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Classification by coincidence detection via Sample-Standardized
Softmax regression (S3-classifier)
Here we introduce the S3-classifier, which was inspired by the theory of coincidence detection, and show it to be competitive to
ResNet-26 based on data from

Ho, CS. et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun 10, 4927
(2019). https://doi.org/10.1038/s41467-019-12898-9

used under http://creativecommons.org/licenses/by/4.0/.

The main results were first obtained using Wolfram Mathematica by importing the dataset as matrices using the ReadNumpy package
by Luca Robbiano, and running the following analysis

# Wolfram Language code to be run on the imported matrices xTrain and xTest  
ssxTrain = Table[ Standardize@MeanFilter[xTrain[[L]], 1], {L, 3000}]; 
trainingset = Catenate@Table[ssxTrain[[(i - 1)*100 + j]] -> i, {i, 30}, {j, 100}]; 
c = Classify[trainingset, Method -> "LogisticRegression", PerformanceGoal -> "DirectTraining"]; 
ssxTest = Table[ Standardize@MeanFilter[xTest[[L]], 1] , {L, 3000}]; 
testset = Catenate@Table[ssxTest[[(i - 1)*100 + j]] -> i, {i, 30}, {j, 100}]; 
ClassifierMeasurements[c, testset]

Python code is provided below for a more detailed analysis , as it is presently more popular among the machine learning community.

Visualize the train and test dataset

In [ ]: from time import time 
t00 = time() 
import numpy as np 
from sklearn.preprocessing import scale 
from sklearn.linear_model import LogisticRegression,LogisticRegressionCV 
import matplotlib.pyplot as plt 
%matplotlib inline 

In [ ]: X_train = np.load('./drive/MyDrive/X_finetune.npy') #3000 samples of Raman spectra with 1000 lines each 
y_train = np.load('./drive/MyDrive/y_finetune.npy') #3000 samples of bacterial classes from 0-29 
X_test = np.load( './drive/MyDrive/X_test.npy') 
y_test = np.load('./drive/MyDrive/y_test.npy') 
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(30,50)) 
ax1.matshow(X_train) 
ax2.matshow(X_test) 
plt.show() 

https://doi.org/10.1038/s41467-019-12898-9
http://creativecommons.org/licenses/by/4.0/
https://github.com/lr94/NumPyArray/blob/master/NumPyArray.wl


Fit a softmax (multinomial logistic) regression model to the sample-standardized training dataset

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarning: lbfgs failed to converge 
(status=1): 
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. 

Increase the number of iterations (max_iter) or scale the data as shown in: 
    https://scikit-learn.org/stable/modules/preprocessing.html 
Please also refer to the documentation for alternative solver options: 
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression 
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG, 

In [ ]: sX_train = scale(X_train,axis=1) #note that standardization is performed across samples instead of across features 
reg = LogisticRegression(penalty='l2',C=1e4,max_iter=100,solver='lbfgs',multi_class='multinomial').fit(sX_train, y_train) 
reg.score(sX_train, y_train) 



1.0

Evaluate the model on the standardized and smoothened test dataset

0.8293333333333334 

The accuracy of our theory-inspired model is 82.9% and outperforms the 82.2% obtained by the ResNet-26 deep learning
method.

The remaining analysis employs the code by Chi-Sing Ho to produce confusion matrix plots of the same style as in Ho, CS. et al (2019).

Plotting confusion matrix for bacterial isolates
We use the predictions to plot a version of the confusion matrix see in Figure 2 of the paper (Ho et al. 2019). Each row represents the true
class and each columen represents the predicted class. The entries of the confusion matrix are normalized so that the rows sum to 100%
(differences from rounding). The accuracy for each class can be seen in the diagonal entries.

Out[ ]:

In [ ]: #standardization is performed across samples instead of across features 
sX_test = scale(X_test,axis=1) 
#smooth dataset to account for horizontal shifts in the line spectra 
def smooth(mat): 
  return np.hstack((mat[::,0:1]+mat[::,1:2],mat[::,0:-2]+mat[::,1:-1]+mat[::,2:],mat[::,-1:]+mat[::,-2:-1])) 
ssX_test = smooth(sX_test) 
print(reg.score(ssX_test, y_test)) 

In [ ]: # prepare results to be plotted 
y=y_test 
y_hat=reg.predict(ssX_test) 

In [ ]: import seaborn as sns 
from sklearn.metrics import confusion_matrix 
 
ORDER = [16, 17, 14, 18, 15, 20, 21, 24, 23, 26, 27, 28, 29, 25, 6, 7, 5, 3, 4, 
         9, 10, 2, 8, 11, 22, 19, 12, 13, 0, 1] 
 
