
Supplementary material for the preprint Coincidence Detection Is All You Need, submitted for a double-blind peer review to 36th Conference
on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Classification by coincidence detection via Sample-Standardized
Softmax regression (S3-classifier)
Here we introduce the S3-classifier, which was inspired by the theory of coincidence detection, and show it to be competitive to
ResNet-26 based on data from

Ho, CS. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun 10, 4927
(2019). https://doi.org/10.1038/s41467-019-12898-9

used under http://creativecommons.org/licenses/by/4.0/.

The main results were first obtained using Wolfram Mathematica by importing the dataset as matrices using the ReadNumpy package
by Luca Robbiano, and running the following analysis

Wolfram Language code to be run on the imported matrices xTrain and xTest
ssxTrain = Table[Standardize@MeanFilter[xTrain[[L]], 1], {L, 3000}];
trainingset = Catenate@Table[ssxTrain[[(i - 1)*100 + j]] -> i, {i, 30}, {j, 100}];
c = Classify[trainingset, Method -> "LogisticRegression", PerformanceGoal -> "DirectTraining"];
ssxTest = Table[Standardize@MeanFilter[xTest[[L]], 1] , {L, 3000}];
testset = Catenate@Table[ssxTest[[(i - 1)*100 + j]] -> i, {i, 30}, {j, 100}];
ClassifierMeasurements[c, testset]

Python code is provided below for a more detailed analysis , as it is presently more popular among the machine learning community.

Visualize the train and test dataset

In []: from time import time
t00 = time()
import numpy as np
from sklearn.preprocessing import scale
from sklearn.linear_model import LogisticRegression,LogisticRegressionCV
import matplotlib.pyplot as plt
%matplotlib inline

In []: X_train = np.load('./drive/MyDrive/X_finetune.npy') #3000 samples of Raman spectra with 1000 lines each
y_train = np.load('./drive/MyDrive/y_finetune.npy') #3000 samples of bacterial classes from 0-29
X_test = np.load('./drive/MyDrive/X_test.npy')
y_test = np.load('./drive/MyDrive/y_test.npy')
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(30,50))
ax1.matshow(X_train)
ax2.matshow(X_test)
plt.show()

https://doi.org/10.1038/s41467-019-12898-9
http://creativecommons.org/licenses/by/4.0/
https://github.com/lr94/NumPyArray/blob/master/NumPyArray.wl

Fit a softmax (multinomial logistic) regression model to the sample-standardized training dataset

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
 https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,

In []: sX_train = scale(X_train,axis=1) #note that standardization is performed across samples instead of across features
reg = LogisticRegression(penalty='l2',C=1e4,max_iter=100,solver='lbfgs',multi_class='multinomial').fit(sX_train, y_train)
reg.score(sX_train, y_train)

1.0

Evaluate the model on the standardized and smoothened test dataset

0.8293333333333334

The accuracy of our theory-inspired model is 82.9% and outperforms the 82.2% obtained by the ResNet-26 deep learning
method.

The remaining analysis employs the code by Chi-Sing Ho to produce confusion matrix plots of the same style as in Ho, CS. et al (2019).

Plotting confusion matrix for bacterial isolates
We use the predictions to plot a version of the confusion matrix see in Figure 2 of the paper (Ho et al. 2019). Each row represents the true
class and each columen represents the predicted class. The entries of the confusion matrix are normalized so that the rows sum to 100%
(differences from rounding). The accuracy for each class can be seen in the diagonal entries.

Out[]:

In []: #standardization is performed across samples instead of across features
sX_test = scale(X_test,axis=1)
#smooth dataset to account for horizontal shifts in the line spectra
def smooth(mat):
 return np.hstack((mat[::,0:1]+mat[::,1:2],mat[::,0:-2]+mat[::,1:-1]+mat[::,2:],mat[::,-1:]+mat[::,-2:-1]))
ssX_test = smooth(sX_test)
print(reg.score(ssX_test, y_test))

In []: # prepare results to be plotted
y=y_test
y_hat=reg.predict(ssX_test)

In []: import seaborn as sns
from sklearn.metrics import confusion_matrix

ORDER = [16, 17, 14, 18, 15, 20, 21, 24, 23, 26, 27, 28, 29, 25, 6, 7, 5, 3, 4,
 9, 10, 2, 8, 11, 22, 19, 12, 13, 0, 1]

