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Abstract

The policy gradient theorem states that the policy should only be updated in states
that are visited by the current policy, which leads to insufficient planning in the
off-policy states, and thus to convergence to suboptimal policies. We tackle this
planning issue by extending the policy gradient theory to policy updates with re-
spect to any state density. Under these generalized policy updates, we show con-
vergence to optimality under a necessary and sufficient condition on the updates’
state densities, and thereby solve the aforementioned planning issue. We also
prove asymptotic convergence rates that significantly improve those in the policy
gradient literature. To implement the principles prescribed by our theory, we pro-
pose an agent, Dr Jekyll & Mr Hyde (J&H), with a double personality: Dr Jekyll
purely exploits while Mr Hyde purely explores. J&H’s independent policies al-
low to record two separate replay buffers: one on-policy (Dr Jekyll’s) and one
off-policy (Mr Hyde’s), and therefore to update J&H’s models with a mixture of
on-policy and off-policy updates. More than an algorithm, J&H defines principles
for actor-critic algorithms to satisfy the requirements we identify in our analysis.
We extensively test on finite MDPs where J&H demonstrates a superior ability
to recover from converging to a suboptimal policy without impairing its speed of
convergence. We also implement a deep version of the algorithm and test it on a
simple problem where it shows promising results.

1 Introduction

Policy Gradient algorithms in Reinforcement Learning (RL) have enjoyed great success both theo-
retically [50, 43, 16, 36] and empirically [23, 38, 37, 27]. Their principle consists in optimizing an
objective function J (the expected discounted return) through gradient steps, both being formally
specified below [43]:

J (π)
.
= E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 ∼ p0, At ∼ π(·|St), St+1 ∼ p(·|St, At), Rt ∼ r(·|St, At)
]

(1)

∇θJ (π) =
∑
s∈S

dπ,γ(s)
∑
a∈A

qπ(s, a)∇θπ(a|s) and θt+1 ←−−−−proj θt + ηt∇θtJ (πt), (2)

using standard Markov Decision Process notations (recalled in App. A), where ηt is the learning
rate and dπ,γ(s)

.
=
∑∞
t=0 γ

tP(St = s|π) the discounted state density, the policies π .
= πθ and

πt
.
= πθt are implicitly parametrized by θ for conciseness, and←−−−−proj denotes the projection onto

the parameter space. We observe that the update established by the policy gradient theorem is
proportional to the state density of the current policy. This is problematic, as it implies that no value
improvement can be induced in off-policy states (i.e. states that are rarely visited). As a consequence,
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planning is inefficient in those states to the point of potentially compromising convergence to the
optimal policy.

To address the planning issue in off-policy states, we generalize the policy gradient theory by con-
sidering the more general policy update:

U(θ, d)
.
=
∑
s∈S

d(s)
∑
a∈A

qπ(s, a)∇θπ(a|s) and θt+1 ←−−−−proj θt + ηtU(θt, dt), (3)

where dt designates the state distribution on which the policy is updated. It does not have to match
the distribution induced by π and updates may therefore be off-policy. We note that U(θ, d) is not a
gradient in the general case, hence the use of the term update. We prove in the direct: πθ

.
= θ and

softmax: πθ ∼̇ exp(θ) parametrizations that following the exact policy updates induces a sequence
of value functions qt

.
= qπt that is monotonously increasing, upper bounded, and thereby converges

to a q∞. We then show that the condition “∀s ∈ S, ∑t ηtdt(s) =∞” on the sequence (dt) is neces-
sary and sufficient for q∞ to be optimal. Our result generalizes previous theorems to broader updates
and milder assumptions [2, 22]. Finally, we significantly improve the existing asymptotic conver-
gence rates. We show that (qt) converges to the optimal value i) exactly in finite time for the direct
parametrization (previously in O

(
t−1/2|S||A|(1− γ)−6

)
[2]), and ii) in O

(
t−1|S||A|(1− γ)−2

)
for the softmax parametrization, to be compared with O

(
t−1|S|2|A|2(1− γ)−6

)
[22].

Building on our theoretical results, we design a novel algorithm: Dr Jekyll and Mr Hyde (J&H). Its
principle consists in training two independent policies: a pure exploitation one (Dr Jekyll) and a pure
exploration one (Mr Hyde), and give control to either one for full trajectories. J&H’s independent
policies allow to record two separate replay buffers: one on-policy (Dr Jekyll’s) and one off-policy
(Mr Hyde’s), and therefore to update J&H’s models with any desired mixture of on-policy and
off-policy updates. Beyond an algorithm, J&H introduces conditions based on our analysis that
actor-critic algorithms should follow to properly plan off-policy. Furthermore, the separation of
exploration and exploitation allows to stabilise the training of the exploitation policy while ensuring
a full coverage of the state-action space through deep exploration [30].

We empirically validate our theoretical analysis and algorithmic innovation in both planning and RL
settings. In the planning setting where we assume that qt is exactly known, we analyze the impact of
the off-policiness of dt and conclude that, while it improves over classic policy gradient, the theoret-
ical sufficient condition does not allow to converge in a reasonable amount of time in very hard plan-
ning tasks: we thereby recommend to enforce the stronger condition “∀s ∈ S, ∑t ηtdt(s) ∈ Ω(t)”.
In the reinforcement learning domain, where qt must be estimated from the collected transitions,
the off-policiness of J&H’s policy updates allows by design to satisfy the recommendation as long
as Mr Hyde is able to cover the whole state space. This leads J&H to significantly outperform all
competing actor-critic algorithms in the hard planning tasks and to be competitive with gradient up-
dates in simple planning problems. As a proof of concept, we also test J&H in a deep reinforcement
learning setting and show that it outperforms various baselines on a simple environment.

The paper is organized as follows. Section 2 develops the policy update theory. Section 3 describes
J&H and positions it with respect to the literature. Section 4 presents the experiments and their re-
sults. Finally, Section 5 concludes the paper. The interested reader may refer to the appendix for the
proofs (App. B), the domains (App. C), and the full experiment reports (App. D, E, and F). Finally,
the supplementary material contains the code for the experiments: algorithms and environments.

2 Theoretical analysis

First, we recall some background: policy gradient methods depend on a parametrization θ ∈
R|S|×|A| of the policy. Like [2, 22], we will focus on the classic direct and softmax parametrizations:

• direct: π(a|s) .
= θs,a, for which us,a = dt(s)qπ(s, a) and the projection is on the simplex.

• softmax: π(a|s) .
=

exp(θs,a)∑
a′ exp(θs,a′)

, for which us,a = dt(s)π(a|s)(qπ(s, a)− vπ(s)).
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For both parametrizations, [2] proves that following the policy gradient∇θJ (π) from Eq. (2) even-
tually leads to the optimal policy in finite MDPs under the following assumptions and condition2:

A1. The model (p0, p, r) is known.
A2. The initial state-distribution covers the full state space: ∀s ∈ S, p0(s) > 0.

C3. The learning rate is constant: ηt = (1−γ)3

2γ|A| (direct) and ηt = (1−γ)3

8 (softmax).

Those are stringent requirements. A1 implies that the values qπ and state density dπ,γ of the policy
are known exactly. A2 is generally not satisfied in standard RL domains. Finally, verifying C3
makes learning slow to the point that it becomes impractical.

2.1 Convergence properties

In this section, we study, under A1, the convergence properties of the sequence of value functions
(qt) induced by the update rule defined in Eq. (3). We note that U(θ, d) is not a gradient in general.
Our first theoretical result is the monotonicity of the value function sequence (qt).
Theorem 1 (Monotonicity under the direct and softmax parametrization). Under A1, the se-
quence of value functions qt

.
= qπt and vt

.
= vπt are monotonously increasing.

By the monotonous convergence theorem, Thm. 1 directly implies the convergence of (qt):
Corollary 1 (Convergence under the direct and softmax parametrization). Under A1, the se-
quence of value functions qt uniformly converges: q∞

.
= limt→∞ qt.

In order to go further and prove convergence to a global optimal value, we need to enforce an
additional condition. Indeed, the update U relies multiplicatively on dt which could be equal (or
tend very fast) to 0 in some states, compromising the policy’s ability to reach the optimal value.
This argument is not only theoretical, it has been observed by many that policy gradient can get
stuck in suboptimal policies, even with entropy regularization. We designed our chain domain to
exhibit such behaviour (see Section 4.1).

Next, we show that (qt) converges to the optimal value function under some necessary and sufficient
condition.
Theorem 2 (Optimality under the direct and softmax parametrization). Under A1, the following
condition:

C4. Each state s is updated with weights that sum to infinity over time:
∑∞
t=0 ηtdt(s) =∞,

is necessary and sufficient to guarantee that the sequence of value functions (qt) converges to opti-
mality: q∞ = q?

.
= maxπ∈Π qπ .

Proof sketch. In both direct and softmax parametrizations, we assume there exists a state-action
pair (s, a) advantageous with respect to the state value limits q∞ and v∞

.
= limt→∞ vt, that is:

adv∞(s, a)
.
= q∞(s, a) − v∞(s) > 0. We then prove that in this state s, the policy improvement

yielded by the update is lower bounded by a linear function of the update weight ηtdt(s). Both
parametrizations require different proof techniques and are dealt with in different theorems. Sum-
ming over t, we notice that this lower bounding sum diverges to infinity, which contradicts Corollary
1. We therefore infer that there cannot exist such a state-action pair, which allows us to conclude
that no policy improvement is possible, and thus that the values are optimal: q∞ = maxπ∈Π qπ .

For the necessity of C4, we show that the parameter update is upper bounded in both parametriza-
tions by a term linear in the action gap. By choosing the reward function adversarially, we may set
it sufficiently small so that the sum of all the gradient steps is insufficient to reach optimality.

Thm. 2 is impactful along five dimensions.

Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates:Practice of on-policy undiscounted updates: As Thm. 2 is applicable to any distribution sequence, it
allows us in particular to consider the practice of using on-policy undiscounted updates: dt

.
= dπt,1.

2An assumption A# is a requirement on the environment or the application setting, while a condition C# is
a requirement that may be enforced by a dedicated algorithm in any environment or setting.
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Thus, it resolves a longstanding gap between the policy gradient theory and the actor-critic algorithm
implementations [12, 7, 51, 17, 1, 19, 41]. This mismatch and its lack of theoretical grounding were
identified in [45]. Later, [26] proved that the practitioners’ undiscounted updates are not the gradient
of any function and may be strongly biased under state aliasing. Recently, [53] studied the practical
advantage of the undiscounted updates from a representation learning perspective. C4 encompasses
both standard policy gradient and the undiscounted update rule: convergence to optimality of both
is guaranteed as long as C4 is verified. Our analysis thus shows that the convergence properties
of policy gradient and undiscounted updates require the same set of assumptions and conditions.
Conversely, it is possible to prove convergence to sub-optimal policies of either when C4 is violated.
In other words, Thm. 2 allows to reduce the study of specific algorithms to whether they verify C4.

Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates:Experience replay and off-policy updates: It also justifies the use of an experience replay for the
actor, a trick also widely used in the literature to distributed the training over several agents [24, 34,
49, 14, 35]. Furthermore, while widely overlooked in the literature, we prove that off-policy updates
have an even higher impact, since they are necessary to guarantee the convergence to optimality3.
We leverage this discovery to introduce new design principles and a novel algorithm in Section 3.

Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory:Policy gradient theory: Next, Thm. 2 generalizes previous optimality convergence results along two
axes. The initial state distribution p0 is not required to cover the state space anymore (aka A2). A2 is
unrealistic in most applications and cannot be enforced by an algorithm. Relaxing it is an important
open problem [2], we disprove it in the full class of MDP. However, it might be possible to find a
class of MDPs larger than the one verifying A2 where policy gradient also converges. Additionally,
the condition on our learning rates is also much more flexible than C3.

Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization:Density vs. policy regularization: In contrast, C4 can be controlled by a dedicated algorithm. This
theoretical result promotes the principle of density-based regularization [21, 32], at the expense of
policy-based regularization that cannot guarantee that C4 is satisfied and sometimes fails to plan
over the whole state space (our chain domain experiments in Section 4 illustrate it well).

Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem:Towards a generalized policy iteration theorem: Finally, by combining Thm. 2, which analyzes pol-
icy improvement, with a thorough theoretical analysis of the policy evaluation step (discussed in
Section 3.1), we see a path towards results describing conditions on both components of generalized
policy iteration that guarantee convergence to optimality [4]. Furthermore, Thm. 2 gives sufficient
conditions on the policy improvement step. The generalized policy iteration theorem was conjec-
tured in [42] but never proved.

2.2 Convergence rates

Next, we give convergence rates for both softmax and direct parametrizations:

Theorem 3 (Asymptotic convergence rates under the direct parametrization). With direct
parametrization, under A1 and C4, the sequence of value functions qt converges to optimality in
finite time:

∃t0, such that ∀t ≥ t0, qt = q?. (4)

C4 is required for optimality and convergence rate contrarily to the softmax parametrization. We
significantly improve over previous bounds inO

(
t−1/2|S||A|(1− γ)−6

)
[2]. We wish to emphasize

that Theorem 3 does not say anything about how large t0 is, the rate is purely asymptotic.

Theorem 4 (Asymptotic convergence rates under the softmax parametrization). With softmax
parametrization, under A1, C4, and A8:

A8. The optimal policy is unique: ∀s, q?(s, a1) = q?(s, a2) = v?(s) implies a1 = a2,

the sequence of value functions qt converges asymptotically as follows:

∃t0, such that ∀t ≥ t0, v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(1− γ) mins∈supp(dπ?,γ) δ(s)
∑t−1
t′=t0

ηt′dt′(s)
, (5)

3Other papers proving convergence to optimality of policy gradient rely on A2, which implies C4.
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where δ(s) = v?(s) − maxa∈A/{π?(s)} q?(s, a) is the gap with the best suboptimal action in state
s, v> (resp. v⊥) is the maximal (resp. minimal) value, and supp(dπ?,γ) denotes the support of the
distribution of the optimal policy.

If (dt) satisfies the additional mild condition that the support of d? is covered on average:

C5. ∀s ∈ supp(d?), limt→∞ 1
t

∑t
t′=0 ηt′dt′(s)

.
= e⊥(s) > 0,

then we obtain the following convergence rate in O(t−1):

∃t0, such that ∀t ≥ t0, v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(t− t0)(1− γ) mins∈supp(dπ?,γ) δ(s)e⊥(s)
. (6)

C5 is implied by A2 and C3. Alternately, assuming ηt ≥ η⊥ > 0 ∀t, it is verified by a uniform
distribution in which case e⊥(s) = η⊥

|S| , or by an on-policy distribution dπt that converges to the dis-
tribution of some optimal policy dπ? in which case e⊥(s) = η⊥dπ?(s). Also, note that C4 is required
for optimality, but not for convergence rates with respect to q∞. Thm. 4 establishes asymptotic
rates in O

(
t−1|S||A|(1− γ)−2

)
, to be compared with O

(
t−1|S|2|A|2(1− γ)−6

)
[22]. The gap

is partially explained by dropping C3 and allowing any learning rate (see App. A.6 for a thorough
comparison). It is possible, see Thm. 7 of App. B, to show that under A2, a condition on the learning
rate, and a bounding condition on dt (∃d> ≥ d⊥ > 0 such that ∀s, t, d> ≥ dt(s) ≥ d⊥), we have:
t0 ≤ O

(
|S|

(1−γ)7
d>
d⊥

1
mins δ(s)

)
.

2.3 Related work

[11, 15, 52] study the off-policy, continuing setting paired with the average value objective. That
objective is either expressed with a state visitation coming from the behavioral policy (the excursion
objective) or from the trained policy (the alternative life objective). Its gradient can be computed
exactly or approximated and used to optimize the objective. The weights assigned to each state
during an update stem from the gradient computation (exactly as in the discounted return gradient
we study). It is an interesting question, left for future work, to understand whether those weights
have desirable properties from a convergence standpoint. In particular, it is possible that a condition
akin to C4 exists in the continuing objective case.

From a proof technique perspective, [2] studies gradient ascent and, as a byproduct, can rely on
standard optimization results: strong convexity and convergence of gradients to 0. We cannot do so
as our updates are not gradients anymore. More precisely, Lemma C2 in [2] uses the strong con-
vexity of the objective function to prove that following the gradient results in a value improvement
(assuming a learning rate sufficiently small). We provide a more general (we do not need the con-
dition on the learning rate) and, in our admittedly biased opinion, more elegant proof of that lemma
in our Theorem 1. Second, their Lemma C5 uses (i) the convergence of the gradient to 0 (a standard
result with gradient as-/des-cent), and (ii) the assumption that all states have a non-vanishing density
to infer that, in the limit, the learnt policy does not assign any mass to states that have a non-zero
advantage. Neither (i) nor (ii) hold in our setting, we had to leverage C4 instead.

