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1 Proofs of Theorems1

1.1 Proof of Theorem 12

We first prove the theorem over C, then we transfer the statement over R. We note here that there is
nothing special about R and C with regards to the problem. Indeed, the same proof applies if one
replaces R with any infinite field F and C with the algebraic closure F̄ of F. Set

MC = {X ∈ Cm×n| rankC X ≤ r }

and note that since MC is irreducible, the intersection of finitely many non-empty open sets in3

MC is itself non-empty and open, and thus dense. Here irreducibility means thatMC can not be4

decomposed as the union of two proper subvarieties ofMC.5

Lemma 1. There is an open dense set U1 in MC such that for any X ∈ U1 and any π =6

(Π1, . . . , Πn) ∈
∏
i∈[n] Pm, everym× r submatrix of π(X) has rank r.7

Proof. First, fix some π = (Π1, . . . , Πn) ∈
∏
i∈[n] Pm and then some index set J = {j1, . . . , jr} ⊂8

[n]. The submatrix π(X)J := [Πj1xj1 , · · · , Πjrxjr ] of π(X) has rank less than r if and only if9

all of its r × r minors are zero. For each subset I = {i1, . . . , ir} ⊂ [m] we have a polynomial10

detπ(Z)I,J ∈ C[Z] where π(Z)I,J is the row-submatrix of π(Z)J obtained by selecting the rows11

with index in I . The set of matrices in Cm×n for which the evaluation of this polynomial is non-zero12

is an open set, call it Uπ,I,J . Then π(X)J has rank r if and only if X ∈ Uπ,J :=
⋃
I Uπ,I,J , where13

I ranges over all subsets of [m] of cardinality r. As a union of finitely many open sets, Uπ,J is open.14

Moreover, everym× r submatrix of π(X) has rank r if and only if X ∈ Uπ :=
⋂
J Uπ,J , where now15

J ranges over all subsets of [n] of cardinality r. Uπ is open because it is the finite intersection of16

open sets. Finally, everym× r submatrix of π(X) has rank r for any π if and only if X is in the open17

set U1 :=
⋂
π Uπ, where the intersection is taken over all π’s.18

The proof will be complete once we show that U1 is non-empty. By what we said above about19

intersections of finitely many non-empty open sets in an irreducible variety, it is enough to show20

that each Uπ,J is non-empty. We do this by constructing a specific X ∈ Uπ,J . Recall here that21

any Π ∈ Pm is diagonalizable over C with non-zero eigenvalues. It is an elementary fact in linear22

algebra that there exists a choice of eigenvector vk of Πjk for every k ∈ [r] such that v1, . . . , vr23

are linearly independent. Now our X is taken to be the matrix with vk at column jk for every24

k ∈ [r] and zero everywhere else. Clearly X ∈MC and moreover π(X)J = [Πj1xj1 · · · , Πjrxjr ] =25

[Πj1v1 · · · , Πjrvr] = [λ1v1 · · · λrvr], where λk is the corresponding eigenvalue of vk. Since none26

of the λk’s is zero, this matrix has rank r, that is X ∈ Uπ,J .27

Denote by C(X) the column-space of X and Im the identity matrix of size m ×m. Note also that28

whenever p is a non-zero polynomial in ν variables with coefficients in C, there is always some29

ξ ∈ Cν such that p(ξ) 6= 0.30
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Lemma 2. There is an open dense set U2 inMC such that for any X ∈ U2, we have that Πxj /∈ C(X)31

for any Π ∈ Pm \ {Im} and any j ∈ [n].32

Proof. Πxj /∈ C(X) if and only if rank[X Πxj] = r+ 1. As in the proof of Lemma 1, this condition33

is met on an open set UΠ,j ofMC where some (r+ 1)× (r+ 1) determinant of [X Πxj] is non-zero.34

Then the statement of the theorem is true on the open set U2 =
⋂
Π∈Pm, j∈[n] UΠ,j. As in the proof35

of Lemma 1, to show that U2 is non-empty it suffices to show that each UΠ,j is non-empty. We show36

the existence of an X ∈ UΠ,j. Let Z = (zik) be anm× r matrix of variables over C and consider the37

polynomial ring C[Z]. Let us write zk for the kth column of Z. Since Π is not the identity, there exists38

some i ∈ [m] such that zi1 is different from the ith element of Πz1, where z1 is the first column of39

