these latent factors to distin-1069

guish between songs that surpass certain “lyrical1070

thresholds” (perhaps tied to vocabulary, theme, or1071

semantic content) and those that do not.1072

Figure 12: LIME importance scores for compressed
lyric embedding dimensions, highlighting threshold-
based importance patterns in dimensions 52 and 54.
Wider confidence intervals indicate more variable im-
pact of lyrical features.

The SHAP analysis shows complex patterns in1073

how lyrical elements influence popularity predic-1074

tions (Figures 13–14). For lyrics (Figure 14), while1075

most dimensions cluster tightly around zero (±0.011076

SHAP value), several dimensions demonstrate dif-1077

ferent patterns. The top dimensions (51–25) show1078

bigger influence distributions and more extreme1079

outlier points. Particularly in dimensions 51, 53,1080

and 23, an interesting trend in the color distribu-1081

tion shows that positive SHAP values often corre-1082

spond with greater feature values (red) and neg-1083

ative with lower values (blue). This implies that1084

these measures reflect poetic aspects that, either1085

highly present or missing, always affect popularity1086

in particular directions. With scarce but consider-1087

able negative effects (reaching −0.04) and a mixed1088

color distribution, Compressed_dim_127 exhibits1089

a distinctive pattern that indicates it captures com-1090

plicated lyrical features that influence popularity1091

irrespective of their size.1092

By contrast, the audio features (Figure 13) ex-1093

hibit more asymmetric impact distributions, espe-1094

cially in feat_compressed_15 with the highest1095

magnitude of impact (−0.12 to 0.04). Early com-1096

pressed audio characteristics (15, 25, 9) show sig-1097

nificantly higher SHAP values than later dimen-1098

sions, therefore confirming the capacity of our au-1099

Figure 13: SHAP values for compressed audio fea-
tures, showing stronger impact of early dimensions
(feat_compressed_15) with values ranging from −0.12
to +0.04. Color indicates original feature value magni-
tude (blue=low, red=high).

toencoder to retain important acoustic information 1100

in its first layers. Notably, while audio features tend 1101

to have larger absolute SHAP values than lyrics fea- 1102

tures, they also show more defined directionality 1103

in their effects, suggesting more deterministic rela- 1104

tionships with popularity predictions. 1105
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Figure 14: SHAP values for lyric embedding dimen-
sions, revealing more symmetric distributions around
zero (±0.02) with notable outliers in dim_127. Colors
represent embedding magnitude in each dimension.

Figure 15: Year-wise absolute error distribution (1950–
2019) showing higher error variance in early decades
(1990s) followed by stabilization post-2005. Box plots
show error distributions per year, blue line tracks yearly
MAE trend, and red dashed line indicates overall MAE
of 0.077 .
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