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A APPENDIX

A.1 LOSS FUNCTION

Here, we motivate the expression of the temporal consistency term Lc of the loss function, given by
Eq.7 in the main text.

First, let us recall the main definitions and notations. We consider a volume of optical flow fields
f ∈ R2×T×W×H , the spatial grid Ω ∈ RW×H and T temporal steps. We assume that we can
decompose the flow as a set of K segments, each one exhibiting a coherent motion. Flow vectors
within a given segment k can be represented by a smooth parametric motion model parametrized by
θk. θ = {θk, k = 1 · · ·K}. Variable zi,t conveys the motion segmentation, zki,t = 1 if site (i, t)

belongs to segment k (zki,t = 0 otherwise). z and θ are latent variables, and f is the observed data.

A.1.1 PRIOR

We introduce a prior on z:

∀i ∈ I, ∀t ∈ {1 · · ·T}, zi,t ∈ {1 · · ·K}

p(z) =
∏
i

p(zi,1)

T∏
t=2

p(zi,t|zi,t−1)

p(zi,t = k|zi,t−1 = l) =
1

M
exp(α1[k = l] + β1[k ̸= l])

p(zi,1 = k) =
1

K
.

We also use the notation gki,t = gϕ(f)
k
i,t = q(zi,t = k|f).

Using an uninformative prior on θ, we can compute the KL term as:

KL[q(z, θ|f)||p(z, θ)] = KL[q(z|f)||p(z)] (1)
= Eq[log q(z|f)]− Eq[log p(z)] (2)

Eq[log q(z|f)] =
∑
i,t,k

gki,t log g
k
i,t (3)

Eq[log p(z)] =
∑
i

[Eq[log p(zi,1)] +

T∑
t=2

Eq[log p(zi,t|zi,t−1)]] (4)

=
∑
i

T∑
t=2

Eq[log p(zi,t|zi,t−1)]− I log(K) (5)

=
∑
i

T∑
t=2

K∑
k

L∑
l

gki,tg
l
i,t−1(α1[k = l] + β1[k ̸= l]) + c, (6)

where c = −I(log(K) + T log(M)) is a constant.
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We set β = 0, knowing that α > 0 :

Eq[log p(z)] = α
∑
i

T∑
t=2

K∑
k

gki,tg
k
i,t−1 + c. (7)

A.1.2 APPROXIMATION

2 ∗ gki,tgki,t−1 = −(gki,t − gki,t−1)
2 + (gki,t)

2 + (gki,t−1)
2 (8)

Thus, we can write:

Eq[log p(z)] =
α

2

∑
i

T∑
t=2

K∑
k

−(gki,t − gki,t−1)
2 + (gki,t)

2 + (gki,t−1)
2 + c. (9)

Eq[log p(z)] =
α

2
(
∑
i

T∑
t=2

K∑
k

−(gki,t − gki,t−1)
2

+
∑
i

T∑
t=1

K∑
k

(gki,t)
2 +

∑
i

T−1∑
t=2

K∑
k

(gki,t)
2) (10)

Thus, we get:

KL[q(z|f)||p(z)] = α

2

∑
i

T∑
t=2

∑
k

(gki,t−1 − gki,t−1)
2 +

∑
i

T∑
t=1

∑
k

gki,t ∗ (log(gki,t)

− α

2
∗ gki,t)−

α

2

∑
i

T−1∑
t=2

K∑
k

(gki,t)
2) + c. (11)

∀x ∈ [0, 1];α > 0 : −α
2 ≤ x(log x− α

2 x) ≤ 0, therefore:

KL[q(z|f)||p(z)] ≤ α

2

∑
i,t,k

(gki,t − gki,t−1)
2 + c

A.1.3 COMBINING WITH LIKELIHOOD

Elbo(f) = Eq(z,θ|f)[log p(f |z, θ)]−KL(q(z, θ|f)||p(z, θ))− c

Elbo(f) ≥ Eq(z,θ|f)[log p(f |z, θ)]−
α

2

∑
i

T∑
t=2

∑
k

(gki,t − gki,t−1)
2 − c

As ∀x, y ∈ [0, 1]2 : |x− y| ≥ (x− y)2:

Elbo(f) ≥ Eq(z,θ|f)[log p(f |z, θ)]−
α

2

∑
i

T∑
t=2

∑
k

|gki,t − gki,t−1| − c (12)

Elbo(f) ≥ −
T∑

t=1

∑
i∈Ω

∑
k

gϕ(f)
k
i,t||f(i, t)− f̃Sn(θk)(i, t)||1/ξf,t (13)

− α

2

∑
i,t=2,k

|gki,t − gki,t−1| − c (14)

This is the lower bound we are maximising, although, in practice we are not accounting a fraction
of the sites to deal with occlusion areas.

A.1.4 EXPERIMENTAL VALIDATION

In order to evaluate how similar the objective we trained in the paper is to the expression defined in
Eq.7 above, we train a model minimizing the following loss function:
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Table 1: Comparison of the two losses
Prior / Dataset DAVIS2016 FBMS59 SegTrackv2
Cut Size 10 120 10 120 10 120
Full Model LT-MS-K4 74.8 72.4 61.0 58.2 61.3 60.4
Prior Eq.7 73.5 71.6 57.6 55.6 59.0 57.4

L =

T∑
t=1

∑
i∈Ω

∑
k

gϕ(f)
k
i,t||f(i, t)− f̃Sn(θk)(i, t)||1/ξf,t

− α
∑
i

T∑
t=2

K∑
k

gki,tg
k
i,t−1 + β

T∑
t=1

∑
i∈Ω

∑
k

gϕ(f)
k
i,t log gϕ(f)

k
i,t (15)

In practice, we use α = 0.5 and β = 0.01, and we obtain the results reported in Table 1.

A.2 DATASETS

DAVIS2016 comprises 50 videos (for a total of 3455 frames), depicting diverse moving objects. It
is split in a training set of 30 videos and a validation set of 20 videos. Only the primary moving
object is annotated in the ground truth. The criteria for evaluation on this dataset are the Jaccard
score J (intersection-over-union), and the contour accuracy score F , the higher, the better for both.
FBMS59 includes 59 videos (720 annotated frames), and SegTrackV2 14 videos (1066 annotated
frames). Both mostly involve one foreground moving object, but sometimes a couple of moving
objects. For FBMS59, we use the 30 sequences of the validation set. Although annotations may
comprise multiple objects, the VOS community exploits FBMS59 and SegTrackV2 similarily as
DAVIS2016, considering a binary ground-truth, by grouping moving objects in the foreground. We
follow this practice. However, we also provide a multi-mask evaluation for FBMS59.

DAVIS2017 is an extension of DAVIS2016, containing 90 videos. It includes additional videos with
multiple moving objects, and it provides multiple-segment annotations for the ground truth. It is
split into 60 videos for training and 30 for evaluation. DAVIS2017-motion is a curated version of
the DAVIS2017 dataset proposed in (5) for a fair evaluation of methods based on optical flow only.
Connected objects exhibiting the same motion are merged in the ground truth for evaluation. We
proceed to the evaluation with the official algorithm that involves a Hungarian matching process.

A.3 ADDITION TO THE ABLATION STUDY

Fig.1 plots the performance scores for the three ablations when the length of the input flow sequence
varies from 10 to 120. Overall, they exhibit comparable behaviour at a certain distance from the full
model.

Visual results reported in Fig.2 clearly demonstrate that the addition of the temporal consistency loss
term Lc allows us to get far more consistent segments over time, whether for the background, or the
moving objects. For instance, in the fourth example, the foreground moving car is perfectly seg-
mented throughout the sequence along with its wheels, and (small) moving cars in the background.
Fig.5 highlights the contribution of the spline-based motion model on the dog video, and its obvious
ability to handle motions that do not vary uniformly, as the erratic movement of the dog.