Z. Instead, suppose that the variable zi1 appears in the i ′th coordinate of Πz1 with i ′ 6= i. Now take40

any I ⊂ [m] with cardinality r+ 1 such that i, i ′ ∈ I and consider det[Z Πz1]I where [Z Πz1]I is41

the submatrix of [Z Πz1] obtained by selecting the rows with index in I. This is a polynomial of42

C[Z] that has the form ±z2i1 det[z2 · · · zr]I\{i,i ′} + · · · where the remaining terms do not involve zνi143

for ν > 1. Since the entries of Z are algebraically independent, det[z2 · · · zr]I\{i,i ′} is a non-zero44

polynomial. We conclude that det[Z Πz1]I is also a non-zero polynomial. Hence there exists some45

Z ′ ∈ Cm×r such that det[Z ′ Πz ′1]I 6= 0. Now define X by setting xj = z ′1, xjk = z ′k, k ∈ [r] for46

any choice of jk’s distinct from j, and zeros everywhere else. By construction X ∈ UΠ,j.47

Let f : Cm×r × Cr×n →MC be the surjective map given by f(B ′, C ′) = B ′C ′.48

Lemma 3. There is an open dense set U3 inMC such that for any X ∈ U3, we have that for any49

j ∈ [n], any J = {j1, . . . , jr} ⊂ [n] with j /∈ J and any Π1, . . . , Πr ∈ Pm not all identities, it holds50

that rank[xj Π1xj1 · · · Πrxjr ] = r+ 1.51

Proof. With j,J and Πk’s fixed, the set Uj,J ,Π1,...,Πr
of X’s in MC for which the rank of52

[xj Π1xj1 · · ·Πrxjr ] is r + 1, is open. Indeed, this is defined by the non-simultaneous vanish-53

ing of all (r+ 1)× (r+ 1) minors of [zj Π1zj1 · · ·Πrzjr ], where zk is the kth column of the matrix54

of variables Z from the proof of Lemma 2. We note that these are polynomials in Z with integer55

coefficients. Set U3 =
⋂
j,J ,Π1,...,Πr

Uj,J ,Π1,...,Πr
where the intersection is taken over all choices56

of j,J , Π1, . . . , Πr as in the statement of the lemma. As in the proof of Lemma 1, the set U3 is open57

and to show that it is non-empty is suffices to show that each Uj,J ,Π1,...,Πr
is non-empty.58

Let U1,U2 be the open sets of Lemmas 1 and 2. Since MC is irreducible and U1,U2 are open59

and non-empty, we have that U1 ∩ U2 is non-empty. Since f is surjective, f−1(U1 ∩ U2) is also60

non-empty. Take any (B ′, C ′) ∈ f−1(U1 ∩ U2). By definition, the rank of [Π1B ′c ′j1 · · ·ΠrB
′c ′jr ] is61

r. By hypothesis, there is some k ∈ [r] such that Πk is not the identity and thus again by definition62

we have rank[B ′ ΠkB ′c ′jk ] = r+ 1. Consequently, ΠkB ′c ′jk /∈ C(B
′) and so the two r-dimensional63

subspaces C(B ′) and C
(
[Π1B

′c ′j1 · · ·ΠrB
′c ′jr ]

)
are distinct. Thus there exists some c ′′ ∈ Cr such64

that B ′c ′′ 6∈ C
(
[Π1B

′c ′j1 · · ·ΠrB
′c ′jr ]

)
. Define C ′′ ∈ Cr×n by setting c ′′ν = c ′ν for every ν 6= j and65

c ′′j = c ′′. Then by construction B ′C ′′ ∈ Uj,J ,Π1,...,Πr
.66

Take X∗ = [x∗1 · · · x∗n] ∈ U3 and let X̃ = [Π̃1x
∗
1 · · · Π̃nx∗n]. Now rank X̃ = rank Π̃−1

