
Published as a conference paper at ICLR 2025

DIFFUSION MODELS ARE EVOLUTIONARY ALGO-
RITHMS

Yanbo Zhang1∗ Benedikt Hartl1,2∗ Hananel Hazan1†∗ Michael Levin1,3

1 Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
2 Institute for Theoretical Physics, TU Wien, Austria
3 Wyss Institute for Biologically Inspired Engineering at Harvard University,

Boston, MA, 02115, USA

ABSTRACT

In a convergence of machine learning and biology, we reveal that diffusion mod-
els are evolutionary algorithms. By considering evolution as a denoising process
and reversed evolution as diffusion, we mathematically demonstrate that diffusion
models inherently perform evolutionary algorithms, naturally encompassing se-
lection, mutation, and reproductive isolation. Building on this equivalence, we
propose the Diffusion Evolution method: an evolutionary algorithm utilizing iter-
ative denoising – as originally introduced in the context of diffusion models – to
heuristically refine solutions in parameter spaces. Unlike traditional approaches,
Diffusion Evolution efficiently identifies multiple optimal solutions and outper-
forms prominent mainstream evolutionary algorithms. Furthermore, leveraging
advanced concepts from diffusion models, namely latent space diffusion and ac-
celerated sampling, we introduce Latent Space Diffusion Evolution, which finds
solutions for evolutionary tasks in high-dimensional complex parameter space
while significantly reducing computational steps. This parallel between diffu-
sion and evolution not only bridges two different fields but also opens new av-
enues for mutual enhancement, raising questions about open-ended evolution and
potentially utilizing non-Gaussian or discrete diffusion models in the context of
Diffusion Evolution.

1 INTRODUCTION

At least two processes in the biosphere have been recognized as capable of generalizing and driving
novelty: evolution, a slow variational process adapting organisms across generations to their envi-
ronment through natural selection (Darwin, 1959; Dawkins, 2016); and learning, a faster transforma-
tional process allowing individuals to acquire knowledge and generalize from subjective experience
during their lifetime (Kandel, 2013; Courville et al., 2006; Holland, 2000; Dayan & Abbott, 2001).
These processes are intensively studied in distinct domains within artificial intelligence. Relatively
recent work has started drawing parallels between the seemingly unrelated processes of evolution
and learning (Watson & Levin, 2023; Vanchurin et al., 2022; Levin, 2022; Watson et al., 2022; Kou-
varis et al., 2017; Watson & Szathmáry, 2016; Watson et al., 2016; Power et al., 2015; Hinton et al.,
1987; Baldwin, 2018). We here argue that in particular diffusion models (Sohl-Dickstein et al., 2015;
Song et al., 2020b; Ho et al., 2020; Song et al., 2020a), where generative models trained to sam-
ple data points through incremental stochastic denoising, can be understood through evolutionary
processes, inherently performing natural selection, mutation, and reproductive isolation.

The evolutionary process is fundamental to biology, enabling species to adapt to changing envi-
ronments through mechanisms like natural selection, genetic mutations, and hybridizations (Rosen,
1991; Wagner, 2015; Dawkins, 1996); this adaptive process introduces variations in organisms’ ge-
netic codes over time, leading to well-adapted and diverse individuals (Mitchell & Cheney, 2024;
Levin, 2023; Gould, 2002; Dennett, 1995; Smith & Szathmary, 1997; Szathmáry, 2015). Evolu-
tionary algorithms utilize such biologically inspired variational principles to iteratively refine sets
of numerical parameters that encode potential solutions to often rugged objective functions (Vikhar,

∗Equal contributions. † Author of correspondence: Hananel@Hazan.org.il

1

Published as a conference paper at ICLR 2025

diffusion

evolution

low fitness high fitness

Figure 1: Evolution processes can be viewed as the inverse process of diffusion, where higher fitness
populations (red points) have higher final probability density. The initially unstructured parameters
are iteratively refined towards high-fitness regions in parameter space.

2016; Golberg, 1989; Grefenstette, 1993; Holland, 1992). Notably, recent breakthroughs in deep
learning have led to the development of diffusion models–generative algorithms that iteratively re-
fine data points to sample novel yet realistic data following complex target distributions: models like
Stable Diffusion (Rombach et al., 2022) and Sora (Brooks et al., 2024) demonstrate remarkable real-
ism and diversity in generating image and video. Notably, both evolutionary processes and diffusion
models rely on iterative refinements that combine directed updates with undirected perturbations:
in evolution, random genetic mutations introduce diversity while natural selection guides popula-
tions toward greater fitness, and in diffusion models, random noise is progressively transformed into
meaningful data through learned denoising steps that steer samples toward the target distribution.
This parallel raises fundamental questions: Are the mechanisms underlying evolution and diffusion
models fundamentally connected? Is this similarity merely an analogy, or does it reflect a deeper
mathematical duality between biological evolution and generative modeling?