STRAINS = {}
STRAINS[0] = "C. albicans"
STRAINS[1] = "C. glabrata"
STRAINS[2] = "K. aerogenes"
STRAINS[3] = "E. coli 1"
STRAINS[4] = "E. coli 2"
STRAINS[5] = "E. faecium"
STRAINS[6] = "E. faecalis 1"
STRAINS[7] = "E. faecalis 2"
STRAINS[8] = "E. cloacae"
STRAINS[9] = "K. pneumoniae 1"
STRAINS[10] = "K. pneumoniae 2"
STRAINS[11] = "P. mirabilis"
STRAINS[12] = "P. aeruginosa 1"
STRAINS[13] = "P. aeruginosa 2"
STRAINS[14] = "MSSA 1"
STRAINS[15] = "MSSA 3"
STRAINS[16] = "MRSA 1 (isogenic)"
STRAINS[17] = "MRSA 2"
STRAINS[18] = "MSSA 2"
STRAINS[19] = "S. enterica"
STRAINS[20] = "S. epidermidis"
STRAINS[21] = "S. lugdunensis"
STRAINS[22] = "S. marcescens"
STRAINS[23] = "S. pneumoniae 2"
STRAINS[24] = "S. pneumoniae 1"
STRAINS[25] = "S. sanguinis"
STRAINS[26] = "Group A Strep."
STRAINS[27] = "Group B Strep."
STRAINS[28] = "Group C Strep."
STRAINS[29] = "Group G Strep."

In []: # Plot confusion matrix
sns.set_context("talk", rc={"font":"Helvetica", "font.size":12})
label = [STRAINS[i] for i in ORDER]
cm = confusion_matrix(y, y_hat, labels=ORDER)
plt.figure(figsize=(15, 12))
cm = 100 * cm / cm.sum(axis=1)[:,np.newaxis]
ax = sns.heatmap(cm, annot=True, cmap='YlGnBu', fmt='0.0f',
 xticklabels=label, yticklabels=label)
ax.xaxis.tick_top()
plt.xticks(rotation=90)
plt.show()

https://github.com/csho33/bacteria-ID/blob/master/2_reference_prediction.ipynb

Plotting confusion matrix for antibiotic groupings
Finally, we can combine predictions into antibiotic groupings to estimate treatment accuracy. The entries of the confusion matrix are
normalized so that the rows sum to 100% (differences from rounding). The accuracy for each antibiotic group can be seen in the diagonal
entries.

In []: ATCC_GROUPINGS = {3: 0,
 4: 0,
 9: 0,
 10: 0,
 2: 0,
 8: 0,
 11: 0,
 22: 0,
 12: 2,
 13: 2,
 14: 3, # MSSA
 18: 3, # MSSA
 15: 3, # MSSA
 20: 3,
 21: 3,
 16: 3, # isogenic MRSA
 17: 3, # MRSA
 23: 4,
 24: 4,
 26: 5,
 27: 5,
 28: 5,
 29: 5,
 25: 5,
 6: 5,
 7: 5,
 5: 6,
 19: 1,
 0: 7,
 1: 7}
ab_order = [3, 4, 5, 6, 0, 1, 2, 7]
antibiotics = {}
antibiotics[0] = "Meropenem" # E. coli

Accuracy: 96.9%

 This demo was completed in: 27.12s

antibiotics[1] = "Ciprofloxacin" # Salmonella
antibiotics[2] = "TZP" # PSA
antibiotics[3] = "Vancomycin" # Staph
antibiotics[4] = "Ceftriaxone" # Strep pneumo
antibiotics[5] = "Penicillin" # Strep + E. faecalis
antibiotics[6] = "Daptomycin" # E. faecium
antibiotics[7] = "Caspofungin" # Candidas

In []: # Mapping predictions into antibiotic groupings
y_ab = np.asarray([ATCC_GROUPINGS[i] for i in y])
y_ab_hat = np.asarray([ATCC_GROUPINGS[i] for i in y_hat])
Computing accuracy
acc = (y_ab_hat == y_ab).mean()
print('Accuracy: {:0.1f}%'.format(100*acc))

In []: sns.set_context("talk", rc={"font":"Helvetica", "font.size":12})
label = [antibiotics[i] for i in ab_order]
cm = confusion_matrix(y_ab, y_ab_hat, labels=ab_order)
plt.figure(figsize=(5, 4))
cm = 100 * cm / cm.sum(axis=1)[:,np.newaxis]
ax = sns.heatmap(cm, annot=True, cmap='YlGnBu', fmt='0.0f',
 xticklabels=label, yticklabels=label)
ax.xaxis.tick_top()
plt.xticks(rotation=90)
plt.show()
print('\n This demo was completed in: {:0.2f}s'.format(time()-t00))