3 Dr Jekyll and Mr Hyde: an actor-critic with convergence guarantees

3.1 Conditions for an actor-critic algorithm to converge to optimality

C4 states the necessary and sufficient condition for optimal planning with the exact model. In a
reinforcement learning setting however, the model is not known; the policy must be learnt from
samples collected in the environment. As a consequence, A1 cannot be made anymore, we need to
rely on an exploration condition instead:

C6. Each state-action pair is explored infinitely many times: ∀s, a, limt→∞ nt(s, a) =∞,

where nt(s, a) is the count of samples collected for the state-action pair (s, a) at time t.

In finite MDPs, C6 provides a necessary and sufficient condition for having an unbiased estimator of
the value. As is customary, we call this estimator the critic and denote it q̊t. C6 is necessary because
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the required statistical precision can only be achieved when the number of samples tends to infinity;
it is sufficient as guaranteed by many off-policy policy evaluation algorithms from the literature
[31, 46]. Classic concentration bounds, such as Hoeffding’s inequality, tell us that with O(1/ξ2)
samples in every state, a ξ-accurate critic can be achieved. Under C4 and C6, there thus exists
a timestep after which updates based on q̊t are sufficiently close to the true ones for a continuity
argument to show that the policy improves eventually4 (as guaranteed by theory under A1).

Our results till now have assumed a finite MDP and models with sufficient capacity. In larger
domains, those assumptions do not hold anymore, and therefore our theory does not apply. For in-
stance, [26] proves that using the on-policy undiscounted update dπt,1 instead of the policy gradient
can lead to highly suboptimal policies under state aliasing. Their counter-example applies to our
policy updates as well. Nevertheless, we believe that state aliasing is a worst-case scenario and con-
jecture that it does not happen to neural networks thanks to their high expressive capacity. Also note
that this concern with respect to distribution shift is general and could be formulated for any neural
model, including supervised models, or in RL the purely value-based ones such as DQN that are
frequently trained off-policy. The consensus in the literature is that neural models do not suffer too
much from distribution shift as long as the testing set distribution is well covered by the training set.
Since appropriate coverage of the state-action space is actually the final objective of our off-policy
policy updates, we expect minimal impact on this dimension, though it does remain to be formally
demonstrated. Our empirical results from Section 4.4 support this conjecture. The theoretical study
of the function approximation setting is left for future work.

3.2 Our solution to enforce C4 and C6

Enforcing C4 C4 defines the necessary and sufficient condition for asymptotic convergence to
optimality. However, we will see in Section 4.2 that in difficult planning tasks, C4 can be insufficient
for convergence to happen in a reasonable amount of time. Below, we therefore introduce C4-s, a
condition stronger5 than C4, as well as two techniques for C4-s to be verified:

C4-s. ∀s ∈ S, limT→∞ 1
T

∑T
t=0 ηtdt(s) ≥ d⊥(s) > 0.

The first technique to enforce C4-s is to apply the approximate expected policy update [39, 20, 10]:

Û(θ, s)
.
=
∑
a∈A

q̊(s, a)∇θπ(a|s). (7)

The expected policy update is deterministic in the sense that it does not require sampling actions. As
there exists a deterministic optimal policy, this in turn implies that the learning rate ηt does not need
to satisfy the second Robbins-Monro condition:

∑
t η

2
t <∞, and thus may be constant ηt

.
= η.

The second technique to enforce C4-s is to ensure that the density of updates dt does not decay
to 0 for any state s. This can be obtained by maintaining a constant proportion ot of off-policy
actor updates in order to cover the whole state space. We propose to do so by recording two replay
buffers: one with on-policy samples, i.e. samples collected with an exploitation policy, and another
with off-policy samples, i.e. samples collected with an exploration policy.

To the best of our knowledge, this type of prioritized experience replay has never been used in this
fashion, nor to this effect. We note that off-policy policy gradient is a concept that exists in the
literature, but it refers to the application of policy gradients from batch samples [21]. Following the
success of DQN [24], experience replays have also been used in actor-critic methods [49] which
bears some resemblance to our suggestion. Finally, off-policy actor-critic with shared prioritized
experience replay [34] has been applied to large-scale experiments with distributed agents [14, 35].

Enforcing C6 Many RL algorithms (actor-critic or purely value-based) ensure some form of ex-
ploration. They broadly form two groups: dithering exploration (e.g., epsilon greedy, softmax,
entropy regularization [47, 42, 13]), and deep exploration (e.g., UCB, thompson sampling, density
constraints [28, 3, 29, 32]). Strong cases have been made against dithering exploration, arguing
in particular its inability to ensure visits to all states and therefore convergence to optimality [30].

4A formal proof would require dealing with several technical challenges due to the stochasticity of the value
updates that break the monotonicity of the estimator accuracy. We leave it for future work.

5C4-s is identical to C5, but applied to the full state space S (it thus implies C5).
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Input: Scheduling of exploration (εt), of off-policiness (ot) and of actor learning rate (η̊t).

1: Initialize Dr Jekyll’s replay buffer D̊ = ∅, actor π̊, and critic q̊. . exploitation agent
2: Initialize Mr Hyde’s replay buffer D̃ = ∅, and policy π̃. . exploration agent
3: Set the behavioural policy and working replay buffer to Dr Jekyll’s: πb ← π̊ and Db ← D̊.
4: for t = 0 to∞ do
5: Sample a transition τt = 〈st, at ∼ πb(·|st), st+1 ∼ p(·|st, at), rt ∼ r(·|st, at)〉.
6: Add it to the working replay buffer Db ← Db ∪ {τt}.
7: if τ was terminal, then (πb, Db)← (π̃, D̃) w.p. εt, (πb, Db)← (̊π, D̊) otherwise.
8: if Update step, then
9: τ

.
= 〈s, a, s′, r〉 ∼ D̃ w.p. ot, τ

.
= 〈s, a, s′, r〉 ∼ D̊ otherwise.

10: Update Mr Hyde’s policy π̃ on τ . . e.g. with Q-learning trained on UCB rewards
11: Update Dr Jekyll’s critic q̊ on τ . . e.g. with SARSA update
12: Expected update of Dr Jekyll’s actor π̊ in state s. . Eq. (7)
13: end if
14: end for
Algorithm 1: Dr Jekyll & Mr Hyde algorithm. After initialization of parameters and buffers, we
enter the main loop. At every time step, an action, chosen by the behavioral policy, is executed in
the environment to produce a transition τt (line 5). τt is stored in the replay buffer of the personality
in control (either Dr Jekyll or Mr Hyde, line 6). If the trajectory is done, the algorithm samples a
new personality to be in control during the next one (line 7). Then, the updates of the models start
(line 8). The updates for Mr Hyde’s policy π̃ and Dr Jekyll’s critic q̊ are underspecified, and may be
any algorithm in the literature satisfying the exploration (for Mr Hyde) or unbiased (for Dr Jekyll)
conditions. When (εt) = 0, J&H amounts to on-policy expected updates from a single replay buffer.

In spite of these arguments (that we recall in App. A.5), there are still only very few actor-critic
algorithms that realize deep exploration [9, 33]. We conjecture that this relates to the following ob-
servations: i) exploration involves a moving objective, hence a non-stationarity of the desired policy,
ii) actor-critic algorithms have a structural inertia in their policy (in contrast to value-based methods
that can completely switch policy when an action’s value overtakes another’s). As a consequence,
a dual exploration-exploitation actor-critic algorithm takes a lot of time to switch from deep explo-
ration to exploitation, and back, making it inefficient. To avoid this issue, we propose to train two
policies, a pure exploration one and a pure exploitation one. As an added benefit, they will be used
to constitute the on-policy and off-policy replay buffers introduced in the second technique above.

3.3 Dr Jekyll and Mr Hyde algorithm (J&H)

The objective of this section is to introduce a novel algorithm that satisfies conditions C4 (or C4-s)
and C6 by design. To do so, we maintain a mixture of two policies:

• Dr Jekyll π̊t is a pure exploitation policy,

• Mr Hyde π̃t is a pure exploration policy.

At the beginning of a new trajectory, Mr Hyde π̃t (resp. Dr Jekyll π̊t) is chosen with probability εt
(resp. 1− εt) and used to generate the full trajectory. Dr Jekyll π̊t is trained with the update rule of
Eq. (3), where dt is defined by prioritized sampling over the experience replays, qt is replaced with
an unbiased estimator q̊ of the value of π̊t, and θ̊t are the parameters of π̊t. π̃t is a pure exploratory
policy, designed to verify almost surely: ∀(s, a) ∈ S × A, limt→∞ n|D̃|(s, a) ≥ d̃⊥ > 0,, where
n|D̃t|(s, a) is the count of samples (s, a) in its experience replay. We note that a uniform policy

satisfies this condition, but with a very small constant d̃⊥ which compromises convergence in a
reasonable time. Any deep exploration algorithm should be guaranteeing it6. In our finite MDP
experiments, we implement q-learning with UCB rewards [3]: π̃t

.
= argmaxa∈A q̃t where q̃t is

trained to predict the expectation of the discounted sum of rewards: r̃(s, a)
.
= 1√

nt(s,a)
(see full Alg.

6Efficient exploratory algorithms are a challenge in large environments. The design of such algorithms is
beyond the scope of this paper.
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3 in App. E). In our deep learning experiments, Hyde is a Double-DQN [48] trained to maximize an
exploration bonus based on Random Network Distillation [6] (Section 4.4).

The advantages of separating the exploration from the exploitation policy are the following. First,
it is easier to specify the exploration/exploitation trade-off and get full control on the exploration
requirements for condition C6: ∀s, a, ∑t dπt(s, a) =∞. Second, Jekyll’s actor π̊ is not optimized
under a moving objective which would otherwise induce a high level of instability on the policy.
Third, one can define the on-policiness/off-policiness ot by recording two separate replay buffers D̊
and D̃, for trajectories respectively controlled by Dr Jekyll and Mr Hyde. This offers full control on
condition C4/C4-s and on the asymptotic behaviour of

∑
t ηtdt(s).

These various observations lead to the design of the Dr Jekyll and Mr Hyde algorithm (J&H), for-
mally detailed in Alg. 1.

4 Experiments

4.1 Domains

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

s−1 r = βγ8

a1 a1 a1 a1 a1 a1 a1 a1 a1

a2 a2 a2 a2 a2 a2 a2 a2 a2

r = 1

Figure 1: Deterministic chain MDP. Initial state is s0. Reward is 0 everywhere except when access-
ing final states s−1 and s9. Reward in s−1 is set such that q(s0, a1) = βq?(s0, a2), with β ∈ [0, 1).

Chain Domain The chain domain is designed to measure the ability of algorithms to overcome
immediate rewards pushing the policy gradient towards suboptimal policies. In every state sk, the
agent has the opportunity to play action a1 and receive an immediate reward of βγ|S|−2, or to play
a2 and progress to next state sk+1 without any immediate reward. A reward of 1 is eventually
obtained when reaching state s|S|−1. Fig. 1 represents a chain of size 10. We report the normalized
performance: J π = Jπ−J⊥

J?−J⊥ , where J? is the optimal performance and J⊥ .
= q(s0, a1) = βγ|S|−2.

Random MDPs The random MDPs domain is designed to test the algorithms in situations where
exploration is not an issue. Indeed, by its design of stochastic transition functions, random MDPs
will have a non-null chance to visit every state whatever the behavioural policy. It is therefore
a domain where we expect policy gradient updates to perform well, perhaps optimally, and hope
that our modified updates still perform comparably. We reproduce the random MDPs environment
published in App. B.1.3 of [18]. We report the normalized performance: J π = Jπ−Ju

J?−Ju , where J?
is the optimal performance and Ju is the performance of the uniform policy. The full description of
both domains is available in App. C.

4.2 Finite MDP policy planning (A1)

We test performance against time, learning rate η of the actor, MDP parameters |S| and β, off-
policiness ot, and policy entropy regularization weight λ, with both direct and softmax parametriza-
tions, on the chain and random MDPs. The full report is available in App. D.

On the chain domain, we confirm that enforcing updates with dt
.
= otdu+(1−ot) dπt,γ

‖dπt,γ‖1
including

an off-policy component ot > 0 on a uniform state distribution du(s)
.
= 1
|S| helps path discovery and

policy planning, while on-policy updates fail at converging to the optimal policy, even with policy
entropy regularization. We also observe that while ot ∈ Ω(t) enforces C4, and therefore guarantees
convergence to optimality, it may not happen in a reasonable amount of time, and a constant off-
policiness is preferable. By sweeping over the chain parameters β and |S|, we observe that on-policy
updates are sensitive to both: even with a small β = 0.1, a reasonably sized chain |S| = 15 cannot
be solved. In contrast, ot = 0.5 converges fast to optimality even with β = 0.95 and |S| = 25.
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(a) Chain experiment
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(b) Random MDPs experiment
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(c) Random MDPs zoomed in

Figure 2: RL experiments: normalized expected return vs. number of trajectories (200+ runs).

On the random MDPs domain, we observe empirically that discounted and undiscounted updates
perform well but oftentimes stagnate at 99% of the optimal performance; dt with an off-policy
component performs better and gets even closer to optimality. Finally, we note that purely uniform
updates: ot = 1 slow down training in the random MDPs experiment. We conclude that it is best to
include both on-policy and off-policy components in dt. These experiments also allow us to observe
the biased convergence implied by policy entropy regularization.

4.3 Finite MDP reinforcement learning experiments

With the softmax parametrization, we tested J&H with various scheduling for εt and ot against
on-policy (PG/undiscounted) updates, with/without policy entropy regularization (hyperparameter
λ), and with/without UCB critic (UCB hyperparameter ν). The full description of the algorithms
implementations is available in App. E.1. Our policy planning experiments suggested that ot was
best constant at 0.5, the same holds in our RL experiments. Fig. 2a reveals that on-policy updates
with/without policy entropy regularization cannot solve the chain experiment of size 10 with β =
0.8. In contrast, the task is solved by on-policy updates with a strong UCB bonus ν = 1 for the
critic, and by all J&H implementations. Concerning J&H scheduling hyperparameters, we observe
that ot = 0.5 allows to identify the optimal policy significantly faster, and εt = 100

t is sufficient and
allows to converge faster asymptotically than εt = 10√

t
. Fig. 2b shows that all algorithms are able

to solve the random MDP task. However, UCB critics with high ν ∈ {0.1, 1} (including the only
on-policy setting that succeeded on the chain task) fail to do so properly: they eventually will, but
explore too much within the experimental time. If we look more closely at the tight convergence
of every algorithm on Fig. 2c, we observe that the policy entropy regularization incurs a bias and
that off-policiness of updates of J&H does not slow down convergence compared to vanilla on-
policy updates. Note that J&H with εt = 10√

t
performs worse only because we report the expected

performance of the mixture of Dr Jekyll and Mr Hyde. The performance of Dr Jekyll alone is
comparable, and even slightly better than vanilla on-policy updates (see Fig. 9b in App. E).

For completeness, we also test performance against time, learning rates of the actor η and critic
ηc, MDP parameters |S| and β, off-policiness ot, exploration εt, and critic initialization q0 with the
softmax parametrization on the chain and random MDPs domains. See App. E for the full report.

4.4 Deep reinforcement learning experiments

To conclude our empirical evaluation, we implemented a deep version of J&H, as described in
Algorithm 1, by parametrizing the agents using deep neural networks (see App. F for full details).

Dr Jekyll is a policy network, with a standard architecture, trained using the updates described in
Eq. (7). As previously mentioned, any exploration algorithm can be used for Mr Hyde. In our
experiments, we chose Random Network Distillation [6, RND] to generate exploration bonuses.
Two networks, one random, the target, and a second one, the predictor, are used to assess the novelty
of an observed state via the distance between the output of the target and the output of the predictor
on that state. Each time a given state is evaluated, the predictor is trained to predict the output of
the target. The more a state is seen, the smaller the prediction error will be. The error is used as a
reward signal for Mr Hyde, a standard Double-DQN [48, DDQN] trained to maximize it. By doing
so, Mr Hyde is incentivized to explore parts of the state space that have not been visited much yet.
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(a) Level 1 (b) Level 2

Figure 3: Deep RL experiments: score vs. number of training episodes, averaged over 10 seeds.