1 X̃ =67

rank[x∗1 Π̃
−1
1 Π̃2x

∗
2 · · · Π̃

−1
1 Π̃nx

∗
n]. If there is some k ≥ 2 such that Π̃1 6= Π̃k, by Lemma 3 any68

m× (r+ 1) submatrix of Π̃−1
1 X̃ that contains columns 1 and k will have rank r+ 1. On the other69

hand, when all Π̃k’s are equal for k ∈ [n], the rank of X̃ is r by Lemma 1. This concludes the proof70

of the theorem over C with the claimed open set being U3, which we denote in the sequel by UC.71

SetMR = {X ∈ Rm×n| rankR X ≤ r }. There is an inclusion of sets i :MR ↪→MC where for72

X ∈MR we view i(X) as the complex matrix associated to X. The reason for this inclusion is that if73

the columns of X generate an r-dimensional subspace over R, then they generate an r-dimensional74

subspace over C. To finish the proof, it suffices to show the existence of a non-empty open set UR in75

MR such that i(UR) ⊂ UC. This comes from two key ingredients. The first one is the observation76

that the polynomials that induce UC, i.e. the polynomials of C[Z] whose non-simultaneous vanishing77

indicates membership of a point X ∈ MC in UC, they have integer and thus real coefficients. This78

can be seen by inspecting the proof of Lemma 3. Call the set of these polynomials pU ⊂ Z[Z]. For79

the second ingredient, let pM ⊂ Z[Z] be the set of all (r + 1) × (r + 1) minors of the matrix of80

variables Z. It is a matter of linear algebra thatMR andMC are the common roots of the polynomial81
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system pM over Rm×n and Cm×n respectively. What is instead a difficult theorem in commutative82

algebra is that the following algebraic converse is true; see section 2.6 in [7]: a polynomial q ∈ R[Z]83

vanishes on every point ofMR if and only if it is a polynomial combination of elements of pM, that84

is if and only if q =
∑
p∈pM cp p for some cp’s in R[Z]. This statement also holds true if we replace85

R with C. Now the set UC consists of those points ofMC that are roots of the polynomial system86

pM but not of pU . Since UC is non-empty, not all polynomials in pU are polynomial combinations of87

pM. But then, by what we just said, not all points ofMR are common roots of pU . This means that88

the open set ofMR defined by the non-simultaneous vanishing of all polynonials in pU is non-empty.89

This open set is the claimed U .90

1.2 Proof of Theorem 291

Let U1 be the open set of Theorem 1. Let U2 be the set of X’s for which C(X) does not drop dimension92

under projection onto any r coordinates. This set is open inM because X ∈ U2 if and only if for any93

I ⊂ [m] of cardinality r not all r×rminors of XI are zero, XI being the row-submatrix of X obtained94

by selecting the rows with index in I. Set U = U1 ∩ U2. Then for any X∗ ∈ U and any Π ∈ Pm95

there exists a unique factorization ΠX∗ = B∗ΠC
∗
Π with the top r× r block of B∗Π ∈ Rm×r being the96

identity. Since p̄`,j(X̃) = p̄`,j(X∗) = p̄`,j(ΠX∗) = p̄`,j(B∗ΠC
∗
Π) we have that (B∗Π, C

∗
Π) ∈ YX∗ for97

every Π ∈ Pm. For the reverse direction we recall a fundamental fact:98

Lemma 4. Fix any j ∈ [n]. Suppose that ξ1, ξ2 ∈ Rm are such that p̄`,j(ξ1) = p̄`,j(ξ2) for every99

` ∈ [m]. Then ξ1 = Πξ2 for some Π ∈ Pm.100

Proof. See proof of Lemma 2 in [6].101

Now let (B ′, C ′) ∈ YX∗ and write c ′j for the jth column of C ′. For a fixed j ∈ [n] the equations102

q`,j(B
′, C ′) = 0 are equivalent to p̄`,j(B ′c ′j) = p̄`,j(x

∗
j ) for every ` ∈ [m]. By Lemma 4 there103

must exist some Πj ∈ Pm such that B ′c ′j = Πjx
∗
j . This is true for every j ∈ [n] so that B ′C ′ =104

[Π1x
∗
1 · · ·Πnx∗n]. This implies that rank[Π1x∗1 · · ·Πnx∗n] = r. Since X∗ ∈ U , Theorem 1 gives that105

all Πj’s must be the same permutation Π ∈ Pm, so that B ′C ′ = ΠX∗. Since by construction for any106

