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A H Y P E R PA R A M T E R S

All neural networks were build using the Jax library (Bradbury et al., 2018). In all experiments,
training was carried out using a distributed A3C setup (Espeholt et al., 2018) with discrete actions.
For 3D Unity Env experiments, we added an additional Pixel Control loss (Jaderberg et al., 2016) for
all agents. We used a single learner and 256 actors. Important training hyper-parameters are shown in
Table 2, along with the components of the agent’s architecture that are shared between the different
models. The parameter values used for each model presented in the main paper are shown below in
Table 3.

A . 1 H Y P E R PA R A M T E R S E A R C H

We tuned all models using the BabyAI “Place X next to Y” task (Chevalier-Boisvert et al.,
2019) (§B.1). For each architectures, we tuned using a random search. Additionally, we increased
the size of the LSTM so that all architectures had approximately the same number of parameters.

Composable Perceptual Schemas. We found that we did not need to tune the model much beyond
a random search over attention projection dims Wi ∈ [16, 32] and Conv LSTM kernel size [3, 5].

Attention Augmented agent. We used hyper-parameters from their paper put tuned the following:
LSTM hidden size [256, 512], Attention query MLP size [{}, {256}, {256, 256}], number of attention
heads [4, 8]. We consulted the authors about our implementation.

Recurrent Independent Mechanisms. We used hyper-parameters from their paper put tuned the
following: LSTM hidden size [100, 128, 256], Observation/communication head size [32, 64, 128],
number of observation/communication heads [4, 5, 6], number of RIMs [4, 6, 9, 12]. We consulted the
authors about our implementation and used their source code for replication https://github.
com/anirudh9119/RIMs. We note that we did not use their “top-k” feature where only k RIMs
are active because that doubled run-time. Since our experiments typically required ≥ 1 billion
frames, using “top-k” led individual runs to take > 2 days.

Long Short-Term Memory. We searched an LSTM hidden size [128, 256, 512]. We consistently
found that a larger memory had better results.
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Table 2: Training hyper-parameters and shared network components used in experiments.

Loss Hyper-parameters 3D Unity Env Gridworlds
V-trace baseline cost 1.0 0.5
V-trace entropy cost 10−4 0.01
V-trace γ 0.95 1.0
V-trace loss scaling 0.1 1.0
Pixel Control loss scaling 0.1 –
Pixel Control loss cell size 4 –
Pixel Control discount factor 0.9 –
Pixel Control de-convolution sizes (6, 9, 32), (8, 11, 32) –
Pixel Control kernel shape (3, 4) –
Pixel Control de-convolution output shape (18, 42) –
Optimizer clipped Adam clipped Adam
Learning rate 2× 10−4 10−4

Max gradient Norm 40.0 40.0
Optimizer epsilon 5× 10−8 10−8

Adam β1 0.0 0.9
Adam β2 0.95 0.999

Shared Network Components
Language encoder GRU GUR
Language encoder hidden sizes 128 128
Language word embedding size 128 128
Image encoder Res-Net Res-Net
Res-Net channels (16, 32, 32) (16, 32, 32)
Res-Net residual blocks (2, 2, 2) (2, 2, 2)
Res-Net stride 2 2
Res-Net kernel size 3 3
Res-Net padding SAME SAME
Previous action encoding Identity Identity
Reward encoding Identity Identity
Image-language-reward-action combination Concatenation Concatenation
Input Convolutional dims (9, 12, 32) (7, 7, 32)
Policy Head MLP shapes [512, 46] [200, 7]
Value Head MLP shapes [512, 1] [200, 1]
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Table 3: Model specific parameters.

Model parameter 3D Unity Env Gridworld
Ballet

Gridworld
Keybox

Observation Dims 72× 96 99× 99 56× 56

Composable Perceptual Schemas
Parameters (millions) 5.1 7.1 7.6
Input Convolutional dims (9, 12, 32) (12, 12, 32) (7, 7, 32)
Policy-state size 512 512 1024
Number of subschemas 4 4 8
Schema dimension 128 128 128
Relation heads 2 2 4
Projection dims W1,W2 16 16 16
ConvLSTM kernel size 3 3 3
ConvLSTM hidden size 32 32 32

LSTM
Parameters (millions) 5.6 7.2 7.6
LSTM Hidden size 896 768 1024

Attention Augmented Agent
Parameters (millions) 5.1 6.9 7.5
ConvLSTM kernel size 3 3 3
ConvLSTM output size 128 128 128
LSTM hidden size 704 512 960
Number of attention heads 4 4 4
Attention query MLP size (256, 256) (256, 256) (256, 256)
Positional basis dim 4 4 4

RIMs
Parameters (millions) 5 6.6 7.6
Number of RIMs 12 9 9
Individual RIM size 128 128 128
Observation heads 6 6 6
Communication heads 6 6 6
Observation head size 32 32 32
Communication head size 32 32 32
Basis size (learned) 4 4 4
Dropout 0.2 0.2 0.2
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B A D D I T I O N A L E X P E R I M E N T S

B . 1 G E N E R A L I Z I N G T O A N U N S E E N N U M B E R O F D I S T R A C T O R S

We study this with the “Place X next to Y ” task in the BabyAI gridworld (Chevalier-Boisvert et al.,
2019) (Figure 11a). The agent is a red triangle. Other objects can be squares, boxes or circles and
they can take on 7 colors. The agent receives a partial, egocentric observation of the environment
(Figure 11a, right) and is given a synthetic language instruction. The agent gets a reward of 1 if
chooses the correct dancer, and 0 otherwise. During training the agent sees either 0 or 2 distractors.
During testing, the agent sees 11 distractors. As the number of distractors increases, the likelihood
a distractor is either (a) confounding with the task objects or (b) blocks/confuses the agent also
increases.