We train J&H on a version of the Four Rooms environment [44], a 15x15 grid split into four rooms
(see App. F for the exact layout). The agent, placed at random initially, needs to navigate to a fixed
goal location, where it is granted a positive reward. For each step taken in the environment, the
agent incurs a small negative reward. We consider two levels for the task. In level 1 (the original
version of the game), the initial state distribution covers the entire state space, which corresponds to
A2 being verified. To make exploration harder, we also consider an initial state distribution that does
not contain any state from the room where the goal is located, and call that task level 2. We compare
J&H to DDQN and Soft-Actor Critic [13, SAC]. For fair comparison, we also train these agents on
the environment rewards augmented with the RND rewards used to train Mr Hyde, represented by
the curves labelled DDQN+RND and SAC+RND.

Results can be found in Fig. 3. On level 1, we see that J&H reaches quite fast the maximal score
of 90, The baselines do not perform as well and fail to converge to the optimal policy. Interestingly,
even with A2 verified, adding an RND bonus led to increased performance. We also notice that
overall SAC outperforms DDQN. The same observations can be made on level 2. We note that
on some seeds, J&H takes more time to learn the optimal policy, leading to visible plateaus and
temporary high variance. However, a powerful property underlined by our experiments and offered
by the decoupling of exploration from exploitation is the ability of J&H, unhindered by dithering
and/or conflicting reward signals, to converge to optimality. Comparatively, the baselines get stuck
in a mixed exploration/exploitation behavior and fail to reach the maximum score.

5 Contributions and limitations

Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions:Contributions: We study a planning issue in actor-critic algorithms and tackle it by extending the
policy gradient theory to policy updates with respect to any state density. Under these generalized
policy updates, we show convergence to optimality under a necessary and sufficient condition on
the updates’ state densities. We also significantly improve previous asymptotic convergence rates.
We implement the principles prescribed by our theory in a novel algorithm, Dr Jekyll & Mr Hyde
(J&H), with a double personality: Dr Jekyll purely exploits while Mr Hyde purely explores. J&H’s
independent policies allow to record two separate replay buffers: one on-policy (Dr Jekyll’s) and
one off-policy (Mr Hyde’s), and therefore to update J&H’s models with a mixture of on-policy
and off-policy updates. Beyond J&H, we define conditions for actor-critic algorithms to satisfy
the requirements from our analysis. We extensively test J&H on finite MDPs and deep RL where it
demonstrates superior planning abilities, and at least comparable asymptotic rates, to its competitors.

Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work:Limitations and future work: On the theory side, our non-asymptotic convergence rates are limited
to the softmax and require A2 and C3. Although we are convinced our arguments hold, we did
not develop the formal convergence proof in the RL setting (see second paragraph of Section 3.1).
Finally, our theory does not tackle function approximation. In that context, we believe techniques
from [2] could be useful. On the empirical side, we wish to emphasize that our deep RL experiments
are to be considered as a proof of concept of the relevance of J&H’s principles in that setting. A
thorough study, encompassing more environments and baselines, potentially both in discrete and
continuous actions spaces, is left for future work.
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A MDP notations and basic knowledge on policy gradients

A.1 General notations

• ∆X is the simplex over set X .

• |X | is the cardinality of set X .

• X ∼ d means that random variable X is sampled from distribution d.

• E[f(X)|X ∼ d] denotes the expectation of f(X) when random variable X is sampled
from distribution d.

• P[X > x|Y = y] denotes the probability that random variable X is greater than x condi-
tioned to the fact that random variable Y equals y.

• Subscript > (resp. ⊥) denotes the maximal (resp. minimal) value in a range. For instance,
r> denotes the maximal reward.

• f(X ) denotes the sum of f(x) over set X : f(X )
.
=
∑
x∈X f(x).

A.2 Markov Decision Processes

A Markov Decision Process (MDP) is a tuple m = 〈S,A, p, p0, r, γ〉, where:

• S is the set of states,

• A is the set of actions,

• p(s′|s, a) : S × A → ∆S is the probability of accessing state s′ after performing action a
in state s,

• p0 ∈ ∆S is the initial state probability,

• r(s, a) : S ×A → R is the (possibly stochastic) reward function,

• and γ is the discount factor.

A stochastic policy π(a|s) : S → ∆A determines the probability of performing action a in state
s and therefore determines the behaviour of an agent. The objective of a planning algorithm is to
maximize the expected return:

J (π)
.
= E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 ∼ p0, At ∼ π(·|St), St+1 ∼ p(·|St, At), Rt ∼ r(·|St, At)
]
. (8)

A.3 Values and advantages

More generally, the state (resp. state-action) value function vπ : S → R (resp. qπ : S × A → R) is
the expected return starting from state s (resp. after performing action a in state s), when following
policy π afterwards:

vπ(s)
.
= E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 = s,At ∼ π(·|St), St+1 ∼ p(·|St, At), Rt ∼ r(·|St, At)
]
, (9)

qπ(s, a)
.
= E

[ ∞∑
t=0

γtRt

∣∣∣∣S0 = s,A0 = a,At ∼ π(·|St), St+1 ∼ p(·|St, At), Rt ∼ r(·|St, At)
]
.

(10)

We have several notorious identities, for instance:

J (π) = E [vπ(S)|S0 ∼ p0] , (11)
vπ(s) = E [qπ(s,A)|A ∼ π(·|s)] , (12)

qπ(s, a) = E [R+ γvπ(S′)|S′ ∼ p(·|s, a), R ∼ r(·|s, a)] . (13)
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We also define the advantage of an action a (resp. a policy π) over a value v in a given state s:

advv(s, a)
.
= E [R+ γv(S′)|S′ ∼ p(·|s, a), R ∼ r(·|s, a)]− v(s) (14)

resp. advv(s, π)
.
= E [advv(s,A)|A ∼ π(·|s)] . (15)

By extension, we talk about advantage over a stochastic policy and write advπ to denote the advan-
tage over the value induced by this stochastic policy advπ

.
= advvπ . For notational simplicity, we

write vt, qt, advt instead of vπt , qπt and advπt . A policy π′ is said to be advantageous over a value or
another policy if its advantage is positive in all states s ∈ S. During our analysis, we will constantly
use the policy improvement theorem:
Theorem 5. (Policy Improvement Theorem, see, e.g., Eq 4.7 & 4.8 in [42])
If ∀s ∈ S, π′ is advantageous over π:

advπ(s, π′) ≥ 0, then ∀s ∈ S, vπ′(s) ≥ vπ(s). (16)

If the first inequality is strict in a given state s, so is the second inequality on s.

A.4 Densities and policy gradients

For a given stochastic policy π, we define its state visit density as:

dπ,γ(s)
.
=

∞∑
t=0

γtP [St = s|S0 ∼ p0, At ∼ π(·|St), St+1 ∼ p(·|St, At)] (17)

The canonical policy gradient is:

∇θJ (π)
.
=
∑
s dπ,γ(s)

∑
a qπ(s, a)∇θπ(a|s). (18)

The update vector often used in practice is:∑
s dπ,1(s)

∑
a qπ(s, a)∇θπ(a|s). (19)

We consider a more general update vector

U(θ, d)
.
=
∑
s d(s)

∑
a qπ(s, a)∇θπ(a|s),

where d : S → R+ may be any positive function over S.

The policy gradient methods depend on a parametrization θ ∈ R|S|×|A| of the policy. In our finite
MDPs theory, we focus on the two most common ones:

• direct: π(a|s) .
= θs,a with update: us,a = d(s)qπ(s, a) and projection on the simplex.

• softmax: π(a|s) .
=

exp(θs,a)∑
a′ exp(θs,a′)

with update: us,a = d(s)π(a|s)advπ(s, a).

A.5 Limits of on-policy updates with and without policy entropy regularization

The problem with on-policy updates (updates that are issued from a density over the state visitation
of the current policy) is the conflicting objective of exploring and converging. If we want to con-
verge, then mechanically the updates on off-density states will dry out. Let us assume that, in order
to discover a better policy, the agent needs to go off-policy from state s, and that the state s′ where
there is a positive advantage that would lead to a policy flip is actually encountered h timesteps af-
ter going off-policy. If we assume that exploration is performed through dithering (typically policy
entropy regularization in actor-critic algorithms), ie with a small exploration probability εt to take
the action leading to s′, then state s′ will be visited only with probability εht . As a consequence, to
ensure that

∑
t dπt(s) = ∞, as we show to be necessary in Thm. 2, εt would need to decrease in

Ω(t−1/h) which is very slow (and h would be a hyperparameter strongly dependent on the environ-
ment). The overall issue comes from the myopia of exploration, a problem already observed in other
works that promote deep exploration such as [30].

Only a handful of works have investigated deep exploration in actor-critic methods [6, 9]. We believe
that they face difficulties due to the inertia of the policy network. Indeed, the policy gradient requires
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on-policy updates which implies that the policy network must constantly adapt when switching from
an exploration strategy to an exploitation strategy and back, which can be time-consuming and inef-
ficient. Our fix consists in splitting the exploration and exploitation behaviour into two policies: Mr
Hyde and Dr Jekyll. Mr Hyde performs pure deep exploration and will eventually collect, for each
state-action, transitions in the replay buffer in a sufficient amount to obtain statistical significance.
Dr Jekyll purely exploits what it learnt from a mixture of on-policy and off-policy policy updates,
the latter granting a faster adaptation to the off-policy discoveries made during exploration.

A.6 Comparison of bounds established in Thm. 4 with previous bounds

[22] established (to the best of their and our knowledge) the first convergence-rate result for softmax
policy gradient for MDPs. As far as we know, there has not been others since. We start by recalling
the differences between our setting and theirs:

• They have an all-time upper bound of the sub-optimality J (π?) − J (πt) ≤ ε, while we
only provide an asymptotic result of the form: ∃t0, such that ∀t > t0, J (π?)−J (πt) ≤ ε.

• Our result is more general in the sense that it is applicable to any policy update scheme sat-
isfying C4, while theirs only apply to policy gradient in settings (A2 and C3) that guarantee
C4 and C5.

• Our theorem assumes A8 (see Rem. 1), requiring that there exists a unique optimal policy
(i.e. @ (s, a1 6= a2) ∈ S × A2, such that v?(s) = q?(s, a1) = q?(s, a2)). Although
[22] states that their approach works with multiple optimal policies, they did not prove it
formally and the extension of their proofs from a unique optimal policy to multiple ones is
not clear to us. It seems that they would face the same kind of difficulties we have (basically
a not well-defined action gap with moving qt). We discuss the limitations with respect to
A8 in more details in Rem. 1 of App. B.2.3.

Now we recall their theorem under our notations:
Theorem 6 (Thm. 4 of [22]). Assuming A1, A2, C3, and A8 hold, then for all t ≥ 1:

v?(s)− vt(s) ≤
16|S|(r> − r⊥)

t(1− γ)6 infs∈S,t≥1 πt(π?(s)|s)2
·
∥∥∥ (1− γ)dπ?,γ

p0

∥∥∥2

∞
·
∥∥∥ 1

p0

∥∥∥
∞
, (20)

where π? : S → A is an arbitrary deterministic optimal policy.

And we recall our result under A1, C5, and A8:

∃t0, such that ∀t ≥ t0, v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(t− t0)(1− γ) mins∈supp(d?) δ(s)e⊥(s)
. (21)

C5. ∀s ∈ supp(d?), limt→∞ 1
t

∑t
t′=0 ηt′dt′(s)

.
= e⊥(s) > 0,

Now we look at each classic dependency:

• Time t: both are in O(t−1) but ours uses an offset t0, hence its qualification of asymptotic
convergence rate.

• State set size |S|: we have a hidden dependency in mins∈supp(d?) δ(s)e⊥(s) which is in
Ω(1/|S|), so our bound is in O(|S|). Their theorem has an additional state set size depen-
dency in ‖ 1

p0
‖∞, so their bound is in O(|S|2).

• Action set size |A|: we are in O(|A|). Their theorem has an implicit action set size depen-
dency in infs∈S,t≥1 πt(π?(s)|s), so their bound is in O(|A|2).

• Horizon/discount factor 1
1−γ : we have a possible hidden dependency in v>−v⊥ (depending

on e.g. the sparsity of rewards), which yields a bound inO((1−γ)−2), to be compared with
their dependency in O((1 − γ)−6). They pay the cost for setting through C3 the learning
rate η in O((1− γ)−3). We interpret the last 1− γ difference by the fact that we only deal
with asymptotic rates and do not have to account for propagation through the MDP. Note
that while the horizon appears in ‖ (1−γ)dπ?,γ

p0
‖2∞, this term is larger than 1 (it is the sup of

a ratio of distributions), hence the 1− γ cannot be taken out.
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• State initialization distribution p0: there lies the beauty of policy updates, we do not have
any dependency on it. However, we do show that policy gradient will not converge to the
optimal solution in general if A2 is not satisfied, and in that case off-policy updates must be
used. The dependency in p0 is particularly strong: possibly cubic with ‖ 1

p0
‖∞. The worst

case happens in ‖ (1−γ)dπ?,γ
p0

‖2∞ when a state is rarely seen at initialization but visited a lot
by optimal policies .

Finally, we discuss the constants that are difficult to compare:

• Divergence from the optimal policy during training infs∈S,t≥1 πt(π?(s)|s): this is a un-
controlled term that shows that policy gradient is very sensitive to preliminary convergence
to sub-optimal solution. This term can easily take infinitesimal values (see e.g. Fig. 1d
of [22]), and the dependency is squared.

• Optimal action gap δ(s): we depend on this constant because we first prove the convergence
speed in policy and only then in value. If the action gap is very small in some states,
resulting in a loose bound, it may be useful to use different proof techniques to avoid the
convergence in policy step.

• State density of policy updates e⊥(s): with a constant factor κ on uniform policy updates,
e⊥(s)

.
= κ
|S| , and we accounted for this hidden dependency in the state set size comparison

above.
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B Theoretical results

B.1 Assumptions and conditions

A1 The model p0, p, r is known,

A2 The initial state-distribution covers the full state space: ∀s ∈ S, p0(s) > 0,

C3 The learning rate is constant: ηt = (1−γ)3

2γ|A| (direct) and ηt = (1−γ)3

8 (softmax),

C4. Each state s is updated with weights that sum to infinity over time:
∑∞
t=0 ηtdt(s) =∞,

C4-s. ∀s ∈ S, limT→∞ 1
T

∑T
t=0 ηtdt(s) ≥ d⊥(s) > 0.

C5. ∀s ∈ supp(d?), limt→∞ 1
t

∑t
t′=0 ηt′dt′(s)

.
= e⊥(s) > 0,

C6. Each state-action pair is explored infinitely many times: ∀s, a, limt→∞ nt(s, a) =∞.
C7. There exists d> ≥ d⊥ > 0 such that ∀s, t, d> ≥ dt(s) ≥ d⊥.

A8. The optimal policy is unique: ∀s, q?(s, a1) = q?(s, a2) = v?(s) implies a1 = a2.

B.2 Proofs

B.2.1 Monotonicity and convergence

Theorem 1 (Monotonicity under the direct and softmax parametrization). Under A1, the se-
quence of value functions qt

.
= qπt and vt

.
= vπt are monotonously increasing.

Proof sketch. First, we prove that, with both direct and softmax parametrizations, the update defined
in Eq. (3) leads to a policy that is advantageous over the original one. By the policy improvement
theorem, it means that the value function vt must be increasing, which also implies that qt is increas-
ing.

Proof. The direct and softmax parametrizations are treated independently in Theorems 1a and 1b.

Theorem 1a (Monotonicity under the direct parametrization). Under A1, the sequence of value
functions qt

.
= qπt and vt

.
= vπt are monotonously increasing.

Proof. Let us fix any s ∈ S. We recall that

πt+1(·|s) = P∆(A)(πt(·|s) + ηd(s)qt(s, ·)). (22)

By the definition of projections, this gives us:

‖πt(·|s) + ηd(s)qt(s, ·)− πt+1(·|s)‖2 ≤ ‖πt(·|s) + ηd(s)qt(s, ·)− πt(·|s)‖2 (23)

⇐⇒ 2〈πt(·|s)− πt+1(·|s), ηd(s)qt(s, ·)〉 + ‖πt(·|s)− πt+1(·|s)‖2 ≤ 0 (24)

⇐⇒ 1

2
‖πt(·|s)− πt+1(·|s)‖2 ≤ 〈πt+1(·|s)− πt(·|s), ηd(s)qt(s, ·)〉 (25)

=⇒ 0 ≤ 〈πt+1(·|s)− πt(·|s), ηd(s)qt(s, ·)〉. (26)

Using the fact that d(s) > 0 and η > 0 and replacing the vectors by their values allows to infer:

advt(s, πt+1)
.
=
∑
a∈A

(πt+1(a|s)− πt(a|s))qt(s, a) ≥ 0, (27)

which is true for all s and therefore allows to apply the policy improvement theorem, which con-
cludes the proof of the monotonicity of the value through the direct parametrization policy up-
date.