(B ′′, C ′′) ∈ YX∗ the top r× r block of B ′′ is the identity, we have that B ′ = B∗Π and thus necessarily107

C ′ = C∗Π.108

1.3 Proof of Theorem 3109

We first notice #{x̃j | x̃j ∈ S∗ ; j ∈ [n]} ≥ µ(Im) ≥ r + 1. Now we suppose x̃j1 , . . . , x̃jr , x̃jr+1
110

are r + 1 points in X̃ such that not all Πj1 , . . . , Πjr , Πjr+1
are the identity Im. Since µ(Π) < r111

for Π 6= Im, it is impossible that Πj1 = · · · = Πjr = Πjr+1
. According to Theorem 1, the points112

x̃j1 , . . . , x̃jr , x̃jr+1
span a subspace of dimension r + 1. Hence, for any subspace S 6= S∗ with113

dim(S) ≤ r, we have #{x̃j | x̃j ∈ S ; j ∈ [n]} ≤ r.114

2 Implementation Details in Experiments115

Robust-PCA methods in Section 4.1. In Self-Repr and CoP, Ŝ is taken to be the subspace spanned116

by the top r x̃j’s with largest inlier scores. We use the Iteratively-Reweighed-Least-Squares method117

proposed by [9, 4] for solving the DPCP problem. The output subspace Ŝ of OP is obtained as118

the rth principal component subspace of the decomposed low-rank matrix. For Self-Expr we use119

λ = 0.95, α = 10 and T = 1000, see section 5 in [12]. For DPCP we use Tmax = 1000, ε = 10−9120

and δ = 10−15, see Algorithm 2 in [10]. Finally, OP uses λ = 0.5 in Algorithm 1 of [11], while the121

parameter τ of the augmented Lagrangian is 1.122

Unlabeled sensing methods. For AIEM, we use the customized Gröbner basis solvers of [8],123

developed for r ≤ 4, which solve the polynomial system in milliseconds, and the maximum number124

iterations in the alternating minimization procedure is Tmax = 1000. For r = 5, the design of such125

solvers is an open problem1, thus we use the generic solver Bertini ([1]), which runs within a few126

1The fast solver generator of [3] is an improved version of the one used by [8] for r = 3, 4. However, we
found that for r = 5 it suffers from numerical stability issues.
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seconds. For r ≥ 6 though, AIEM remains as of now practically intractable. For CCV-Min the127

precision is 0.001, Tmax = 50, and the maximum depth is 12 for r = 3 and 14 for r = 4, 5. For `1-RR128

we use λ = 0.01
√

log(n)/n in (13) of [5].129

Face Images. We compute Ŝ as follows. With X̃ = UΣV> the thin SVD of X̃, whereU ∈ R32256×64,130

DPCP fits a 4-dimensional subspace S̄ to the columns of X̄ = U>X̃, a process which takes about a131

tenth of a second. Then S̄ is embedded back into R32256 via the map U : R64 → R32256 to yield132

Ŝ. To compute X̂ from Ŝ and X̃ we use the custom algebraic solver of AIEM as well as `1-RR, PL,133

Algorithm 2, with a proximal subgradient implementation of `1-RR using the toolbox of [2].134

3 Additional Figures135

First, we provide two more rows of α = 0.6, 0.2 of Figure 1 in the paper, see Figure 1 in this136

supplemental manuscript.137

Second, we provide one more evidence that the estimated subspace Ŝ is satisfactory, which is138

computed by DPCP with the same settings in Figure 3 of the paper. Figure 2 in this supplemental139

manuscript additionally shows the estimation error in Figures 2e-2g when S∗ is used instead of Ŝ.140

Evidently, the performance is nearly identical regardless of whether Ŝ or S∗ is used. This is justified141

by Figure 2a, which shows that the maximal principal angle between Ŝ and S∗ always stays below 2◦.142
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Figure 1: Same setting of Figure 1 in the paper but with an additional row α = 0.6, 0.2.
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Figure 2: Same settings of Figure 3 in the paper but with 2e-2g: Relative estimation error for the
same setting with X̂ computed from X̃ and S∗.
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