A.4 OPTIMIZATION IMPLEMENTATION

We use Adam optimizer with the following strategy on the learning rate α to train the network (3D
Unet and transformer), inspired from the warmup-decay strategy in (5). We linearly increase it from
0 to 1e− 4 for 20 epochs, then, we divide it by two every 40 epochs. The estimation of the motion
model parameters through the B-spline approximation at training time is achieved with the Pytorch
implementation of L-BGFS (3).
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Figure 1: Influence of the length of the input flow sequence (also referred to as cut size on the
horizontal axis of the plot) on the three modified versions of our LT-MS-K4 method with comparison
with the full model. Left plot: for the DAVIS2016 dataset. Middle plot: for the FBMS59 dataset.
Right plot: for the SegTrackV2 dataset. Overall, they exhibit comparable behaviour at a certain
distance from the full model.

A.5 SEGMENT SELECTION FOR EVALUATION

VOS and OFS are close but not identical tasks. However, we use VOS benchmarks, since no OFS
benchmarks are available. Let us recall that the VOS one is attached to the notion of a primary object
of interest moving in the foreground (sometimes, a couple of objects). As a consequence, we have
to select the right segments to cope with the binary ground truth of the VOS benchmarks, as usually
done for the DAVIS2016, SegTrackV2 and FBMS59 datasets.

Since we deal with multiple-motion segmentation, i.e., K segments, we have to group them into two
clusters corresponding to the foreground moving object on one side and the background on the other
side. We proceed as in the ST-MS method (4). However, in our case, we can directly evaluate our LT-
MS method in one shot over the predicted segmentation sequence, since there is no temporal linking
postprocessing for LT-MS. For evaluations with K = 2, we do not need to group the masks, so we
just set one of the masks as foreground using Hungarian matching over the sequence (alternatively,
we could just pick the smallest of the two masks). Regarding the evaluation on the DAVIS2017-
motion dataset whose ground truth is not binary, we use the official evaluation script (which perform
hungarian matching over the sequence) to associate each predicted segment k with the ground-truth
annotations, knowing that we have to consider K = 3 masks for this experimentation.

A.6 MULTI-MASK EVALUATION IN FBMS59

We implement the ”Boostrap IoU” score to evaluate multi-mask segmentation in FBMS59, as de-
scribed in (2)1 The core idea is to match each ground-truth segment to the most likely segment (i.e.,
with the one of highest IoU). Let us note that this evaluation includes the background segment, since
background is not identified in the FBMS59 multi-mask annotation.

The algorithm for evaluation we used is:

1 sequences_iou = []
2 for sequence in dataset :
3 objects_iou = []
4 for frame in sequence :
5 for x in gt_annotations_including_background :
6 maxiou = 0
7 for y in predicted_segments :
8 maxiou = max(maxiou, iou(x, y))
9 objects_iou.append(maxiou)

10 sequence_iou.append(mean(objects_iou))
11 dataset_iou = mean(sequences_iou)

1We use the multi-label ground truth provided by Dong Lao, first author of (2).
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Figure 2: Four groups of qualitative results regarding the ablation of the temporal-consistency
loss term. They respectively correspond to the worm video of SegTrackV2, the dogs01 video of
FBMS59, and the kite-surf and car-roundabout videos of DAVIS2016. For each group, the first row
contains sample images with the segmentation ground-truth, when available at that frame, overlaid
in yellow, the second row displays the input flows, the third and fourth rows show the predicted
motion segmentations, respectively without and with the temporal consistency loss term. Clearly,
this model component allows us to get far more consistent segments over time.
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For the linear assignment score, we find the best bipartite sequence-level match between the ground
truth and the predictions. Similar to the bIoU evaluation, we compute the score with all the labels of
the ground truth. This evaluation is more demanding, because it forces a one-to-one match between
the prediction and the masks at the sequence level.

A.7 REPEATABILITY

Figure 3: Model scores depending on initialization. Each dot represents a trained model. The x-axis
represents the validation loss on the DAVIS 2016 train dataset, and the y-axis the performance on
the evaluation dataset. The top row includes all models and the bottom row excludes models that
diverged during training (validation loss > 0.25). The bottom row displays the linear relationship
between validation loss and evaluation score. The model whose results are reported in the main text
is represented as an orange dot.