Theorem 1b (Monotonicity under the softmax parametrization). Under A1, the sequence of
value functions qt

.
= qπt and vt

.
= vπt are monotonously increasing.
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Proof. This lemma is a generalization of Lemma C.2 in [2], relaxing the assumption on the learning
rate, as well as extending the result to our update rule. By the performance difference lemma (see
e.g. Lemma 3.2 in [2]), it is sufficient to show that:

∀s ∈ S, advt(s, πt+1)
.
=
∑
a

πt+1(a|s)advt(s, a) ≥ 0. (28)

Let us define:

A>s = {a ∈ A|advt(s, a) ≥ 0} , (29)
A⊥s = {a ∈ A|advt(s, a) < 0} . (30)

For any s, we have (the weights in the exponential have all increased, and the advantages are non-
negative): ∑

a∈A>s

e(θt)s,a+ηtdt(s)πt(a|s)advt(s,a)advt(s, a) ≥
∑
a∈A>s

e(θt)s,aadvt(s, a). (31)

Similarly (the weights in the exponential have all decreased, and the advantages are negative):∑
a∈A⊥s

e(θt)s,a+ηtdt(s)πt(a|s)advt(s,a)advt(s, a) ≥
∑
a∈A⊥s

e(θt)s,aadvt(s, a). (32)

Summing gives: ∑
a

e(θt+1)s,aadvt(s, a) ≥
∑
a

e(θt)s,aadvt(s, a) = 0. (33)

Normalizing the left-hand side by
∑
a e

(θt+1)s,a gives the policy and concludes the proof.

Corollary 1 (Convergence under the direct and softmax parametrization). Under A1, the se-
quence of value functions qt uniformly converges: q∞

.
= limt→∞ qt.

Proof. Since ∀s, a, t, qt(s, a) ≤ 1
1−γ r>, the monotonous convergence theorem guarantees the exis-

tence of q∞ ∈ R|S|×|A| that is the limit of the sequence of qt.

B.2.2 Optimality

Theorem 2 (Optimality under the direct and softmax parametrization). Under A1, the following
condition:

C4. Each state s is updated with weights that sum to infinity over time:
∑∞
t=0 ηtdt(s) =∞,

is necessary and sufficient to guarantee that the sequence of value functions (qt) converges to opti-
mality: q∞ = q?

.
= maxπ∈Π qπ .

Proof sketch. In both direct and softmax parametrizations, we assume that there exists a state-action
pair (s, a) that is advantageous over the state value limits q∞ and v∞

.
= limt→∞ vt: adv∞(s, a)

.
=

q∞(s, a) − v∞(s) > 0. Then, we prove that in this state, the policy improvement yielded by the
update is lower bounded by a linear function over the update weight ηtdt(s) applied in state s.
Next, we sum over t and notice that this lower bounding sum diverges to infinity, which contradicts
Corollary 1.

We may therefore infer that there cannot exist a state-action pair that is advantageous over q∞ and
v∞, which allows us to conclude that no policy improvement is possible, and thus that the values
are optimal: q∞ = maxπ∈Π qπ .

For the necessity of C4, we show that the parameter update is upper bounded in both parametriza-
tions by a term linear in the action gap. By choosing the reward function adversarially, we may set
it sufficiently small so that the sum of all the gradient steps are insufficient to reach optimality.

Proof. The sufficient conditions for direct and softmax parametrizations are treated independently
in Thm. 2a and 2b. The necessary condition is proven in Thm. 2c.
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Theorem 2a (Optimality under the direct parametrization). Under A1 and C4, the sequence of
value functions qt converges to optimality:

q∞ = q?
.
= max

π∈Π
qπ. (34)

Proof. Let us assume that v∞ < v?, then, by the policy improvement theorem, there must be
some state s for which an advantage q∞(s, a>) − v∞(s) = ε(s) > 0 over πt exists, with
a> ∈ A>(s) = argmaxa∈A q∞(s, a). Let us define the state value-gap δ(s) := q∞(s, a>) −
maxa⊥∈A⊥(s) q∞(s, a⊥) > 0, with A⊥(s) := A/A>(s).

Since we proved that qt →t→∞ q∞, there exists t0 such that for all t ≥ t0 and a ∈ A, q∞(s, a) −
qt(s, a) ≤ δ(s)

2 . This guarantees two things for any t ≥ t0:

∀a ∈ A>(s), qt(s, a) ≥ q∞(s, a>)−
δ(s)

2
, (35)

∀a ∈ A⊥(s), qt(s, a) ≤ q∞(s, a>)− δ(s). (36)

Remembering that

πt+1(·|s) .
= P∆(A) (πt(·|s) + ηtdt(s)qt(s, ·)) , (37)

the above inequalities allow us to apply Lemma 1 to πt(·|s) with A>(s) the set of coordinates
{1, . . . , k}, α = ηtdt(s)(q∞(s, a>)− δ(s)

2 ) and β = ηtdt(s)(q∞(s, a>)− δ(s)), giving:

∑
a∈A>(s)

πt+1(a|s) ≥ min

1,
∑

a∈A>(s)

πt(a|s) +
α− β

2

 (38)

= min

1,
∑

a∈A>(s)

πt(a|s) + ηtdt(s)
δ(s)

4

 . (39)

By assumption, we know that
∑
a∈A>(s) πt(a|s) ≤ limt′→∞

∑
a∈A>(s) πt′(a|s) < 1, we may

conclude that ∀t ≥ t0: ∑
a∈A>(s)

πt+1(a|s)−
∑

a∈A>(s)

πt(a|s) ≥ ηtdt(s)
δ(s)

4
. (40)

Hence,

lim
t′→∞

∑
a∈A>(s)

πt′(a|s)−
∑

a∈A>(s)

πt0(a|s) ≥
∞∑

t′=t0

ηt′dt′(s)
δ(s)

4
. (41)

Since
∑∞
t′=t ηt′dt′(s) = ∞ and the left-hand side is bounded, this contradicts the assumption that

there exists an advantageous action in state s. This property must be true in every state s, we may
therefore conclude that v∞ is optimal.

Theorem 2b (Optimality under the softmax parametrization). Under A1 and C4, the sequence
of value functions qt converges to optimality:

q∞ = q?
.
= max

π∈Π
qπ. (42)

Proof sketch. This theorem generalizes Thm. 5.1 of [2] and our proof borrows many of their ideas.
The generalization could have been made by adapting some of the lemmas their proof relies on, but
we believe that the full rewriting of the proof has its merits: it is self contained, and ends up being
significantly shorter ( 3 pages versus 10 pages). In this proof sketch, we stack without proving them
the arguments used in the full proof that follows.
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We start by fixing state s and by partitioning the action set according to their value q∞(s, a) in s as
compared to v∞(s): smaller A<

s, equal A=
s, or larger A>

s. We assume towards a contradiction that
there must be some s for whichA>

s is non-empty, as otherwise, the policy improvement theorem tells
us that v∞ is optimal. In such a state, by the uniform convergence theorem, there is a timestep t0
from which for all t ≥ t0, the values qt are ξ-close to q∞. We choose ξ to be smaller than any action
gap in state s. We then notice that if an action in A=

s gets a policy smaller than that of an action
in A>

s, then it remains this way in the future (it undergoes smaller updates). We further partition
A=
s: A

<
=
s contains the actions for which the policy gets smaller than the policy in all actions of A>

s,
A>

=
s contains the actions for which this event never happens. We call t1 ≥ t0, the timestep when
∀a<

= ∈ A<
=
s, a

> ∈ A>
s, πt1(a

<
=|s) ≤ πt1(a>|s).

Then, we observe that A>
=
s cannot be empty because this set is the only one that contains actions

that may prevent full convergence on A>
s. We then look at the evolution of the ratio of policy mass

on A>
s versus A<

s ∪ A
<
=
s and show that this ratio is monotonously increasing. We then establish an

upper bound on it by arguing that otherwise it would imply that the sum of the updates onA>
=
s would

become negative. This cannot happen because actions in A>
=
s need to diverge to infinity to get some

policy mass, and none of them can compensate by diverging to −∞, as it would otherwise have
been partitioned in A<

=
s. We conclude the proof by showing that if the parameter of an action in A>

=
s

diverges to +∞, then the parameters of actions in A>
s will also diverge to +∞. This implies the

aforementioned ratio diverges to∞ contradicting it being upper bounded. HenceA>
s must be empty

in every state and consequently v∞ optimal.

Full proof. We recall the update rule with softmax parametrization:

(θt+1)s,a = (θt)s,a + ηtdt(s)πt(a|s)advt(s, a). (43)

We start from Corollary 1 that proves the existence of v∞(s) and q∞(s, a) to which vt(s) and
qt(s, a) converge from below for any state and action. We then consider the following partition of
the actions in state s:

A>

s = {a ∈ A|q∞(s, a) > v∞(s)} (44)
A=

s = {a ∈ A|q∞(s, a) = v∞(s)} (45)
A<

s = {a ∈ A|q∞(s, a) < v∞(s)} . (46)

If ∀s, A>
s = ∅, the policy improvement theorem tells us that q∞ is optimal and our work is done.

We thus assume towards a contradiction thatA>
s is non-empty for a certain state s. We define δ∞(s)

as the smallest positive improvement of q∞ over v∞ in state s:

δ∞(s) := min
a∈A>

s

q∞(s, a)− v∞(s). (47)

From the convergence of vt(s) and qt(s, a), we know that for any ξ > 0, there exists t0 such that for
any s, a and t ≥ t0:

v∞(s)− 1

2
ξ ≤ vt(s) ≤ v∞(s), (48)

q∞(s, a)− ξ ≤ qt(s, a) ≤ q∞(s, a). (49)

Moving forward, we choose ξ ≤ 1
2 min{δ∞(s), v∞(s) − maxa∈A<

s
q∞(s, a)} and let t0 be the

corresponding timestep.

This allows us to further partition the set A=
s as:

A<
=

s
.
= {a ∈ A=

s|∃ta ≥ t0,∀t′ ≥ ta,∀a> ∈ A>

s, θt′(s, a
>) ≥ θt′(s, a)} (50)

A>
=

s
.
= A=

s \ A
<
=

s. (51)

We note that trivially: A = A<
=
s ∪ A

>
=
s ∪ A>

s ∪ A<
s. We let t1 = max

a∈A<
=
s
ta and in the following

consider t ≥ t1. We recall the notation f(X )
.
=
∑
x∈X f(x) for any function f and set X .

The updates ut(s, a)
.
= πt(a|s)advt(s, a) on those various sets can be bounded as follows.
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On A>
s:

ut(s,A>

s)
.
=
∑
a>∈A>

s

ut(s, a
>) (52)

=
∑
a>∈A>

s

πt(a
>|s)(qt(s, a>)− vt(s)) (53)

≥ ((v∞(s) + δ∞(s)− ξ)− v∞(s))
∑
a>∈A>

s

πt(a
>|s) (54)

= (δ∞(s)− ξ)πt(A>

s|s). (55)

On A>
=
s:

ut(s,A
>
=

s)
.
=
∑
a

>
=∈A>

=
s

ut(s, a
>
=) (56)

=
∑
a

>
=∈A>

=
s

πt(a
>
=|s)

 ∑
b<∈A<

s∪A
<
=
s

πt(b
<|s)(qt(s, a

>
=)− qt(s, b<))

+
∑
b>∈A>

s

πt(b
>|s)(qt(s, a

>
=)− qt(s, b>)) (57)

+
∑
b
>
=∈A>

=
s

πt(b
>
=|s)(qt(s, a

>
=)− qt(s, b

>
=))


≤
∑
a

>
=∈A>

=
s

πt(a
>
=|s)

(
πt(A<

s|s) + πt(A
<
=

s|s)
)

(v∞(s)− v⊥)

−
∑
a

>
=∈A>

=
s

πt(a
>
=|s)πt(A>

s|s)(δ∞(s)− ξ) (58)

+
∑

(a
>
=,b

>
=)∈A>

=
s×A

>
=
s

πt(a
>
=|s)πt(b

>
=|s)(qt(s, a

>
=)− qt(s, b

>
=)) (59)

= πt(A
>
=

s|s)
((
πt(A<

s|s) + πt(A
<
=

s|s)
)

(v∞(s)− v⊥)− πt(A>

s|s)(δ∞(s)− ξ)
)

(60)

≤
(

1− πt(A
>
=

s|s)
)

(v∞(s)− v⊥). (61)

Finally, on A<
s:

ut(s,A<

s)
.
=
∑
a<∈A<

s

ut(s, a
<) ≤ 0. (62)

This gives:

(θt′)s,A>
s
≥ (θt)s,A>

s
+ (δ∞(s)− ξ)

t′−1∑
t′′=t

ηt′′dt′′(s)πt′′(A>

s|s), (63)

(θt′)s,A>
=
s
≤ (θt)s,A>

=
s

+ (v∞(s)− v⊥)
t′−1∑
t′′=t

ηt′′dt′′(s)
(

1− πt′′(A
>
=

s|s)
)
, (64)

(θt′)s,A<
s
≤ (θt)s,A<

s
. (65)

We treat the case of A<
=
s slightly differently, and will instead use the following inequalities.

∀a> ∈ A>
s, a

<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).∀a> ∈ A>

s, a
<
= ∈ A<

=
s, θt(s, a

>) ≥ θt(s, a
<
=), πt(s, a>) ≥ πt(s, a

<
=), and ut(s, a>) ≥ 2ut(s, a

<
=).
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The first two inequalities stem directly by construction of A<
=
s. For the last one, we have:

ut(s, a
>) = πt(a

>|s)advt(s, a>) ≥ πt(s, a
<
=)advt(s, a>)

= πt(s, a
<
=)(qt(s, a

>)− vt(s))
≥ πt(s, a

<
=)(v∞(s) + δ∞ − ξ − vt(s))

≥ πt(s, a
<
=)(δ∞ − ξ)

≥ ξπt(s, a
<
=)

≥ 2πt(s, a
<
=)advt(s, a

<
=) = 2ut(s, a

<
=). (66)

In the last line, we used: advt(s, a
<
=) = qt(s, a

<
=)−vt(s) ≤ q∞(s, a

<
=)−vt(s) = v∞(s)−vt(s) ≤ ξ

2 .

A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅.A>
=
s 6= ∅. IfA>

=
s is empty, Eq. (63), Eq. (65) and Eq. (66) imply that πt(A>

s|s) increases monotonously
with t. C4 then guarantees that (θt′)s,A>

s
diverges to∞. Consequently, πt(A>

s|s) will converge to 1
and vt(s) will tend to a value larger than v∞(s) + δ∞(s) which is impossible. Moving forward, we
consider A>

=
s 6= ∅ non-empty.

Mass on A>
s and A<

s ∪ A
<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s.Mass on A>

s and A<
s ∪ A

<
=
s. We now look at the evolution of ratiot(A>

s,A<
s ∪ A

<
=
s)

.
=

πt(A>
s |s)

πt(A<
s∪A

<
=
s |s)

:

ratiot+1(A>

s,A<

s ∪ A
<
=

s) =

∑
a∈A>

s
exp ((θt+1)s,a)∑

a∈A<
s∪A

<
=
s

exp ((θt+1)s,a)
(67)

=

∑
a∈A>

s
exp ((θt)s,a + ut(s, a))∑

a∈A<
s∪A

<
=
s

exp ((θt)s,a + ut(s, a))
(68)

≥
∑
a∈A>

s
exp ((θt)s,a)∑

a∈A<
s∪A

<
=
s

exp ((θt)s,a)
(69)

≥ ratiot(A>

s,A<

s ∪ A
<
=

s) (70)

Eq. (70) establishes the monotonicity of the ratio and shows that ∀t′ ≥ t:

πt′(A>

s|s) ≥ πt′(A<

s ∪ A
<
=

s|s)ratiot(A>

s,A<

s ∪ A
<
=

s). (71)

Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive.Eq. (60) remains positive. Eq. (70) allows us to show that Eq. (60) cannot become negative. Let us
assume towards a contradiction that it does become negative at a given time t, ie(

πt(A<

s|s) + πt(A
<
=

s|s)
)

(v∞(s)− v⊥)− πt(A>

s|s)(δ∞(s)− ξ) ≤ 0.

The monotonicity of the above ratio then guarantees that it will remain negative for all t′ > t. In
other words, for all t′ > t, ut′(s,A

>
=
s) ≤ 0.

If the sum of updates on actions in A>
=
s is negative, two things can happen:

• Either the actions in A>
=
s all have parameters θ that are upper bounded. This means that

πt(A>
s|s) will eventually converge to 1. In this case, we can reuse the arguments used to

disprove A>
=
s = ∅, and reach the same contradiction.