STRAINS = {} 
STRAINS[0] = "C. albicans" 
STRAINS[1] = "C. glabrata" 
STRAINS[2] = "K. aerogenes" 
STRAINS[3] = "E. coli 1" 
STRAINS[4] = "E. coli 2" 
STRAINS[5] = "E. faecium" 
STRAINS[6] = "E. faecalis 1" 
STRAINS[7] = "E. faecalis 2" 
STRAINS[8] = "E. cloacae" 
STRAINS[9] = "K. pneumoniae 1" 
STRAINS[10] = "K. pneumoniae 2" 
STRAINS[11] = "P. mirabilis" 
STRAINS[12] = "P. aeruginosa 1" 
STRAINS[13] = "P. aeruginosa 2" 
STRAINS[14] = "MSSA 1" 
STRAINS[15] = "MSSA 3" 
STRAINS[16] = "MRSA 1 (isogenic)"
STRAINS[17] = "MRSA 2" 
STRAINS[18] = "MSSA 2" 
STRAINS[19] = "S. enterica" 
STRAINS[20] = "S. epidermidis" 
STRAINS[21] = "S. lugdunensis" 
STRAINS[22] = "S. marcescens" 
STRAINS[23] = "S. pneumoniae 2" 
STRAINS[24] = "S. pneumoniae 1" 
STRAINS[25] = "S. sanguinis" 
STRAINS[26] = "Group A Strep." 
STRAINS[27] = "Group B Strep." 
STRAINS[28] = "Group C Strep." 
STRAINS[29] = "Group G Strep." 

In [ ]: # Plot confusion matrix 
sns.set_context("talk", rc={"font":"Helvetica", "font.size":12}) 
label = [STRAINS[i] for i in ORDER] 
cm = confusion_matrix(y, y_hat, labels=ORDER) 
plt.figure(figsize=(15, 12)) 
cm = 100 * cm / cm.sum(axis=1)[:,np.newaxis] 
ax = sns.heatmap(cm, annot=True, cmap='YlGnBu', fmt='0.0f', 
                 xticklabels=label, yticklabels=label) 
ax.xaxis.tick_top() 
plt.xticks(rotation=90)  
plt.show() 

https://github.com/csho33/bacteria-ID/blob/master/2_reference_prediction.ipynb


Plotting confusion matrix for antibiotic groupings
Finally, we can combine predictions into antibiotic groupings to estimate treatment accuracy. The entries of the confusion matrix are
normalized so that the rows sum to 100% (differences from rounding). The accuracy for each antibiotic group can be seen in the diagonal
entries.

In [ ]: ATCC_GROUPINGS = {3: 0, 
                  4: 0, 
                  9: 0, 
                  10: 0, 
                  2: 0, 
                  8: 0, 
                  11: 0, 
                  22: 0, 
                  12: 2, 
                  13: 2, 
                  14: 3, # MSSA 
                  18: 3, # MSSA 
                  15: 3, # MSSA 
                  20: 3, 
                  21: 3, 
                  16: 3, # isogenic MRSA 
                  17: 3, # MRSA 
                  23: 4, 
                  24: 4, 
                  26: 5, 
                  27: 5, 
                  28: 5, 
                  29: 5, 
                  25: 5, 
                  6: 5, 
                  7: 5, 
                  5: 6, 
                  19: 1, 
                  0: 7, 
                  1: 7} 
ab_order = [3, 4, 5, 6, 0, 1, 2, 7] 
antibiotics = {} 
antibiotics[0] = "Meropenem" # E. coli 



Accuracy: 96.9% 

 This demo was completed in: 27.12s 

antibiotics[1] = "Ciprofloxacin" # Salmonella 
antibiotics[2] = "TZP" # PSA 
antibiotics[3] = "Vancomycin" # Staph 
antibiotics[4] = "Ceftriaxone" # Strep pneumo 
antibiotics[5] = "Penicillin" # Strep + E. faecalis 
antibiotics[6] = "Daptomycin" # E. faecium 
antibiotics[7] = "Caspofungin" # Candidas 

In [ ]: # Mapping predictions into antibiotic groupings 
y_ab = np.asarray([ATCC_GROUPINGS[i] for i in y]) 
y_ab_hat = np.asarray([ATCC_GROUPINGS[i] for i in y_hat]) 
# Computing accuracy 
acc = (y_ab_hat == y_ab).mean() 
print('Accuracy: {:0.1f}%'.format(100*acc)) 

In [ ]: sns.set_context("talk", rc={"font":"Helvetica", "font.size":12}) 
label = [antibiotics[i] for i in ab_order] 
cm = confusion_matrix(y_ab, y_ab_hat, labels=ab_order) 
plt.figure(figsize=(5, 4)) 
cm = 100 * cm / cm.sum(axis=1)[:,np.newaxis] 
ax = sns.heatmap(cm, annot=True, cmap='YlGnBu', fmt='0.0f', 
                 xticklabels=label, yticklabels=label) 
ax.xaxis.tick_top() 
plt.xticks(rotation=90)  
plt.show() 
print('\n This demo was completed in: {:0.2f}s'.format(time()-t00)) 