With the introduction of the transformer decoder, we experimentally found that the convergence of
the network depends on the weights initialization, and that the same network and loss configuration
can yield different results at test time. In Fig.3, we show that our unsupervised loss on a held-out
validation set is a good indicator of the network performance at test time. This is a critical point
for model and hyperparameter selection, since we do not have access to the ground truth at training
time (with our fully unsupervised scenario), and thus we cannot evaluate model performance. Fig.4
plots the model performance after training as a function of the initialization budget.

In our evaluation experiments, we account for this randomness by training five models with the same
set of seeds for all ablations and by reporting the score of the model with the lowest validation loss
for each model.

A.8 TRAINING ON REAL-WORLD DATA

Table 2: Training on synthetic (FT3D) and on real (DAVIS2016) data
Training mode / Dataset DAVIS2016 FBMS59 SegTrackv2
Cut Size 10 120 10 120 10 120
Full Model LT-MS-K4 (FT3D) 74.8 72.4 61.0 58.2 61.3 60.4
Full Model LT-MS-K4 (DAVIS2016) 73.6 72.8 60.0 57.6 62.8 61.3

We have trained our model LT-MS-K4 on the DAVIS2016 training set and evaluated it on
DAVIS2016 validation set, FBMS59 and SegTrackV2. Results are collected in Table 2 and com-
pared with those obtained when training our model on the synthetic FT3D dataset. We can observe
that performance when training on DAVIS2016 remains globally on par with performance when
training on FT3D. Let us note that the volume of data is much smaller when training on DAVIS
2016.
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Figure 4: Evolution of the model performance as a function of the initialization budget. Left : the
validation loss associated to the best network of each subset. Right : average performance on the
test data set associated to this network for each different budget. The filled area correspond to +/-
the standard deviation for each curve.

A.9 INFLUENCE OF THE CUT SIZE AT INFERENCE

We have also tested how our LT-MS-K4 method behaves when varying the length of the input flow
sequence. Results are plotted in Fig.6 for three datasets, DAVIS2016, FBMS59 and SegTrackV2.
As expected, the best performance is obtained for the smallest length (equal to 10) of the input flow
sequence. However, performance decreases slowly when the length increases, and remains stable
for larger ones. It demonstrates the intrinsic ability of the LT-MS method to achieve accurate and
consistent motion segmentation over long periods of the video, which is a unique property. We also
did it for LT-MS-K2 as reported in Table 3. We even get slightly better results for DAVIS2016 and
SegTrackV2 when the video sequence is processed in one go, i.e., with an infinite cutsize.

Table 3: Results obtained on the three datasets DAVIS2016, FBMS59 and SegTrackV2 with LT-
MS-K2 for respectively a cut size of 10 and no cut (the video sequence is processed in one go).

Dataset DAVIS2016 FBMS59 SegTrackV2
Cut Size 10 ∞ 10 ∞ 10 ∞
LT-MS-K2 70.3 70.7 55.3 48.7 58.6 59.3

A.10 ADDITIONAL VISUAL EVALUATION

Additional visual results of our LT-MS method are provided in Fig.7. We can observe that the motion
segments are globally accurate. Let us recall that the ground-truth is not necessarily available for
all the video frames depending on the datasets. Since our method involves several masks, we can
properly handle articulated motions (monkey), deal with the presence of several moving objects in
the scene (hummingbird), or accomodate motion parallax (libby).

In Fig.8, we collect additional visual results on three videos of the SegTrackV2 dataset, from top to
bottom, the birdfall, bird-of-paradise, and bmx videos. Results demontrate the ability of our long-
term segmentation method to recover, to some extent, correct segmentation even from flow fields
wrongly computed at some time instants.
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Figure 5: Visual assessment of the contribution of the spline-based motion model on the dog video
of DAVIS2016 dataset (with K = 4). From top to bottom: input flows of the sequence; corre-
sponding predicted motion segmentation maps; flows reconstructed with the space-time polynomial
motion model; plots over time of the mean-value of the u-components of the flows provided per
segment by the space-time polynomial motion models; plots over time of the mean-value of the v-
components of the flows provided per segment by the space-time polynomial motion models; flows
reconstructed with the space-time spline-based motion model; plots over time of the mean-value of
the u-components of the flows provided per segment by the spline-based motion models; plots over
time of the mean-value of the v-components of the flows provided per segment by the spline-based
motion models. Clearly, the space-time polynomial model fails to handle non-uniformly varying
motion, whereas the spline-based model does.
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Figure 6: Influence of the length of the input flow sequence (also referred to as cut size on the
horizontal axis of the plot) on the LT-MS-K4 method for three datasets, DAVIS2016, FBMS59 and
SegTrackV2. As expected, the best performance is obtained for the smallest length (cut size equal
to 10), but performance decreases slowly when the cut size increases and remains stable for larger
ones. On the right, the plot is shown with the full range of values on the ordinate [0, 100]. On the
left, a zoomed-in version of the plot.
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A.11 DETAILED RESULTS PER VIDEOS OF THE DATASETS