• Or at least one action in A>
=
s has a parameter θ whose lim sup is +∞. In that case, since

the sum of updates on the set A>
=
s is negative, at least one action in A>

=
s must have a θ

whose lim inf is −∞. Letting a denote that action, there thus exists a time t at which
∀a> ∈ A>

s, θt(s, a
>) > θt(s, a). Following the reasoning from Eq. (66), the updates to

those various actions will guarantee that the property holds for all t′ ≥ t, which contradicts
the construction of A>

=
s.

Thus, we assume from now on that Eq. (60) is positive.
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Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s)Boundedness of the ratio and lower bound on πt′(A>
s|s) The positivity of Eq. (60) gives us an upper

bound on the ratio: ratiot(A>
s,A<

s ∪ A
<
=
s) ≤ v∞(s)−v⊥

δ∞(s)−ξ , and equivalently the interesting inequality:

πt(A<

s ∪ A
<
=

s|s)(v∞(s)− v⊥) ≥ πt(A>

s|s)(δ∞(s)− ξ) (72)

⇐⇒ πt(A<

s ∪ A
<
=

s|s)(v∞(s)− v⊥ + δ∞(s)− ξ) ≥ (πt(A>

s|s) + πt(A<

s ∪ A
<
=

s|s))(δ∞(s)− ξ)
(73)

⇐⇒ πt(A<

s ∪ A
<
=

s|s) ≥
(1− πt(A

>
=
s|s))(δ∞(s)− ξ)

v∞(s)− v⊥ + δ∞(s)− ξ . (74)

Combining it with Eq. (71), we get for all t′ > t:

πt′(A>

s|s) ≥ πt′(A<

s ∪ A
<
=

s|s)ratiot(A>

s,A<

s ∪ A
<
=

s) (75)

≥ ratiot(A>
s,A<

s ∪ A
<
=
s)(δ∞(s)− ξ)

v∞(s)− v⊥ + δ∞(s)− ξ︸ ︷︷ ︸
κ>0

(
1− πt′(A

>
=

s|s)
)
. (76)

The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s.The policy cannot converge to A>
=
s. Let us assume that the policy converges on A>

=
s:

lim
t→∞

πt(A
>
=

s|s) = 1. (77)

From Eq. (55), we know that (θt)s,A> increases with time (and we assumed that A>
s is non-empty).

This implies that (θt)s,A>
= →∞. We may therefore infer from Eq. (64) that:

∞∑
t=0

ηtdt(s)
(

1− πt′(A
>
=

s|s)
)

=∞, (78)

then:

(θt′)s,A>
s
≥ (θt)s,A>

s
+

t′−1∑
t′′=t

ηt′′dt′′(s)πt′′(A>

s|s) (δ∞(s)− ξ) (79)

≥ (θt)s,A>
s

+ κ (δ∞(s)− ξ)
t′−1∑
t′′=t

ηt′′dt′′(s)
(

1− πt′′(A
>
=

s|s)
)
. (80)

Thus: (θt′)s,A>
s
→ ∞, which implies the divergence of ratiot(A>

s,A<
s ∪ A

<
=
s), and a contradiction

with the upper bound established earlier: we cannot have πt(A
>
=
s|s)→ 1.

Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion.Conclusion. We thus know that some policy mass must remain outside of A>
=
s. Because the ratio is

bounded and increasing, some mass must be assigned to both A>
s and A<

s ∪ A−∞s . Equation 63 thus
implies that (θt)s,A>

s
must diverge to∞, and the ratio with it, leading to a final contradiction. We

conclude that there does not exist a state where policy improvement is possible, in other words, the
policy is optimal.

Theorem 2c (Necessity of C4 for optimality). Assumption C4 is necessary to guarantee that the
sequence of value functions vt converges to optimality.

Proof. We consider a minimal MDP with one state: S .
= {s} and two terminal actions: A .

=
{a1, a2}. We assume that

∑
t ηtdt(s) = m < ∞ and r1 = 1. Now, we prove that we may choose

r2 < 1 such that the sequence (vt) does not converge to optimality: limt→∞ vt < v? = 1.
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Direct parametrization: the update is:

us,a1 = dt(s)qπ(s, a1) (81)
= dt(s) (82)

us,a2 = dt(s)qπ(s, a2) (83)
= dt(s)r2 (84)

(θt+1)s,a1 = min

(
1, (θt)s,a1 + ηtdt(s)

1− r2

2

)
(85)

(θt+1)s,a2 = max

(
0, (θt)s,a2 + ηtdt(s)

r2 − 1

2

)
. (86)

Starting from (θ0)s,a1 (resp. θ0(a2|s)), θt(a1|s) (resp. θt(a2|s)) hits 1 (resp. 0), if and only if:
∞∑
t=0

ηtdt(s)
1− r2

2
≥ 1− (θ0)s,a1 (87)

⇐⇒ m(1− r2) ≥ 2− 2(θ0)s,a1 (88)

⇐⇒ r2 ≤ 1− 2

m
(1− (θ0)s,a1) . (89)

If we adversarially choose r2 = 1− 1
m (1− (θ0)s,a1), then the optimality is never reached.

Softmax parametrization: the update is:

us,a1,t = dt(s)πt(a1|s)advt(s, a1) (90)
= dt(s)πt(a1|s)(1− πt(a1|s)− πt(a2|s)r2) (91)
= dt(s)πt(a1|s)(1− πt(a1|s))(1− r2) (92)

≤ dt(s)
1− r2

4
(93)

us,a2,t = dt(s)πt(a2|s)advt(s, a2) (94)
= dt(s)πt(a2|s)(r2 − πt(a1|s)− πt(a2|s)r2) (95)
= dt(s)πt(a1|s)(1− πt(a1|s))(r2 − 1) (96)

≥ dt(s)
r2 − 1

4
. (97)

Therefore, we know that, starting from (θ0)s,a1 , θt is upper bounded:

(θt)s,a1
.
= (θ0)s,a1 +

t∑
t′=0

ηt′us,a1,t (98)

≤ (θ0)s,a1 +

t∑
t′=0

ηt′dt(s)
1− r2

4
(99)

≤ (θ0)s,a1 +m
1− r2

4
. (100)

(101)

Similarly, we know that, starting from (θ0)s,a2 , θt is upper bounded:

(θt)s,a2
.
= (θ0)s,a2 +

t∑
t′=0

ηt′us,a2,t (102)

≥ (θ0)s,a2 +

t∑
t′=0

ηt′dt(s)
r2 − 1

4
(103)

≥ (θ0)s,a2 −m
1− r2

4
. (104)

(105)
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As a consequence, for any 0 ≤ r2 < 1 and any t, we have:

v?(s)− vt(s) = 1− (1− πt(a2|s)(1− r2)) (106)

≥ exp
(
(θ0)s,a2 −m 1−r2

4

)
exp

(
(θ0)s,a1 +m 1−r2

4

)(1− r2) (107)

≥ exp
(

(θ0)s,a2 − (θ0)s,a1 −
m

2

)
(1− r2), (108)

which is strictly positive and therefore concludes the proof.

B.2.3 Convergence rates

Theorem 4 (Asymptotic convergence rates under the softmax parametrization). With softmax
parametrization, under A1, C4, and A8:

A8. The optimal policy is unique: ∀s, q?(s, a1) = q?(s, a2) = v?(s) implies a1 = a2,

the sequence of value functions qt converges asymptotically as follows:

∃t0, such that ∀t ≥ t0, v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(1− γ) mins∈supp(dπ?,γ) δ(s)
∑t−1
t′=t0

ηt′dt′(s)
, (5)

where δ(s) = v?(s) − maxa∈A/{π?(s)} q?(s, a) is the gap with the best suboptimal action in state
s, v> (resp. v⊥) is the maximal (resp. minimal) value, and supp(dπ?,γ) denotes the support of the
distribution of the optimal policy.

Remark 1. With A8, Thm. 4 provides bounds that improve the asymptotic rates that were stated
before from O(|A|3) to O(|A|)).

We note that we were not able to convince ourselves that [22] (the only existing convergence rate for
the softmax policy) properly handles the case of multiple optimal policies either. We do believe that
their proof works in the bandit setting, corresponding to their Section 3.2.1. However the general
MDP setting studied in Section 3.2.2 is problematic. More specifically, their proof of Lemma 8 for
multiple actions (only found in the Appendix) does not apply to the sum over all optimal actions,
but to the sum over all greedy actions with respect to the current policy. This prevents a direct
application of the rest of their results and raises the question of whether the rate does hold in that
case.

We do not know whether the issue is structural, but we do believe that our proof technique, which
ignores RL optimization properties, will not be able to prove a bound in O(1/t) for problems with
multiple optimal policies. Indeed, the problem arises when the optimization commits to one optimal
action a>1 at the expense of a>2 in some state s (because e.g. qt(s, a>2) < vt(s) < qt(s, a

>
1)), up

to a point where πt(s, a>1) � πt(s, a
>
2), and a>2 later experiences a significant jump in value due

to efficient optimization in its subsequent states, inducing qt(s, a>1) < vt(s) < qt(s, a
>
2). Then,

the parameter update will be extremely slow: proportional to the product of πt(s, a>2) and (1 −
πt(s, a

>
1) + πt(s, a

>
2)), which are two very small quantities. The policy convergence to A>s will be

much slower, even go backwards for some time, since (θt)s,a>1 will decrease and (θt)s,a>2 will be too
small to have a significant impact on

∑
a>∈A>s πt(s, a

>).

Proof sketch. We consider the partition between the optimal and the suboptimal actions in every
state s:

A>s = {a ∈ A|q?(s, a) = v?(s)} and A⊥s = {a ∈ A|q?(s, a) < v?(s)} . (109)

We define δ(s) as the gap with the best suboptimal action: δ(s) .
= v?(s)−maxa∈A⊥s q?(s, a). Then,

thanks to the uniform convergence and optimality proved in Corollary 1 and Thm. 2, we know that
there exists t0, such that ∀t ≥ t0, ‖q? − qt‖∞ ≤ δ(s)

2 . Then, we consider the sequence:

(Xt)t≥t0
.
=

{
Xt0 = maxa∈A>s (θt0)s,a −maxa∈A⊥s (θt0)s,a

Xt+1 = Xt + δ(s)
8 ηtdt(s)e

−Xt (110)
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and prove that ∀t ≥ t0, Xt ≤ maxa∈A>s (θt)s,a − maxa∈A⊥s (θt)s,a. Further analysis allows us to
prove the following rate in policy convergence to suboptimal actions:∑

a∈A⊥s

πt(a|s) ≤
8|A|

δ(s)
∑t−1
t′=t0

ηt′dt′(s)
, (111)

which allows us to prove the following upper bound on the value convergence rate:

v?(s)− vt(s) ≤
8|A|(v> − v⊥)

(1− γ) mins∈supp(dπ?,γ) δ(s)
∑t−1
t′=t0

ηt′dt′(s)
.

Full proof. We consider the following partition of the actions in state s:

A>s = {a ∈ A|q?(s, a) = v?(s)} (112)
A⊥s = {a ∈ A|q?(s, a) < v?(s)} . (113)

We define δ(s) as the gap with the best suboptimal action7:

δ(s) := v?(s)− max
a∈A⊥s

q?(s, a). (114)

From the convergence of vt(s) and qt(s, a), we also know that for any ξ > 0, there exists t0 such
that for any s, a and t ≥ t0:

v?(s)− ξ ≤ vt(s) ≤ v?(s) (115)
q?(s, a)− ξ ≤ qt(s, a) ≤ q?(s, a). (116)

We fix ξ .
= δ(s)

2 . We then write the advantage as:

advt(s, a) =
∑
a′ 6=a

π(a′|s) (qt(s, a)− qt(s, a′)) , (117)

which gives the following bounds:

∀a ∈ A>s, advt(s, a) ≥ (1− πt(A>s|s)) (v?(s)− ξ − (v?(s)− δ(s)))
+ (πt(A>s|s)− πt(a|s)) (v?(s)− ξ − v?(s)) (118)

=
δ(s)

2
(1− πt(A>s|s))−

δ(s)

2
(πt(A>s|s)− πt(a|s)) , (119)

∀a ∈ A⊥s, advt(s, a) = qt(s, a)− vt(s) (120)
≤ q?(s, a)− (v?(s)− ξ) (121)

≤ −δ(s)
2
. (122)

The last term in Eq. (119) may imply a negative advantage for actions in A>s. This term is null if A>s
contains only one element a>s and this is the assumption (A8) we need to make to progress further.

Therefore, we have for the parameters:

(θt+1)s,a>s ≥ (θt)s,a>s + ηtdt(s)πt(a
>
s|s) (1− πt(a>s|s))

δ(s)

2
, (123)

∀a ∈ A/{a>s}, (θt+1)s,a ≤ (θt)s,a − ηtdt(s)πt(a|s)
δ(s)

2
≤ (θt)s,a. (124)

Let us consider the following sequence:

(Xt)t≥t0 :=

{
Xt0 = (θt0)s,a>s −maxa∈A/{a>s}(θt0)s,a

Xt+1 = Xt + δ(s)
8 ηtdt(s)e

−Xt (125)

(126)

7If there is no suboptimal action, then
∑

a∈A>
s
π(a|s) = 1 and we proved what we wanted.

27



We prove by induction that for all t ≥ t0, Xt ≤ (θt)s,a>s −maxa∈A/{a>s}(θt)s,a.

We have equality at initialization. Let us now assume the property true for t and prove it still holds
for t+ 1. Let a⊥t denote the action in A/{a>s} for which the parameter is maximal at time t:

a⊥t ∈ argmax
a∈A/{a>s}

(θt)s,a = argmax
a∈A/{a>s}

πt(a|s). (127)

We recall that t ≥ t0 guarantees that v? − vt ≤ ξ, which implies that πt(a>s|s) ≥ 1
2 . Moreover,

1− πt(a>s|s) =

∑
a∈A/{a>s} e

(θt)s,a∑
a∈A e

(θt)s,a
(128)

≥ e
(θt)s,a⊥t

2e
(θt)s,a>s

. (129)

We now compute:

(θt+1)s,a>s − max
a∈A/{a>s}

(θt+1)s,a ≥ (θt)s,a>s − (θt)s,a⊥t + ηtdt(s)πt(a
>
s|s) (1− πt(a>s|s))

δ(s)

2
(130)

≥ Xt + ηtdt(s)
1

2

e
(θt)s,a⊥t

2e
(θt)s,a>s

δ(s)

2
(131)

≥ Xt +
δ(s)

8
ηtdt(s)e

−(θt)s,a>s
+(θt)s,a⊥t (132)

≥ Xt +
δ(s)

8
ηtdt(s)e

−Xt (133)

= Xt+1 (134)

which concludes the induction.

Above, (130) is a direct application of (123) and (124), and (133) comes from the induction hypoth-
esis and the fact that x 7→ x+ δ(s)

8 ηtdt(s)e
−x is increasing on [ δ(s)8 ηtdt(s),+∞).

Xt belonging to that interval is easily guaranteed for t large enough as Xt → ∞ and we assume
ηtdt(s) to be bounded.

Let us now study the sequence (Xt)t≥t0 . To that end, we define the function f(t) solution on
[t0,+∞) of the ordinary differential equation (note that t is now a continuous variable):{

f(t0) = Xt0
df(t)
dt = δ(s)

8 ηtdt(s)e
−f(t),

(135)

where ηtdt(s) is the piece-wise constant function defined as ηtdt(s) = ηbtcdbtc(s).

From the evolution equations of Xt and f(t), we see that ∀t ∈ N, Xt ≥ f(t). Additionally, we
have:

f(t) = log

(
δ(s)

8

∫ t

t0

ηt′dt′(s)dt
′ + eXt0

)
. (136)

In particular, going back to t ∈ N, we obtain:

Xt ≥ log

(
δ(s)

8

∫ t

t0

ηt′dt′(s)dt
′ + eXt0

)
= log

(
δ(s)

8

t−1∑
t′=t0

ηt′dt′(s) + eXt0

)
. (137)
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We can now write the following rate in policy convergence:

1− πt(a>s|s) =

∑
a∈A/{a>s} e

(θt)s,a∑
a∈A e

(θt)s,a
(138)

≤ (|A| − 1)e
(θt)s,a⊥t

e
(θt)s,a>s

(139)

≤ (|A| − 1)e−Xt (140)

≤ |A| 1
δ(s)

8

∑t−1
t′=t0

ηt′dt′(s) + eXt
(141)

≤ 8|A|
δ(s)

∑t−1
t′=t0

ηt′dt′(s)
. (142)

On the value side, we further get:

v?(s)− vt(s) = P [A = a>s|A ∼ πt(·|s)]× γE [v?(S
′)− vt(S′)|S′ ∼ p(·|s, a>s)] (143)

+ P [A ∈ A/{a>s}|A ∼ πt(·|s)] (v?(s)− E [qt(s,A)|A ∼ πt(·|s) ∩ A/{a>s}])

≤ γE [v?(S
′)− vt(S′)|S′ ∼ p(·|s, a>s)] +

8|A|(v?(s)−mina∈A qt(s, a))

δ(s)
∑t−1
t′=t0

ηt′dt′(s)
(144)

≤ 8|A|(v> − v⊥)
(1− γ) mins∈supp(dπ?,γ) δ(s)

∑t−1
t′=t0

ηt′dt′(s)
, (145)

where v> (resp. v⊥) stand for the maximal (resp. minimal) value, which is upper bounded by r>
1−γ

(resp. r⊥
1−γ ), often times much smaller (resp. larger), and where supp(dπ?,γ) denotes the support of

the distribution of the optimal policy. This concludes the proof.

