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Appendix A. PRU parameter settings

Table 1 lists the training parameters of the PRU in order to accommodate the use of Df .
Table 2 lists the training parameters of the PRU when it is adapted to better fit Dnew

f .

Table 1: PRU unlearning parameters, when using Df

Epoch lr for E lr for C

MNIST 10 5× 10−3 1× 10−1

CIFAR10-AllCNN 10 1× 10−2 1× 10−5

CIFAR10-ResNet18 10 4× 10−4 1× 10−4

Table 2: PRU unlearning parameters, when using Dnew
f

Epoch lr for E lr for C

MNIST 10 1× 10−2 1× 10−1

CIFAR10-AllCNN 10 7× 10−2 1× 10−1

CIFAR10-ResNet18 10 1× 10−4 1× 10−2

The amount of data in Dnew
f is significantly smaller than in Df , which results in a re-

duced performance in the utility and relearning test for each method. We attempted to
tune the training parameters for each method in order to enhance their adaptability to the
limited data setting, but the experimental outcomes remained largely unchanged follow-
ing the adjustments to all the comparison methods. Conversely, PRU is more flexible in
terms of making adjustments to the training data, which resulted in a significant improve-
ment in performance on Dnew

f after increasing the individual learning rates of PRU. This
also demonstrates the flexibility of PRU in comparison to the other methods. It is also
noteworthy that, as mentioned in the main text, even without the adjustment of training
parameters, PRU outperforms the other methods.
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Table 3: Results when using Dnew
f . Results in the table show the 0/1/5/10-th relearning

epoch result.

Training parameter Acc CIFAR-10 AllCNN CIFAR-10 ResNet

Table 1
Ar ↑ 84.6 / 85.4 / 89.3 / 89.8 84.4 / 90.0 / 90.6 / 90.7

Af ↓ 0.9 / 46.2 / 51.8 / 48.0 12.1 / 63.0 / 41.9 / 30.6

Table 2
Ar ↑ 78.0 / 81.7 / 88.3 / 89.2 84.2 / 89.6 / 90.5 / 90.6

Af ↓ 0.0 / 0.1 / 0.8 / 1.2 0.7 / 33.4 / 13.5 / 7.4

Appendix B. Case study settings

When testing the PRU on ViT, we fine-tune a pre-trained ViT (ViT B 16 Weights.IMAGENET1K V1)
on the CIFAR-10 dataset with a batch size of 32, a learning rate of 0.001 for only one epoch.
The optimizer is SGD with a momentum of 0.9. Table 4 lists the PRU parameters when
using the ViT architecture.

Table 4: PRU unlearning parameters, when using Df

Epoch lr for E lr for C

CIFAR10-ViT 1 1× 10−3 1× 10−2

Appendix C. Experiments on more datasets

We include more datasets in this subsection to show the proposed PRU’s generalization.
Specifically, we further include Fashion-MNIST (Xiao et al., 2017), Kuzushiji-MNIST (Clanuwat
et al., 2018), and CIFAR-100 (Krizhevsky et al., 2009) to evaluate the PRU. For datasets
except cifar100, we conducted experiments using all ten classes separately as forgetting
classes. For the CIFAR-100, there are hundreds of classes. Thus, for the convenience of the
experiment, we randomly selected 10 classes in the CIFAR-100 for experiments. The ran-
domly selected CIFAR-100 classes are [45,18,13,33,12,59,58,79,41,5]. We only use AllCNN
as the model structure for experiments in this subsection.

Table 5: Classification accuracy of the unlearned model on extra datasets.

Data Acc Original Retrain Unroll UnrollOF BoundShrink BoundExpand PRU (OURS)

FM
Ar ↑ 89.72 89.56 84.91 77.82 79.33 79.15 80.16

Af ↓ 89.72 0.00 0.65 6.94 0.37 9.69 0.00

KM
Ar ↑ 93.17 93.50 91.41 86.97 90.08 90.05 89.02

Af ↓ 93.17 0.00 0.50 1.56 12.81 12.56 0.00

C100
Ar ↑ 64.28 65.65 58.46 64.08 56.40 56.38 54.70

Af ↓ 64.28 0.00 1.04 55.88 13.24 13.22 0.02

As shown in Table 5, the Retrain and Unroll methods utilize retaining data, giving them
an advantage over the proposed PRU, which does not use retaining data. Despite this,
PRU demonstrates competitive performance in terms of the unlearned model’s accuracy
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Table 6: Relearning results on extra datasets. Unlearned models are updated with Dnew
r in

10 epochs, and the results of the 1/5/10-th epochs are reported.

Data Acc Original Retrain Unroll UnrollOF BoundShrink BoundExpand PRU (OURS)

FM
Ar ↑ 91.2/92.1/92.3 91.5/92.0/92.1 91.7/92.1/92.3 91.2/92.1/92.3 89.8/92.0/92.3 90.8/92.0/92.2 89.1/91.8/92.1

Af ↓ 86.5/64.1/48.8 0.0/0.0/0.0 12.1/10.2/6.9 86.7/64.3/48.1 71.3/57.4/44.9 84.9/59.4/43.8 3.7/5.2/3.4

KM
Ar ↑ 95.1/96.3/96.7 95.6/96.4/96.7 95.8/96.5/96.8 95.1/96.3/96.7 95.1/96.3/96.7 95.1/96.3/96.7 93.2/96.1/96.6

Af ↓ 95.7/90.7/82.1 0.0/0.0/0.0 11.7/8.1/4.2 95.6/90.9/82.2 95.7/90.8/82.2 95.7/90.7/82.3 2.6/4.0/1.5

C100
Ar ↑ 65.0/65.4/65.6 65.9/66.2/66.3 64.3/65.3/65.5 65.0/65.4/65.5 65.0/65.4/65.5 65.0/65.4/65.5 59.1/64.3/65.2

Af ↓ 58.9/38.1/22.8 0.0/0.0/0.0 3.3/2.5/1.4 58.9/38.4/22.8 57.9/38.1/22.7 57.7/38.0/22.5 3.9/5.0/3.8

performance. In Table 6, a model that relearns slowly should exhibit a slow increase in Af ,
which is effectively achieved by PRU and comparable to the gold standard Retrain.

Appendix D. Unlearning time costs

We record the time taken for each method from the beginning of their unlearning to getting
the unlearned model under the same running environment. Noteworthy, in Firgure 1, the
retraining takes significantly more time than the other methods, so we set the y-axis in a
log scale to make it easier to display. Although Unrolling and Boundary Expanding take
less time than our method, as mentioned above, our method does not need remaining class
data compared with the Unrolling and can solve the relearning problem compared with the
Boundary Expanding. In addition to retraining, our method is also faster than Boundary
Shrink because it needs to compute the gradient to find the nearest remaining class for the
forgetting class sample, which increases the computational complexity.
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Figure 1: Unlearning time costs in second.
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