Figure 7: RIMs, which uses spatial attention, better generalizes to more distractors. We show
train and test success rate performance for “Place X next to Y” in the BabyAI environment (10 runs).

We present results in Figure 7. On the left two panels, we present training results for {0, 2} distractors.
All architectures can learn this task. On the right-most panel, we present test results for 11 distractors.
CPSand an LSTM get comparable performance (≈ 70%). RIMs has the best generalization success
rate (≈ 80%).

B . 2 A N A LY S I S O F R E P R E S E N TAT I O N S L E A R N E D F O R K E Y B O X - L I K E
E N V I R O N M E N T

We found no way to programmatically categorize the agent’s experience with object-configurations.
Thus, we found no way to study the representations learned for subsections in the KeyBox environ-
ment. In order to study this question, we created a toy “Abstract MDP” environment (Figure 11b).
Importantly, each episode consists of performing a task in 3 × 3 environment. This is similar to
the KeyBox task since its a sequence of 3× 3 subsections. In this task, there are a fixed number of
abstract MDPs which have their own unique object-placement, which mimics the fixed number of
object-configurations that can be sampled for the KeyBox task. For an example of these differences,
see Figure 11b). The object-placements of an abstract MDP are identical but the actual objects in the
positions are completely random (i.e. both shape and color are random). We sample 1000 episodes
from 20 abstract MDPs. By training CPS on this environment, we can see how it uses different
subschemas to represent different categories. In this experiment, CPS had 4 RNNs of dimensionality
20, requiring that they all be used. In order to see how CPSrepresents these MDPS, we study the
time-series of sum of each subschema LSTM-state:

∑
dh
h
(i)
t . We present results in Figure 8. We

find that Subschemas respond to object-configurations, not to object types (e.g. key, ball, or box), nor
to colors (green or blue).
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Figure 8: Subschema respond to object-configuration not to individual object colors or shapes.
On the left, we plot the starting state of the episode. On the right, we plot the sum of each subschema
LSTM-state.
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C F U L L C O R R E L AT I O N S F O R A N A LY S I S

In this section, we show full plots for the analysis in §4.3.1. We show

1. Average L2 norm of all subschema-states (Figure 9).
2. Average pair-wise correlation between L2 norm of all subschema-states (Figure 10).

Figure 9: Average L2 norm of subschema-states.
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Figure 10: Average pair-wise correlation between L2 norm of subschema-states.
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D E N V I R O N M E N T S

(a) Place X on Y task in BabyAI environment.

(b) Abstract MDP Environment based on BabyAI.

(c) KeyBox task.

(d) Ballet task.

Figure 11: Additional Environment Images.
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D . 1 B A L L E T

Please refer to Lampinen et al. (2021) for details on this task. Our only difference was to use tasks
with {2, 4} dancers during training and tasks with 8 dancers for testing.

D . 2 K E Y B O X

Observation Space. The agent receives a 56 × 56 partially observable, egocentric image of the
environment as in Figure 11a, right.

Action Space. The action space is composed of the 7 discrete actions turn left, turn right, go forward,
pickup object, drop object, toggle, and done/no-op.

Reward function. When the agent completes level n, it gets a reward of n/nmax where nmax is the
maximum level the agent can complete. We set nmax = 10 during training. The agent has 50n
time-steps to complete a level.

Table 4: Object and colors available for objects in the KeyBox task.

Set Contains

Shapes ball, key, box

Colors red, green, blue, purple, pink, yellow, white

D . 3 3 D U N I T Y E N V I R O N M E N T

For the “place X on Y” experiments in 3D, all pickupable objects were split into two setsO1 = A∪B
and all object to place something on into another two sets O2 = C ∪D, as shown in Table 5. Given
the challenging nature of the 3D environment (huge number of possible states, partial observability,
language commands, long credit assignment), we had to employ a set of curriculum tasks in order for
the agents to make any progress on the actual task of interest “Put X on Y”. The agent co-trained on
the full set of tasks. This was possible since we used a distributed A3C setup for our training (Espeholt
et al., 2018), where each of the actors generating the experience was running on one of the possible
training levels. The different training tasks used during training and evaluation are shown in Table 6.

All episodes lasted for a maximum of 120 seconds and an action repeat of 4 was used. The images
observations were rendered at 96×72×3 and given to the agent along with a text language instruction,
where each word in the instruction was mapped into a continuous vector of size 128 using a fixed
vocabulary of maximum size 1000.