Theorem 3 (Asymptotic convergence rates under the direct parametrization). With direct
parametrization, under A1 and C4, the sequence of value functions qt converges to optimality in
finite time:

∃t0, such that ∀t ≥ t0, qt = q?. (4)

Proof. This is a direct consequence of Lemma 1 and Eq. (39) in Thm. 2a, which shows that the
probability of choosing an optimal action grows by updates that sum to infinity until it hits its ceiling
probability of 1. Therefore, this ceiling will be hit in a finite time t1 in all states.

Lemma 1. Let x ∈ ∆n, the simplex of Rn, and y ∈ Rn. Assume that there exists 0 < k < n and
α > β such that ∀i ≤ k, yi ≥ α and ∀i > k, yi ≤ β, then

∑
i≤k
P∆n(x+ y)i ≥ min

1,
∑
i≤k

xi +
α− β

2

 . (146)

Proof. Let us assume without loss of generality that ∀i, yi ≥ 0 (by e.g. subtracting from each of
them min yi). Let us also define the following sets:

A> = {i ≤ k}, (147)
A⊥,+ = {i > k | P∆n

(x+ y)i > 0}, (148)
A⊥,− = {i > k | P∆n

(x+ y)i = 0}. (149)

We assume that A⊥,+ 6= ∅, as otherwise we would have
∑
i≤k P∆n

(x + y)i = 1, and (146) would
hold.

We are interested in the effect of P∆n on the mass of the coordinates of x + y that belong to A>.
Given the assumption that y is coordinate-wise non-negative, the Euclidian projection onto ∆n will
remove from the coordinates of x + y the mass

∑
i yi that x gained by adding y to it. That mass

will be removed as uniformly as possible (corresponding to the equality case in Cauchy-Schwarz
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inequality), while ensuring that each coordinate remains positive. In our case, this means that P∆n

will remove all the mass of the coordinates in A⊥,−, and then remove the remaining added mass
uniformly from the other coordinates8:

• The mass added to the first k coordinates is
∑
i∈A> yi.

• The total mass to remove is K =
∑
i yi.

• The mass removed fromA⊥,− isKA⊥,−
.
=
∑
i∈A⊥,− xi+yi, which is larger than

∑
i∈A⊥,− yi.

• The remaining mass KA> + KA⊥,+ = K − KA⊥,− is smaller than
∑
i∈A>∪A⊥,+ yi and

removed uniformly from the coordinates in A> ∪ A⊥,+.

Formally, this gives us:∑
i∈A>

P∆n
(x+ y)i −

∑
i∈A>

xi =
∑
i∈A>

yi −
|A>|

|A>|+ |A⊥,+| (KA> +KA⊥,+) (150)

≥
∑
i∈A>

yi −
|A>|

|A>|+ |A⊥,+|
∑

i∈A>∪A⊥,+
yi (151)

=
|A⊥,+|

|A>|+ |A⊥,+|
∑
i∈A>

yi −
|A>|

|A>|+ |A⊥,+|
∑

i∈A⊥,+
yi (152)

≥ |A⊥,+||A>|
|A>|+ |A⊥,+|α−

|A>||A⊥,+|
|A>|+ |A⊥,+|β (153)

=
|A⊥,+||A>|
|A>|+ |A⊥,+| (α− β). (154)

|A⊥,+||A>|
|A>|+|A⊥,+| is an increasing function of |A⊥,+| and |A>| and both those quantities are larger than 1.
Hence: ∑

i∈A>
P∆n

(x+ y)i − xi ≥
α− β

2
, (155)

which concludes the proof.

B.3 Non-asymptotic convergence rates under A2

We now define an extra assumption that allows us to get non-asymptotic convergence rates under
A2.

C7. There exists d> ≥ d⊥ > 0 such that ∀s, t, d> ≥ dt(s) ≥ d⊥.

We will be needing
∥∥∥ 1
p0

∥∥∥
∞

and note that under A2, it is a well-defined quantity.

Finally, we let Mt ∈ R|S||A|×|S||A| be the diagonal matrix defined by Mt(s, a; s, a) = dt(s)
dπt,γ(s) and

0 elsewhere. We note that:

U(θt, dt) = Mt∇θ|θtJ (πt). (156)

We also denote by λt = mins
dt(s)

dπt,γ(s) and Λt = maxs
dt(s)

dπt,γ(s) the smallest and largest eigenvalues

of Mt, and by κt = Λt
λt

its condition number. We have the following inequalities:

λt ≥ (1− γ)d⊥, Λt ≤ d>
∥∥∥ 1

p0

∥∥∥
∞
, κt ≤

∥∥∥ 1

p0

∥∥∥
∞

d>
(1− γ)d⊥

. (157)

8We note that this can potentially result in some coordinates in A> becoming negative. As we are looking
for an upper bound on the mass removed from A>, this is not problematic (the mass removed in excess from
A> will then be added back to it and removed from coordinates both in and out of A>, resulting in a smaller
decrease).
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Theorem 7 (Convergence rate for the softmax parametrization under A2). With a softmax

parametrization, under A2, C7 and A8, and with η = (1−γ)3

8
1
d>

∥∥∥ 1
p0

∥∥∥−1

∞
, we have the following

convergence rate for any s:

v∞(s)− vt(s) ≤
16|S|C

(1− γ)7t
·
∥∥∥dπ?,γ
p0

∥∥∥2

∞

∥∥∥ 1

p0

∥∥∥2

∞

d>
d⊥
, (158)

where C = 1
infs∈S,t≥1 πt(π?(s)|s)2 and π? is the unique (per A8) optimal policy .

Proof. We note that this result is a generalization of the bound from [22] to our more general update
rule. The extra

∥∥∥ 1
p0

∥∥∥
∞

d>
(1−γ)d⊥

term, coming from the upper bound on κt, is the price we pay for
the generalization.

Our proof follows the logic from [22] and relies on the fact thatMt is diagonal and positive-definite.
Hence it performs some form of conditioning on the gradient, which will affect the convergence
rate, but does not change the overall evolution of the policies. More formally, we start by using the
strong convexity of J to get:

|J (πt+1)− J (πt)− 〈∇θJ (πt), θt+1 − θt〉| ≤
4

(1− γ)3
‖θt+1 − θt‖2. (159)

Now, reusing notations from [22], we let δt = J (π∗) − J (πt). Let us also remember that
U(θt, dt) = Mt∇θJ (πt), and that λt and Λt are respectively the smallest and largest eigenval-
ues of Mt. Then

δt+1 − δt = J (πt)− J (πt+1) (160)

≤ −〈∇θJ (πt), θt+1 − θt〉+
4

(1− γ)3
‖θt+1 − θt‖2 (161)

= −ηt〈∇θJ (πt),Mt∇θJ (πt)〉+
4η2
t

(1− γ)3
‖Mt∇θJ (πt)‖2 (162)

=
∑
s

dt(s)

dπt,γ(s)

(
−ηt +

4η2
t

(1− γ)3

dt(s)

dπt,γ(s)

)
〈∇θsJ (πt),∇θsJ (πt)〉 (163)

≤
∑
s

dt(s)

dπt,γ(s)

(
−ηt +

4η2
t

(1− γ)3
Λt

)
〈∇θsJ (πt),∇θsJ (πt)〉 (164)

≤ −
∑
s

dt(s)

dπt,γ(s)

(1− γ)3

16

1

Λt
〈∇θsJ (πt),∇θsJ (πt)〉 (ηt =

(1− γ)3

8

1

Λt
)

(165)

≤ −
∑
s

(1− γ)3

16

λt
Λt
〈∇θsJ (πt),∇θsJ (πt)〉 (166)

= − (1− γ)3

16

λt
Λt
‖∇θJ (πt)‖2. (167)

We now apply Lemma 8 from [22], which holds under A2 and A8, to get

δt+1 − δt ≤ −
(1− γ)3

16|S|
1

κt

∥∥∥dπ?,γ
dπt,γ

∥∥∥−2

∞
·
[

min
s
πt(a?(s)|s)

]2 · |J (π∗)− J (πt)|2 (168)

≤ − (1− γ)3

16|S|
1

κt

∥∥∥dπ?,γ
p0

∥∥∥−2

∞
·
[

inf
t,s
πt(a?(s)|s)

]2 · δ2
t , (169)

where a?(s) is the unique optimal action in s (per A8). We know from Thm. 2b that for all s,
πt(a?(s)|s)→ 1. Thus inft,s πt(a?(s)|s) > 0 and we can define 1/C

.
=
[

inft,s πt(a?(s)|s)
]2
> 0.
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Let us write Kt
.
= (1−γ)3

16|S|C
1
κt

∥∥∥dπ?,γp0

∥∥∥−2

∞
. We have δt+1 − δt ≤ −Ktδ

2
t . Exactly as in [22], we now

proceed by induction to show that δt ≤ 1
mini≤tKit

.

For t = 2, we clearly have δ1 ≤ 1
1−γ ≤ 1

2K1
. Now, δt+1 ≤ δt −mini≤tKiδ

2
t . On [0, 1

2 mini≤tKi
],

the function x−mini≤tKix
2 is increasing, hence:

δt+1 ≤
1

mini≤tKit
− mini≤tKi

mini≤tK2
i t

2
≤ 1

mini≤tKi(t+ 1)
≤ 1

mini≤t+1Ki(t+ 1)
, (170)

which concludes the induction.

In the end, we get:

J (π∗)− J (πt) ≤
16|S|C
(1− γ)3

max
i≤t

κi

∥∥∥dπ?,γ
p0

∥∥∥2

∞

1

t
(171)

≤ 16|S|C
(1− γ)4

∥∥∥ 1

p0

∥∥∥
∞

d>
d⊥

∥∥∥dπ?,γ
p0

∥∥∥2

∞

1

t
, (172)

where in the last line we used the bound on κ from Eq (157). Note that to match the definitions in
the bound from [22], we can write is as:

J (π∗)− J (πt) ≤
16|S|C

(1− γ)6t

∥∥∥ (1− γ)dπ?,γ
p0

∥∥∥2

∞

∥∥∥ 1

p0

∥∥∥
∞

d>
d⊥
.

Finally, we move from J (π∗) and J (πt) to v∞(s) and vt(s) which introduces an extra 1
1−γ

∥∥∥ 1
p0

∥∥∥
∞

and concludes the proof.

We can use the above result to compute the time at which the rates from Thm. 4 become valid.
Corollary 2. t0 from Thm. 4 can be chosen as follows:

t0 =
32|S|C
(1− γ)7

·
∥∥∥dπ?,γ
p0

∥∥∥2

∞
·
∥∥∥ 1

p0

∥∥∥2

∞

d>
d⊥

1

infs δ(s)
. (173)

Proof. We know that the rates from Thm. 4 kick in for t0 such that for any s, a and t ≥ t0:

v∞(s)− δ(s)

2
≤ vt(s) ≤ v∞(s),

q∞(s, a)− δ(s)

2
≤ qt(s, a) ≤ q∞(s, a).

From Thm. 7, it is straightforward to show that it is verified for:

t0 ≥
32|S|C

(1− γ)7t
·
∥∥∥dπ?,γ
p0

∥∥∥2

∞

∥∥∥ 1

p0

∥∥∥2

∞

d>
d⊥

1

infs δ(s)
.
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C Domains

C.1 Chain domain

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

s−1 r = βγ8

a1 a1 a1 a1 a1 a1 a1 a1 a1

a2 a2 a2 a2 a2 a2 a2 a2 a2

r = 1

Figure 4: Deterministic chain MDP. Initial state is s0. Reward is 0 everywhere except when access-
ing final states s−1 and s9. Reward in s−1 is set such that q(s0, a1) = βq?(s0, a2), with β ∈ [0, 1).

The chain domain is designed to measure the ability of algorithms to overcome misleading rewards,
i.e. immediate rewards that would guide the updates towards a suboptimal solution. In every state
sk, the agent has the opportunity to play action a1 and receive an immediate reward of βγ|S|−2, or to
play a2 and progress to next state sk+1 without any immediate reward. A reward of 1 is eventually
obtained when reaching state s|S|−1. Fig. 4 represents a chain of size 10 (both terminal states s−1

and sS−1 count as a single state). Formally, the deterministic MDP 〈S,A, p, p0, r, γ〉 is constructed
from two hyperparameters: the size |S| and the ratio β:

S .
= {si}i∈J0,|S|−1K (174)

A .
= {a1, a2} (175)

p(·|s, a)
.
=

{ ∀s, p(s|S|−1|s, a1) = 1
∀i < |S| − 1, p(si+1|si, a2) = 1
the episode terminates when s|S|−1 is reached

(176)

p0(s0)
.
= 1 (177)

r(s, a)
.
=

{ ∀s, p(s, a1) = βγ|S|−2

∀i < |S| − 2, r(si, a2) = 0
r(s|S|−1, a2) = 1

(178)

γ
.
= 0.99. (179)

There are two remarkable policies:

• Low-hanging-fruit policy:
{
π⊥(a1|s) = 1
v⊥(s) = βγ|S|−2

• Optimal policy:
{
π?(a2|s) = 1
v?(si) = γ|S|−2−i

The policy gradient is attracted by the low-hanging-fruit policy because of its shorter horizon, even
though it is sub-optimal.

In order to account for different experimental settings where the size of the chain |S| or the value
ratio β differ, we report the experimental results in terms of normalized expected return, formally
computed as:

J π =
Jπ − J⊥
J? − J⊥

, (180)

where J? = v?(s0) is the performance of the optimal policy and J⊥ = v⊥(s0) the performance of
the low-hanging-fruit policy. Note in particular that J ? = 1 and J ⊥ = 0.

C.2 Random MDPs domain

The Random MDPs domain is designed to test the algorithms in situations where the exploration
is not an issue. Indeed, by its design of highly stochastic transition functions, Random MDPs will
have a non-null chance to visit every state whatever the behavioural policy is. This is therefore
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a domain where we would expect the policy gradient update to perform well, if not the best, and
hope our modified updates still perform comparably. We reproduce the Random MDPs environment
published in Section B.1.3 of [18] (also in [25, 40]), for which we recall the specifications hereafter.

The Random MDPs domain uses four parameters for the MDP generation: the number of states,
the number of actions in each state, the connectivity of the transition function stating how many
states are reachable after performing a given action in a given state, and the discount factor γ. In our
experiments, we fix the number of actions to 4, the connectivity to 2, and the discount factor γ to
0.99.

The initial state is arbitrarily set to be s0, we then search with dynamic programming the perfor-
mance of the optimal policy for all potential terminal state sf ∈ S/s0. We select the terminal state
for which the optimal policy yields the smaller value function and set it as terminal: r(s, a, sf ) = 1
and P (s|sf , a) = 0 for all s ∈ S and a ∈ A. The reward function is set to 0 everywhere else. We
found that the optimal value-function is on average 0.6, amounting to an average horizon of 10, and
has surprising low variance. Below, we write this environmental MDP 〈S,A, p, p0, r, γ〉, its optimal
state-action value function q?, its optimal performance J?, and its uniform policy performance Ju,
where π̃ denotes the uniform random policy: πu(a|s) = 1

|A| for all s ∈ S and all a ∈ A.

In order to account for different random MDPs, we report the experimental results in terms of nor-
malized expected return, formally computed as:

J π =
Jπ − Ju
J? − Ju

. (181)

Note in particular that J ? = 1 and J u = 0.
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D Full report of finite MDPs planning experiments (under A1)

D.1 Chain domain

In classic algorithms, the actor is conflicted between two objectives: explore and visit the unknown
states, or exploit and follow the best policy under the current incomplete knowledge. The chain
experiment depicted on Fig. 4 is intended to test actor-critic algorithms’ ability to explore and find
the optimal policy under misleading rewards, and then to commit to this optimal policy. In every
state, the agent has the opportunity to choose action a1 and receive a fair reward, or to go further
without any reward signal and get a chance to eventually yield a higher return.