Hereafter, we report detailed results through tables collecting the evaluation scores obtained by our
LT-MS-K4 method for every video of the two datasets DAVIS2016 and Seg-TrackV2 (binary evalua-
tion), and by our LT-MS-K3 model for every video of the DAVIS2017-motion dataset and FBMS59
(multi-mask evaluation). Let us recall that the official evaluation algorithm is not the same for
DAVIS2016 and DAVIS2017-motion. The evaluation is done on the whole video for DAVIS2017-
motion and is multi-segment, while it is binary and performed frame by frame of the video for
DAVIS2016.
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Figure 7: Results obtained with our LT-MS-K4 method (K = 4). Four groups of results are displayed:
monkey, hummingbird from SegTrackV2, goats01 from FBMS59 and libby from DAVIS2016. For each group,
the first row samples successive flow fields (HSV color code) corresponding to the processed video. The
second row contains the corresponding images of the video, where the ground-truth of the moving object is
overlaid in yellow (when available at that frame). The third row shows the motion segments provided by our
LT-MS-K4 method with one colour per segment. For all the results, we adopt the same color set for the three
masks corresponding to the moving objects (blue, red and orange), and we let the background image for the
background mask.
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Figure 8: Illustration of the temporal consistency provided by our LT-MS-K4 method for three ex-
amples, the birdfall, bird-of-paradise, and bmx videos of SegTrackV2. For each group, the first row
contains the video images with the ground truth overlaid in yellow when available; the second row
depicts the corresponding flow fields represented with the HSV code while normalized indepen-
dently from each other; the third row provides the predicted segmentation.

A.11.1 DAVIS2016

Video J (M) J (O) J (D) F (M) F (O) F (D)
blackswan 0.515 0.521 -0.091 0.561 0.833 -0.036
bmx-trees 0.596 0.744 0.234 0.795 0.923 0.125
breakdance 0.740 1.000 0.038 0.722 1.000 0.000
camel 0.867 1.000 0.104 0.858 1.000 0.101
car-roundabout 0.920 1.000 -0.004 0.806 1.000 -0.060
car-shadow 0.901 1.000 0.011 0.848 1.000 -0.017
cows 0.872 1.000 0.026 0.798 1.000 0.009
dance-twirl 0.821 1.000 -0.113 0.842 1.000 -0.045
dog 0.769 1.000 -0.085 0.671 1.000 -0.076
drift-chicane 0.718 0.860 0.063 0.793 0.860 0.161
drift-straight 0.892 1.000 0.047 0.838 1.000 0.229
goat 0.380 0.330 -0.087 0.367 0.114 -0.069
horsejump-high 0.843 1.000 0.064 0.896 1.000 -0.002
kite-surf 0.518 0.500 0.114 0.494 0.375 -0.035
libby 0.781 1.000 0.108 0.892 1.000 0.035
motocross-jump 0.750 0.842 0.042 0.590 0.658 0.092
paragliding-launch 0.621 0.667 0.299 0.308 0.179 0.357
parkour 0.711 0.878 -0.315 0.765 0.949 -0.157
scooter-black 0.854 1.000 -0.036 0.729 1.000 0.072
soapbox 0.891 1.000 0.020 0.863 1.000 0.020
Average 0.748 0.867 0.022 0.722 0.845 0.035