Reward function. An agent get’s a reward of 1 if it completed the task and 0 otherwise.

Action Space. The action space for the experiments in 3d Unity Environment was 46 discrete actions
that allow the agent to move its body and change its head direction, to grab objects while moving and
manipulate the held objects by rotating, pulling or pushing the held object. The object is while as
long as the agent is emitting a GRAB action, and dropped in the first instance that a GRAB action is
not emitted. The full list of possible actions in the 3d Unity Environment environment is presented in
Table 7.

Table 5: Object and color set splits for the 3d Unity Environment “Put X on Y” experiments.

Set Contains

Set A (pickupable objects) toilet roll, toothbrush, toothpaste
Set B (pickupable objects) bus, car, carriage, helicopter, keyboard
Set C (support object) stool, tv cabinet, wardrobe, wash basin
Set D (support object) bed, book case, chest, dining, table

Colors red, green, blue, aquamarine, magenta, orange,
purple, pink, yellow, white

21



Under review as a conference paper at ICLR 2022

Table 6: Descriptions of all the tasks used during training and evaluation. D refers to number of
distractors and S to the room size.

Task name S D Description

Find X 4× 4 5 The agent is spawned randomly.
(Set A or B) Room has 3 objects from Set A (or B) and 3 from

C ∪D and instructed to go to an object from Set A (or B).
The purpose of these training tasks is to associate objects
from Set A and B with their names and the “find”
instruction with finding them.

Find Y 4× 4 5 The agent is spawned randomly.
(Set C ∪D) Room has 3 objects from Set A (or B) and 3 from

C ∪D and instructed to go to an object from Set C ∪D.
The purpose of these training tasks is to associate objects
from Set C ∪D with their names and the “find”
instruction with finding them.

Lift X 4× 4 5 The agent is spawned randomly.
(Set A or B) Room has 3 objects from Set A (or B) and 3 from

C ∪D and instructed to lift an object from Set A (or B).
The purpose of these training tasks is to associate the “lift”
instruction with lifting the said object.

Put X near Y 3× 3 0 The agent is spawned randomly.
(X = Set A or B, Room has 1 object from Set A (or B) and 1 from
Y = Set C ∪D) C ∪D and instructed to put the object from Set A (or B)

near the other. The purpose of these training tasks is to learn to
move one object near another before putting it on it.

Put X on Y 3× 3 0 The agent is spawned randomly.
(X = Set A or B, Room has 1 object from Set A (or B) and 1 from
Y = Set C ∪D) C ∪D and instructed to put the object from Set A (or B)

on top of the other. The purpose of these training tasks is to learn to
move one object and place it on top of another.

Put X on Y 4× 4 4 The agent is spawned randomly.
(X = A, Y = D Room has 3 objects from Set A (or B) and 3 from
or Set D (or C) and instructed to put the object from Set A (or B)
X = B, Y = C) on top of the other. This is the training task most similar to the

test task and requires mastering all the other ones.

Put X on Y (test) 4× 4 4 The agent is spawned randomly.
(X = A, Y = C Room has 3 objects from Set A (or B) and 3 from
or Set C (or D) and instructed to put the object from Set A (or B)
X = B, Y = D) on top of the other. This is the test task.
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Table 7: 3d Unity Environment action space.

General body movement Fine grain movement
NOOP MOVE RIGHT SLIGHTLY
MOVE FORWARD FULL MOVE LEFT SLIGHTLY
MOVE BACKWARD FULL LOOK RIGHT MID
MOVE RIGHT FULL LOOK LEFT MID
MOVE LEFT FULL LOOK DOWN MID
LOOK RIGHT FULL LOOK UP MID
LOOK LEFT FULL LOOK RIGHT SLIGHTLY
LOOK DOWN FULL LOOK LEFT SLIGHTLY
LOOK UP FULL

Fine grained movement with grip General body movement with grip
GRAB + MOVE RIGHT MID GRAB
GRAB + MOVE LEFT MID GRAB + MOVE FORWARD FULL
GRAB + LOOK RIGHT MID GRAB + MOVE BACKWARD FULL
GRAB + LOOK LEFT MID GRAB + MOVE RIGHT FULL
GRAB + LOOK DOWN MID GRAB + MOVE LEFT FULL
GRAB + LOOK UP MID GRAB + LOOK RIGHT FULL
GRAB + LOOK RIGHT SLIGHTLY GRAB + LOOK LEFT FULL
GRAB + LOOK LEFT SLIGHTLY GRAB + LOOK DOWN FULL
GRAB + PULL CLOSER MID GRAB + LOOK UP FULL
GRAB + PUSH AWAY MID

Object manipulation
GRAB + SPIN RIGHT
GRAB + SPIN LEFT
GRAB + SPIN UP
GRAB + SPIN DOWN
GRAB + SPIN FORWARD
GRAB + SPIN BACKWARD
GRAB + PULL CLOSER FULL
GRAB + PUSH AWAY FULL
PULL CLOSER MID
PUSH AWAY MID
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