Our analysis underlines the importance of exploration and states the requirements for guaranteeing
sufficient exploration. Our experiment validates these findings. We consider:

• the on-policy updates:

– policy gradient (PG) distribution: dπt,γ
‖dπt,γ‖1

,

– undiscounted distribution: dπt,1
‖dπt,1‖1

,

• uniform distribution: du = 1
|S| ,

• and off-policy trade-offs between the uniform and policy gradient distributions: otdu +

(1− ot) dπt,γ
‖dπt,γ‖1

– with ot constant: 0.1 and 0.48,
– with ot ∈ Θ(t−0.48): ot = 10t−0.48,
– with ot ∈ Θ(t−1): ot = 10t−1,
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∑
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We consider four experiments:

• Exp1: We observe instantaneous performance of each density schedule across iterations.

• We look at the speed of discovering the optimal policy. We measure it by tracking the
number of updates required to reach a normalised return of 0.48 and its dependency on:

– Exp2: the number of states in the chain,
– Exp3: the value rate β between the low-hanging-fruit policy and the optimal one,
– Exp4: the learning rate.

For the softmax parametrization, we also add a policy entropy regularizing term −λ log π(·|s) and
observe its impact in Exp5 (in replacement to Exp4 which delivers the same results as in the direct
parametrization), as is often done in practice.

D.1.1 Direct parametrization

Exp1: Its results are displayed on Fig. 5a. We observe that on-policy updates converge very fast
to the low-hanging fruit policy. Fast convergence can be desirable in easy-planning tasks, but in
harder tasks such as the chain it leads to suboptimal behavior. In contrast, relying on a uniform state
distribution for the actor updates is efficient and eventually discovers the optimal policy as long as
the off-policiness ot is strong enough. It is worth noting that even under the guarantees offered by
having C4 satisfied (when ot ∈ Ω(t−1), the policy can get stuck on the low-hanging-fruit policy
for a long time (as for ot = 10t−1). However, once the optimal policy has been identified the
convergence is fast and meets the optimal performance predicted by Thm. 3.

Exp2: Its results are displayed on Fig. 5b. We observe a failure mode of on-policy updates. When
the chain is of size 7 or more, the policy converges to the suboptimal solution and will never get out
of it. In contrast, C4 guarantees the policy will eventually be optimal. However, as illustrated by
the ot = 10t−1 curve, it might be very long (possibly exponentially long) if the condition is only
satisfied tightly. The convergence gets faster as the weight granted to the uniform density increases.
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Figure 5: Chain experiments with the direct parametrization under A1.

Exp3: Its results are displayed on Fig. 5c. We observe that the issues spotted in Exp1 and Exp2
is not due to the near-optimality of the low-hanging-fruit policy. Indeed, even with a reasonably
short chain (15), and the low-hanging-fruit policy yielding an expected return 10 times smaller than
optimal, the on-policy updates will still converge to it. In contrast, when the density requirement is
satisfied, the updates reliably discover the optimal solution.

Exp4: Its results are displayed on Fig. 5d. We observe that the actor learning rate does not have
any impact on the ability of the update to lead to an optimal policy9. Sill, making it larger speeds
up convergence, so in the idealized setting we considered in this section where A1 is satisfied, the
higher the actor learning rate, the better. And it has to be noted that setting it to infinity makes the
update identical to a policy improvement step in the policy iteration algorithm.

D.1.2 Softmax parametrization

Note that η has been multiplied by 10 in the softmax experiments as compared to the direct ones, in
order to get a rate of convergence comparable to that of direct parametrization.

Exp1: Its results are displayed on Fig. 6a. We observe similar results than for the direct
parametrization, except that the algorithms never completely converge to the optimal (or subop-
timal) policies. We also observe an interesting behaviour of the policy entropy regularized versions
of the on-policy updates, at first converging to a policy worse than the low-hanging-fruit one. This
stems from the bias induced by the policy entropy regularization: during a first stage it converged
to an entropy regularized policy close to the low-hanging-fruit policy, then, after update 2000, it
discovered the low-hanging-fruit policy and slowly converged to it.

Exp2: Its results are displayed on Fig. 6b. We observe exactly the same results as in the direct
parametrization.

9We do not show the results, but on-policy updates never find the optimal policy when β = 0.7 for any η.
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Figure 6: Chain experiments with the softmax parametrization under A1.

Exp3: Its results are displayed on Fig. 6c. We get results very similar to those of the direct
parametrization. The policy entropy regularized updates behaviour is however quite interesting. It
seems quite efficient at helping the on-policy updates find the best policy, but the introduced bias
prevents learning it when β is too high. This last remark gets very clear by looking at Fig. 6b where
policy entropy regularized updates perform terribly because β is high, even worse than the on-
policy updates without the policy entropy regularization. It is also worth noting that this is the first
experiment where there is a perceptible difference between on-policy updates, with the undiscounted
update getting a little edge (γ = 0.99 is rather high).

Exp5: Its results are displayed on Fig. 6d. The first thing to notice is that, for all updates, when
the policy entropy regularization gets large, λ ≈ 0.25, the introduced bias is so high that the optimal
regularized policy has a normalized performance lower than 0.48 (similar to what we observed on
Fig. 6a). We also notice, that, for λ < 0.25, its impact on updates that satisfy C4 is near to null.
Finally, for the on-policy updates, there is a sweet spot where it allows them to converge in the
vicinity of the optimal policy reasonably fast, but it is rather narrow in terms of λ values, and slow
in terms of time to find the optimal policy. And finally, let us recall that it will not converge to
the optimal policy but to a stochastic policy that is optimal under the policy entropy regularized
objective. We elaborate this last point further in Appendix A.5.

D.2 Random MDPs domain

The Random MDPs experiment described in Section C.2 is intended to test the updates in random
MDPs, that have not been designed for the on-policy updates to fail, and where they are known to
be efficient. We will consider a single experiment consisting in repeating the following process for
more than 100 runs:

1. Generate a Random MDP.

2. Run the policy optimization in this MDP with the same densities as those described in
Section D.1.
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Figure 7: Random MDPs experiments (50 states, 4 actions) under A1.

We then report the mean (resp. decile) of the normalized expected return over the runs, as the
mean (resp. decile) performance. We run the same experiment with both the direct and softmax
parametrizations.

D.2.1 Direct parametrization

The mean performance is displayed on Fig. 7a. All algorithms perform almost equally good. Indeed,
in absence of purposely designed deceptive rewards, the policy gradient and the undiscounted update
are rather reliable at finding strong policies. Still, we start observing from update 2,000 on that the
updates with low off-policy ot updates (i.e. small weight on the uniform policy) start losing ground
to the ones with high off-policiness ot. The notable exception is du that suffered some lateness at
the start of curve, but is catching up and overtaking the low off-policy ot curves around the 4,000th
update. This suggests that a proper scheduling of ot might be worth studying in the future: in early
stages, follow the true gradient and increase exploration when the value improvement slows down.

The decile performance is displayed on Fig. 7b. We observe that, in addition to yielding a higher
mean performance, high off-policy ot updates are also very stable: their decile performance is very
close to their mean performance. In contrast, the decile performance of the on-policy updates seem
to stagnate around 0.99 at the end of the curve.

D.2.2 Softmax parametrization

The mean performance is displayed on Fig. 7c. The results are similar to that with the direct
parametrization except that:

• the mean performance remains significantly further from the optimal (around 0.99 here vs
0.997 with direct parametrization). This is due to the fact that softmax parametrization
takes longer to converge.
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• the gap between high and low off-policy ot updates is much thinner. We believe this might
also be due to the slowness of the softmax parametrization convergence. As a consequence,
du remains far from the other updates.

• the policy entropy regularized versions of the on-policy updates perform much worse. In-
deed, the bias introduced by the policy entropy regularization impairs the convergence to
a policy that is near optimal with respect to the normalized expected return (which is our
objective function). Nevertheless, it has to be noted that it produced the faster improvement
in the early stages (until update 1,000). We do not have an explanation for that.

The decile performance is displayed on Fig. 7d. We observe the same behavior as with the direct
parametrization, with the exception of the narrower gaps already discussed above.

D.3 General conclusion for this set of experiments

We test the performance across time, actor learning rate η, MDP parameters |S| and β, off-policiness
ot, and policy entropy regularization λ, with both direct and softmax parametrizations, on both the
chain and random MDPs. The full report is available in Appendix D.

On the chain domain, we empirically confirm that enforcing updates with dt including an off-policy
component helps path discovery and policy planning, while on-policy updates fail at converging to
the optimal policy, even with policy entropy regularization, in a reasonable amount of time. By
playing with the chain domain hyperparameters β and |S|, we observe that on-policy updates are
sensitive to both: even with a small β = 0.1, a reasonable sized chain |S| = 15 cannot be solved. In
contrast, updates that are partly off-policy allow to converge fast to optimality even with β = 0.95
and |S| = 25.

On the random MDP domain, we empirically observe that discounted and undiscounted updates
perform well but still oftentimes stagnate at 99% of optimal performance, while dt including an
off-policy component achieves even closer to optimality. Finally, we also note that a purely uniform
dt slows down training in the random MDPs experiment. We conclude that it is best to include
both on-policy and off-policy components in dt. Experiments also allowed us to observe the biased
convergence implied by the policy entropy regularization.
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E Full report of finite MDPs reinforcement learning experiments

E.1 Algorithms design

This section provides the full implementation of the algorithms on the testbed.

Input: UCB reward bonus weight ν and policy entropy regularization weight λ.
Input: Initialization of the value q0, set actor learning rate η and critics learning rate ηc.

1: Initialize parameters θ = 0 of the actor π .
= πθ and the critic q .

= q0.
2: for t = 0 to∞ do
3: Sample a transition τt = 〈st, at ∼ πb(·|st), st+1 ∼ p(·|st, at), rt ∼ r(·|st, at)〉.
4: for once, do a single on-policy update:
5: Update critic q with a SARSA update on τt:

q(st, at)← q(st, at) + ηc

(
r + γ

∑
a′∈A

q(s′, a′)π(s′, a′)− q(s, a)

)
(182)

6: Perform a stochastic update step in state s on Dr Jekyll’s actor θ:

θst,at ← θst,at + ηd

(
r + ν

√
log t

nst,at
+ λ log π(at|st) +

∑
a′∈A

π(s′y, a
′)q(s′t, a

′)

)
∇θπ(at|st)

(183)

7: end for
8: end for
Algorithm 2: On-policy algorithms for experiments in finite MDPs (by default ν = 0 and λ = 0).

We first formally describe the on-policy algorithms in Algorithm 2. PG update has d equal to γ at the
power of the episode’s timestep, while d = 1 for undiscounted updates. Unless specified otherwise
UCB exploration bonus parameter ν and policy entropy regularization parameter λ are set to 0.

We then formally describe the implementation of J&H in Algorithm 3.

Not shown in the algorithms: in order to compare equally each update (for instance, discounted
updates would observe less update amplitude than undiscounted ones), we normalize the empirical
update steps d by the average of their values in history. This normalizing step is not useful for the
algorithms themselves, its only use is to control potential side effects of the update choice.

In order to prepare for its deep RL implementation, we extensively analyse the J&H algorithm, but
only on the softmax parametrization. Indeed, there is no true equivalent to direct parametrization
with neural networks. We analysed the performance of the algorithms against time (number of
updates), the off-policiness ot, the actor learning rate η, and the parameters of the chain domain: its
size and the value ratio β. We will look at the same hyperparameters in the Reinforcement Learning
setting, but also at the newly introduced hyperparameters: the critic learning rate ηc, the q-function
initialization q0, and the exploration schedule εt.

But first let us specify the default hyperparameter settings:

• Environment hyperparameters:

– Chain domain: |S| = 10, |A| = 2, γ = 0.99, β = 0.8.
– Random MDPs domain: |S| = 100, |A| = 4, γ = 0.99.

• Algorithms hyperparameters:

– All algorithms: η = 1, ηc = 0.1, q0 = 0, λ = 0, ν = 0.
– J&H specific: εt and ot are always shown.
– In all the experiments, Mr Hyde is trained withQ-learning on a γ discounted objective

from UCB rewards: r̃(s, a)
.
= 1√

ns,a
.
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Input: Scheduling of exploration (εt) = ε1
tαε , and of off-policiness (ot) = o1

tαo .
Input: Initialization of the value q0, set actor learning rate η and critics learning rate ηc.

1: Initialize D̊ = ∅, parameters θ̊ = 0 of Dr Jekyll’s actor π̊ .
= πθ̊, and critic q̊ .

= q0.
2: Initialize D̃ = ∅ and Mr Hyde’s value to q̃ = q0, and policy π̃ to uniform.
3: Set the behavioural policy to Dr Jekyll: πb ← π̊ and the working replay buffer Db ← D̊.
4: for t = 0 to∞ do
5: Sample a transition τt = 〈st, at ∼ πb(·|st), st+1 ∼ p(·|st, at), rt ∼ r(·|st, at)〉
6: Add it to the working replay buffer Db ← Db ∪ {τt}.
7: if τ was terminal, then (πb, Db)← (π̃, D̃) w.p. εt, (πb, Db)← (̊π, D̊) otherwise.
8: for once, do a single update:
9: τ

.
= 〈s, a, s′, r〉 ∼ D̃ w.p. ot, τ

.
= 〈s, a, s′, r〉 ∼ D̊ otherwise.

10: Update Mr Hyde’s critic q̃ with a q-learning update on τ , then π̃ is greedy on q̃:

q̃(s, a)← q̃(s, a) + ηc

(
1

√
ns,a

+ γ max
a′∈A

q̃(s′, a′)− q̃(s, a)

)
then π̃ ← argmax

a∈A
q̃ (184)

11: Update Dr Jekyll’s critic q̊ with a SARSA update on τ :

q̊(s, a)← q̊(s, a) + ηc

(
r + γ

∑
a′∈A

q̊(s′, a′)̊π(s′, a′)− q̊(s, a)

)
(185)

12: Perform an expected update step in state s on Dr Jekyll’s actor θ̊:

∀b ∈ A, θ̊ ← θ̊ + ηq̊(s, b)∇θ̊π̊(b|s) (186)

13: end for
14: end for

Algorithm 3: Dr Jekyll & Mr Hyde algorithm for experiments in finite MDPs.
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Figure 8: Chain MDPs experiments vs. number of trajectories (200+ runs).

For J&H, we generally report the global performance, i.e. the expected performance of the mixture
of Dr Jekyll and Mr Hyde, but also sometimes, when mentioned, we also look at the performance of
the Dr Jekyll policy, because it is the best policy known to the algorithm at a given time.

E.2 Vs. time (number of trajectories):

In the chain experiment, we expect J&H to perform much better than on-policy updates (policy
gradient and undiscounted), since they are known to easily converge to suboptimal solutions. This
is indeed what we observe on Fig. 8a. All versions of J&H eventually converge, in all runs, to the
optimal policy, while on-policy updates, with or without entropic regularization, never converged
to the optimal solution. Looking more closely at the different J&H variants, we notice that the off-
policiness is instrumental to make the convergence faster, more than the exploration ratio εt, because
this latter cannot be set too large in order not to compromise the global performance. Indeed, we
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(c) Mean global performance (long)
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Figure 9: Random MDPs experiments vs. number of trajectories.

already observe with εt = 10√
t

that exploration prevents from converging closely to optimal in global
performance. We may confirm that Dr Jekyll converges well to optimal on Fig. 8b.

In the random MDPs domain, we do not expect to see any improvement, the on-policy updates
(policy gradient and undiscounted) are not tricked to converge to a suboptimal solution. Moreover,
the high stochasticity of the domain, makes it so that every state is visited a lot of times even when
following a deterministic policy. Fig. 9a confirms that J&H can keep up with the speed of the true
gradient. Its versions with εt = 10√

t
suffer a low global performance because of its exploration that

remains high, as Fig. 9b confirms. We notice that entropic regularization does not help training
faster and also biases the training objective which results into a plateaued performance. Finally, we
may observe that the choice of ot has a slight impact: using half Dr Jekyll, half Mr Hyde samples
to train offline slows a bit the convergence in the first 100k trajectories, however, looking at a longer
horizon on Fig. 9c shows that it gets better later10. It is also interesting to notice that the gap to
optimal performance has decreased by a factor 10 with 10 times more data, which corroborates our
theoretical findings that the regret should be in O(t−1). Finally, the decile performance across time
shown on Fig. 9d suggests that the use of strong off-policiness mitigates the risk and improves the
worst case performance.