Table 4: Results given for every video of DAVIS2016 dataset. Reported scores per video are the
average Jaccard score over frames in the video. The very last row is the average over videos scores.
J is the Jaccard index and F is the Countour Accuracy. The Mean (M ) is the average of the scores,
the Recall (O) is the fraction of frames per video with a score higher than 0.5, and the Decay (D) is
the degradation of the score over time in the video.
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A.11.2 SEGTRACKV2

Video Jacc (J )
bird of paradise 0.596
birdfall 0.468
bmx 0.776
cheetah 0.438
drift 0.431
frog 0.792
girl 0.651
hummingbird 0.697
monkey 0.607
monkeydog 0.241
parachute 0.928
penguin 0.517
soldier 0.752
worm 0.514

Table 5: Results given for every video of SegTrackV2 dataset. Each reported score is the average
Jaccard score over annotated frames in the video. The very last row is the average over all the frames
and over all the videos.
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A.11.3 DAVIS2017-MOTION

Sequence J-Mean F-Mean
bike-packing˙1 0.078 0.327
bike-packing˙2 0.254 0.267
blackswan˙1 0.477 0.575
bmx-trees˙1 0.608 0.804
breakdance˙1 0.450 0.526
camel˙1 0.772 0.726
car-roundabout˙1 0.913 0.810
car-shadow˙1 0.896 0.845
cows˙1 0.821 0.728
dance-twirl˙1 0.444 0.576
dog˙1 0.654 0.571
dogs-jump˙1 0.019 0.147
dogs-jump˙2 0.254 0.323
dogs-jump˙3 0.303 0.351
drift-chicane˙1 0.557 0.627
drift-straight˙1 0.886 0.829
goat˙1 0.220 0.300
gold-fish˙1 0.018 0.240
gold-fish˙2 0.282 0.336
gold-fish˙3 0.357 0.356
gold-fish˙4 0.000 0.000
gold-fish˙5 0.000 0.000
horsejump-high˙1 0.721 0.794
india˙1 0.066 0.085
india˙2 0.163 0.172
india˙3 0.072 0.108
judo˙1 0.225 0.397
judo˙2 0.286 0.414
kite-surf˙1 0.449 0.464
lab-coat˙1 0.332 0.350
libby˙1 0.746 0.853
loading˙1 0.057 0.246
loading˙2 0.128 0.259
loading˙3 0.427 0.514
mbike-trick˙1 0.444 0.436
motocross-jump˙1 0.446 0.435
paragliding-launch˙1 0.577 0.286
parkour˙1 0.531 0.646
pigs˙1 0.105 0.433
pigs˙2 0.437 0.431
pigs˙3 0.059 0.217
scooter-black˙1 0.843 0.724
shooting˙1 0.434 0.568
soapbox˙1 0.487 0.696

Table 6: Results given for every video of D17 dataset.

J&FMean JMean JRecall JDecay FMean FRecall FDecay
0.422 0.393 0.387 0.004 0.450 0.437 0.024

Table 7: Results given for every video of DAVIS2017-motion dataset. The very last row is the
average score over all the videos for the different criteria.
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A.11.4 FBMS59 - MULTIPLE MASKS

Video bIoU (J ) Linear Assignment Sequence (J )
camel01 0.599 0.591
cars1 0.698 0.527
cars10 0.484 0.324
cars4 0.78 0.561
cars5 0.578 0.515
cats01 0.76 0.76
cats03 0.698 0.492
cats06 0.469 0.393
dogs01 0.814 0.814
dogs02 0.766 0.434
farm01 0.613 0.519
giraffes01 0.502 0.446
goats01 0.424 0.336
horses02 0.549 0.436
horses04 0.458 0.366
horses05 0.327 0.145
lion01 0.426 0.376
marple12 0.386 0.324
marple2 0.501 0.291
marple4 0.945 0.945
marple6 0.446 0.311
marple7 0.643 0.44
marple9 0.384 0.231
people03 0.406 0.298
people1 0.892 0.892
people2 0.741 0.616
rabbits02 0.507 0.445
rabbits03 0.578 0.514
rabbits04 0.615 0.444
tennis 0.519 0.382
Seq Average 0.584 0.472

Table 8: Results given for every video of FBMS59 dataset. Each reported score is the average
Jaccard score over annotated frames in the video. The very last row is the average of the score over
videos.
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