E.3 Vs. off-policiness ot:

Off-policiness being a hyperparameter of J&H alone, we report the results for J&H only. On Fig.
10a, we observe that the higher the off-policiness, the best better it is in the chain experiment.
However, it is quite the opposite in the random MDPs experiments results shown on Fig. 10b, even
though it is less critical. The scheduling of ot would be an interesting focus for further research. At
this point of our knowledge we conjecture that it is better to train on-policy when the expected value
improvement are high, and train more off-policy when it is small.

10Note that despite using more than 100 runs to compute these curves, there remains some instability and the
visible results are probably not significant enough to elect a winner, however they are enough to see that they
perform comparably.
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(b) Random MDPs experiment

Figure 10: Experiments vs. off-policiness ot: average time to reach a global performance objective.
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(b) Random MDPs experiment

Figure 11: Experiments vs. actor learning rate η: average time to reach a global performance
objective.

E.4 Vs. learning rates η and ηc:

The study of η on the chain domain (results on Fig. 11a reveals that the performance of J&H
improves until some value where it breaks. It looks like a numerical stability issue but after checking
it does not seem like anything of the sort, rather that the softmax parameters go faster away than they
can go back. Indeed, as our theoretical analysis shows, there is a factor in π(1− π) the updates that
slows down the recovery from a run that converged too far into a suboptimal policy. Actually, this
phenomenon has been observed before on policy gradients, e.g. on Fig. 1.d of [22]. Note that the
value of this hyperparameter does not allow to help the on-policy algorithms to find the optimal
solution. We made the similar experiment on easier settings (lower β and size), and this did not
improve (not shown). Note also that the default value for the actor learning rate has been set to
1 which is not its optimal value, but it was a better value to make the critic/actor learning rates
consistent with each other.

The experiment on the Random MDPs shown on Fig. 11b is one of the most interesting empirical
results for many reasons11. Firstly, we observe that all updates admit an optimal value for the actor
learning rate in the range [2,30]: rather high, but not too high. This shows that there is a value for
not updating too fast the policy. Secondly, off-policiness is more tolerant for higher η values: its
optimal value is obtained for η ≈ 20, while on-policy updates are best with η ≈ 5. Thirdly, when
η is optimally set for each update, J&H significantly outperforms on-policy updates (≈ 2,500 vs.
3,500). Finally, it is satisfying to observe that η ≈ 20 is a also optimal in the chain experiment,
suggesting that it may not be too much domain dependent.

Since the chain domain is deterministic, we would expect a high critic learning rate ηc to be better
and this is what we observe, but even a maximal critic learning rate of 1 is not enough for the on-
policy updates with or without policy entropy regularization to solve the chain is the default settings

11We notice that the default value we used for this hyperparameter is not favorable for J&H.
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Figure 12: Experiments vs. critic learning rate ηc: average time to reach a global performance
objective.
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Figure 13: Random MDPs experiments with η = 10 and ηc = 0.025.

(size of 10 and β = 0.8). We also not that J&H is much more tolerant to a small critic learning rate
when the off-policiness is kept high. The random MDP experiment (Fig. 12b) illustrates the risk
of setting a too high critic learning rate. A small learning rate implies a longer but steadier time to
converge, while a high learning rate might compromise the convergence at all.

One must keep in mind that these insights are for reaching a normalized performance of 0.95 in the
random MDPs experiments. We tried a run with η = 10 and ηc = 0.025 for all algorithms, since
they seem to all perform well with this setting in our hyperparameter search we have just presented.
Fig. 13 displays the results. It clearly appears that reaching J π = 0.99 (let alone 0.999) would take
much longer than with our default setting. We judged better to stick with our default settings for this
reason.

E.5 Vs. parameters of the chain domain:

On Fig. 14a, we vary the size of the chain, and observe that J&H algorithm scales well to it as long
as the off-policiness is maintained long enough for it to unlearn to suboptimal policy and move on
to the optimal policy. It is worth noting that the on-policy updates fail at finding even with its easiest
hyperparameters, indeed the q-function being initialized to 0 and the critic learning rate being of 0.1
makes it that the algorithms already converged to the suboptimal policy when the later states values
are properly estimated. In fact, the policy entropy regularized versions of the on-policy updates
reach J π = 0.48 around the 150,000th episode.

On Fig. 14a, we vary the performance ratio β and observe that the on-policy updates manage to
make it work even for a chain of size 10 when β is sufficiently small, and that the policy entropy
regularization helps a bit to push further the limit, but not by much. In general, the delay occurred
by the time necessary for the critic to be trained is fatal to these algorithms, hence the importance of
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Figure 14: Experiments vs. chain hyperparameters: average time to reach a global performance
objective.
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Figure 15: Experiments vs. q-function initialization q0: average time to reach a global performance
objective.

prioritizing the replay of exploratory experiences. Fig. 14a also validates the reliability of the J&H
algorithms, in particular with a strong off-policiness.

E.6 Vs. q-function initialization q0:

Initializing the q-function to high values has been a historic exploration scheme for q-learning, and
we observe on Fig. 12a that is also works in the actor-critic world. As soon as q0 gets larger than
the value of the low-hanging-fruit policy, all updates push to explore until discovering the end of the
chain. In contrast, J&H is not as much sensitive to the critic initialization, in particular when the
off-policiness is high enough to fight against a hostile one.

E.7 Vs. exploration schedule εt:

Exploration schedule being a hyperparameter of J&H alone, we report the results for J&H only. In
order to remove the dependence of the performance on its exploratory behaviour, contrarily to all
the other experiments where we report the performance of J&H’s dyad, we report here the time for
Jekyll’s policy to reach the normalized value.

On Fig. 16a, we observe that having a strong off-policiness alleviates the lack of exploration to
a certain extent. We however want to reiterate that the chain domain is deterministic, and as such,
performing off-policy updates is equivalent to exploring. In a stochastic environment such as the ran-
dom MDPs, exploration cannot be replaced with off-policy updates, because statistical significance
is required to find the optimal policy. With εt = 0, unsurprisingly, the algorithm fails at finding the
optimal reward and therefore finding the goal. From εt = 0.05 to εt = 0.6, the speed improves from
15000 to 6500. From εt = 0.6 to εt = 0.95, the speed remains more of less constant in the range
[6400, 6500]. With εt = 1, more surprisingly, the performance degrades quite significantly to 7300.
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Figure 16: Experiments vs. exploration schedule εt: average time to reach a global performance
objective.

The random MDPs experiment (Fig. 16b) displays similar behaviour at a different scale. From
εt = 0 to εt = 0.95, the speed linearly improves from 35000 to 29000. With εt = 1, again
surprisingly, the performance degrades catastrophically to more than 100000.

We analyse the combined results as follows: introducing Hyde’s exploratory behavior generates a
large performance improvement due to a need for exploration. This need is correlated with the plan-
ning difficulty of the task, hence the much stronger effect in the chain experiment. Performance then
slowly improves as a function of εt: this is where the statistical significance matters. Finally, when
εt equals 1, the on-policy updates do not exist anymore, slowing down significantly the convergence
speed.

E.8 General conclusion for this set of experiments

We test the performance across time, actor η and critic ηc learning rates, MDP parameters |S| and
β, off-policiness ot and exploration εt, and critic initialization q0 with the softmax parametrization
on both the chain and random MDPs. The full report is available in Appendix E.

In the chain experiments, we observe that J&H shows the same ability to converge to the optimal
policy, while the on-policy updates, with or without policy entropy regularization, always fail, except
when q0 > J⊥ because it induces an exploratory behaviour that solves its limits. In contrast, J&H
is efficient whatever q0. More specifically about J&H, while the exploration εt is necessary at a
small amount, the amplitude of off-policiness ot is what matters the most. Since the chain domain
is deterministic, the critic learning rate ηc is optimal set at 1. Regarding the actor learning rate, it is
best set high too, but until some limit where it breaks the convergence.

Regarding the random MDPs experiments, the results are much closer, the on-policy updates being
helped by the high stochasticity of the environment, providing indeed a sort of exploration. We still
observe that all algorithms provide similar performance, J&H performing slightly worse when ot or
εt increase. Similarly, since exploration is not necessary in this domain, the performance slightly
decrease with q0 for all algorithms. Regarding the critic learning rate, it is best chosen around
ηc = 0.025. Maybe the most interesting result concern the dependency with respect to the actor
learning rate. It seems that the off-policiness granted by J&H updates allows for higher η, which
allows faster convergence when this hyperparameter is optimized independently for each algorithm.
While expected, another interesting observation is that off-policiness seems to improve the worst
case scenarios by allowing to recover more easily from converging to a suboptimal policy.
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F Full report of deep reinforcement learning experiments

F.1 The Four Rooms environment

Figure 17: The Four Rooms environment, the agent (in blue) needs to navigate to the goal (in red).

Figure 17 shows an example of the environment. The agent (in blue) starts at a random place in
one of the rooms. In Level 1, the initial state can be in any room, in Level 2, the initial state cannot
be in the goal room. The agent then needs to navigate to the goal, using four actions, North, East,
West, South. At each step in the environment, the agent receives a negative reward of −0.1. When
reaching the goal, the agent receives a reward of 90 and the episode terminates. If the agent hasn’t
reached the goal in 90 steps, the episode terminates. In the plots, we report the undiscounted sum
of rewards, a quantity that belongs to [−9, 90]. The state consists of a random 20-dimensional
embedding for each distinct position in the environment. The discount factor is set to 0.9. After 10
episodes of training, we evaluate each agent during 10 episodes and report the average performance.
Each agent was evaluated on 10 seeds, we report the average and one standard deviation over those
10 seeds. We trained the agents on an internal GPU cluster of P40 cards. Each training run took
approximately 30 minutes.

F.2 Implementation, architectures and hyperparameters

We based our code on the repo [8], that contains PyTorch implementations of various deep reinforce-
ment learning algorithms. We used the default architectures from the repo, the Adam optimizer and
performed small hyperparameters sweeps on learning rates for each algorithm (described below).

DDQN We used the default implementation provided by the repo [8] for the Four Rooms environ-
ment. The q-network is a two-hidden layer MLP with 30 and 10 neurons in each. The replay buffer
size is 40k and we used soft decay of the epsilon greedy exploration as well as soft updates of the
target network. In terms of learning rate, we swept over {0.06, 0.03, 0.01, 0.006, 0.003, 0.001} and
found that 0.01 performed best. We also found that decreasing the epsilon greedy decay compared
to the default value in the repo gave better performance on Level 2 (it did not affect Level 1 much).
We used the following probability for picking a random action: 100/e, where e is the number of
episodes trained on so far (compared to 10 for the default).

Soft-Actor Critic The actor and critics are two-hidden layers MLPs with 64 neurons in each. Two
critics were trained, and the mininum between the two was used in the backup of the critics, as
well as to train the actor. The entropy regularization hyperparameter was automatically tuned. The
implementation is the standard one provided in [8]. We also swept over the same learning rate set
and found that similarly 0.01 performed best.

47



RND For the RND target network, we used a one-hidden layer MLP with 20 neurons, outputing a
20-dimensional feature vector. The predictor network contains (as is customary in RND implemen-
tations) an additional hidden layer with 20 neurons as well. We did not search over architectures. The
learning rate is set to 0.003, which was found after a sweep on the set {0.1, 0.03, 0.01, 0.003, 0.001}.

Dr Jekyll & Mr Hyde Dr Jekyll’s architecture is the same as the Soft-Actor Critic one de-
scribed above. Its learning rate was set to 0.001, which was found to perform best out of the set
{0.06, 0.03, 0.01, 0.006, 0.003, 0.001, 0.0006}. Mr Hyde’s architecture and learning rate are the
same as the DDQN architecture described above. The decay of the probability of picking Mr. Hyde
(parameter ε1 in algorithm 4) is set to 4k for Level 1 and 40k for Level 2. Note that this corre-
sponds to the number of steps in the environment, not the number of episodes played. Those values
correspond approximately to the decay of the exploration in DDQN.

DDQN+RND and SAC+RND In the case of DDQN+RND, we simply augmented the reward
of the environment using the exploration bonus provided by the RND network. For SAC+RND,
we trained an additional critic on the exploration bonus and added it to SAC’s actor update. In both
cases, we weighted the exploration bonus by 1 afer sweeping over the set {0.1, 0.3, 0.6, 1.0, 1.3, 1.6}
and finding that it performed best in both cases.

F.3 The detailed algorithm

Algorithm 4 describes the implementation used to produce Figure 3.

Input: Scheduling of exploration (εt) = ε1
t .

1: Initialize Dr Jekyll’s actor π̊ .
= πθ̊ and critic q̊ = qθ̊.

2: Initialize Mr Hyde’s q-network q̃ = qθ̃ (its policy π̃ is greedy with respect to q̃).
3: Initialize the RND predictor pRND and target tRND networks.
4: Initialize a buffer F = ∅ of capacity K = 128 and a buffer D̃ = ∅ of capacity 40k.
5: Set the behavioural policy to Dr Jekyll: πb ← π̊ and the working replay buffer Db ← D̊.
6: for t = 0 to∞ do
7: Sample a transition τt = 〈st, at ∼ πb(·|st), st+1 ∼ p(·|st, at), rt ∼ r(·|st, at)〉.
8: if Mr Hyde is in control (πb = π̃), then add τt to Mr Hyde’s replay buffer D̃ .
9: Add τt to buffer F .

10: if τt was terminal, then πb ← π̃ wp εt, πb ← π̊ otherwise.
11: Initialize minibatch with FIFO buffer: B ← F
12: for i = 1→ K
13: Add τi

.
= 〈s, a, s′, r〉 ∼ D̃ to minibatch B

14: end for
15: For each transition τi ∈ B, compute RND reward r̃τi = ‖pRND(s′)− tRND(s′)‖2.
16: Update Mr Hyde’s q-network q̃ with a DDQN update on B where r̃ is used instead of r

q̃(s, a)← q̃(s, a) + ηc

(
r̃(s, a) + γ max

a′∈A
q̃(s′, a′)− q̃(s, a)

)
. (187)

17: Update Dr Jekyll’s critic q̊ with a SARSA update on B:

q̊(s, a)← q̊(s, a) + ηc

(
r + γ

∑
a′∈A

q̊(s′, a′)̊π(s′, a′)− q̊(s, a)

)
. (188)

18: Perform an expected update step in each state s of B on Dr Jekyll’s actor θ̊:

∀b ∈ A, θ̊ ← θ̊ + ηq̊(s, b)∇θ̊π̊(b|s) (189)

19: Update pRND by gradient descent on
∑
s′∈B ‖pRND(s′)− tRND(s′)‖2.

20: end for
Algorithm 4: Dr Jekyll & Mr Hyde algorithm for experiments with a deep architecture.
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G Code description

The code for all our experiments can be found at https://github.com/microsoft/
Dr-Jekyll-and-Mr-Hyde-The-Strange-Case-of-Off-Policy-Policy-Updates.

G.1 Finite MDPs code

It relies on two main files:

• main_config.py to run experiments in a fixed setting and report average/quantile per-
formance across time,

• and main_hyperparam.py to run experiments where a hyperparameter varies, and re-
port the time to reach a fixed normalized performance target J̃ (see Eq. (180) and (181)).

They both use the same configuration file determining the setting the experiment (the hyperparame-
ter search overwrites the setting of this hyperparameter during the run): which setting (planning or
RL), which environment (chain or random MDPs), which algorithms, with which hyperparameters,
for how many steps, and for how many runs. Such configuration files may be found in the expes
folder, where the settings of all reported experiments may be retrieved as well as their figures (and
some more). Nevertheless, we deleted the experiment result files because they are voluminous (10s
of Go), but we have them and can provide them on demand, or better: their random seeds.

The two environments are implemented in python files:

• chain.py: the chain environment described in App. C.1,
• and garnets.py: the random MDPs environment described in App. C.2 [18].

Two utility python files are used:

• utils.py contains all utility files,
• except proj_simplex.py implementing the projection on the simplex, that has been

isolated in order to account for their authors [5].

Finally, all the algorithmic innovation that we claim belongs to gradient_ascent.py, includ-
ing the implementation of J&H (Alg. 3).

G.2 Deep J&H implementation

The implementation is based on the repository [8], released under the MIT License and which con-
tains various PyTorch implementations of standard deep reinforcement learning algorithms. The
entry point to train the agents is the results/Four_Rooms.py file. To train a given one, sim-
ply run:

python results/Four_Rooms.py -agent {agent} -level {level}

where agent is chosen in [JH_Discrete, SAC_Discrete, SAC_DiscreteRND, DDQN, DDQNRND]
and level is 1 or 2.
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