To answer these questions, we first examine evolution from the perspective of generative models.
By considering populations of species in the biosphere, the variational evolution process can also
be viewed as a transformation of distributions: the distributions of genotypes and phenotypes. Over
evolutionary time scales, mutation and selection collectively alter the shape of these distributions.
Similarly, many biologically inspired evolutionary algorithms can be understood that way: they
optimize an objective function by maintaining and iteratively changing a large population’s distri-
bution. This concept is central to most generative models: the transformation of distributions. Vari-
ational Autoencoders (VAEs) (Kingma, 2013), Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014), and diffusion models are all trained to transform simple distributions, typically
standard Gaussian distributions, into complex distributions, where the samples represent meaningful
images, videos, or audio, etc.

On the other hand, diffusion models can also be viewed from an evolutionary perspective. As a gen-
erative model, diffusion models transform Gaussian distributions in an iterative manner into com-
plex, structured data points that resemble the training data distribution. During the training phase,
the data points are corrupted by adding noise, and the model is trained to predict this added noise
to reverse the process. In the sampling phase, starting with Gaussian-distributed data points, the
model iteratively denoises to incrementally refine the data point samples. By considering noise-free
samples as the desired outcome, such a directed denoising can be interpreted as directed selection,
with each step introducing slight noise, akin to mutations. Together, this resembles an evolutionary
process (Fields & Levin, 2020), where evolution is formulated as a combination of deterministic dy-
namics (e.g., natural selection) and stochastic mutations (Ao, 2005; Ping et al., 2014). If one were to
revert the time direction of an evolutionary process, the evolved population of potentially highly cor-
related high-fitness solutions will dissolve gradually akin to the forward process in diffusion models,
into the respectively chosen initial distribution, typically Gaussian noise, see Figure 1.

Driven by this intuition, we conduct a thorough investigation into the connections between diffusion
models and evolutionary algorithms, discovering that these seemingly disparate concepts share the
same mathematical foundations. This insight leads to a novel approach, the Diffusion Evolution

2

Published as a conference paper at ICLR 2025

algorithm, which directly utilizes the framework of diffusion models to perform evolutionary opti-
mization. This can be obtained by inverting the diffusion process with the Bayesian method. Our
analytical study of Diffusion Evolution reveals promising parallels to biological evolution, naturally
incorporating concepts such as mutation, hybridization, and even reproductive isolation.

This equivalence provides a new way of improving evolutionary algorithms and has the potential
to unify developments in both fields. Mimicking biological evolution, evolutionary algorithms have
shown promising results in numerical optimization, particularly for tasks that cannot be effectively
trained using gradient-based methods (Wang et al., 2024; Goodfellow et al., 2014). These algorithms
thus excel in exploring complex, rugged search spaces and finding globally optimal or near-optimal
solutions (Hansen, 2016; Hansen & Ostermeier, 2001; Sehnke et al., 2010). While the biosphere
exhibits extreme diversity in lifeforms, many evolutionary strategies, such as CMA-ES (Hansen &
Ostermeier, 2001), and PEPG (Sehnke et al., 2010), struggle to find diverse solutions (Lehman &
Stanley, 2011). However, our Diffusion Evolution algorithm offers a new approach. By naturally
incorporating mutation, hybridization, and reproductive isolation, our algorithm can discover diverse
solutions, mirroring the diversity of the biosphere, rather than converging on a single solution as is
often the case with traditional methods. Since this parallel between diffusion and evolution exists
naturally and is not imposed by our design, the two fields – diffusion models and evolutionary
computing – can mutually benefit from each other. For example, we demonstrate that the concepts
of latent diffusion (Rombach et al., 2022) and accelerated sampling (Nichol & Dhariwal, 2021) can
significantly improve the performance of our Diffusion Evolution algorithm. Here, we focus on the
theoretical foundations. In a complementary contribution (Hartl et al., 2024), deep-learning-based
diffusion models are employed in an analogous evolutionary setting to leverage conditional sampling
for explicit guidance. This approach enables controlling desired outputs and conditioning on fitness,
potentially accelerating optimization without additional shaping.

In the following sections, we will first review evolutionary strategies and diffusion models, introduce
the mathematical connection between diffusion and evolution, and propose the Diffusion Evolution
algorithm. Then, we will quantitatively compare our algorithm to conventional evolutionary strate-
gies, demonstrating its capability to find multiple solutions, solve complex evolutionary tasks, and
incorporate developments from diffusion model literature. Lastly, we will discuss the emerging con-
nections between the derived algorithm and evolution, along with the potential implications of this
finding and the limitations of our algorithm. Codes are available on Github1.

2 BACKGROUND

2.1 EVOLUTIONARY ALGORITHMS

The principles of evolution extend far beyond biology, offering exceptional utility in addressing
complex systems across various domains. The key components of this process – imperfect replica-
tion with heredity and fitness-based selection – are sufficiently general to find applications in diverse
fields. In computer and data science, for instance, evolutionary algorithms play a crucial role in opti-
mization (Vikhar, 2016; Grefenstette, 1993; Golberg, 1989; Holland, 1992). These heuristic numer-
ical techniques, such as CMA-ES (Hansen & Ostermeier, 2001) and PEPG (Sehnke et al., 2010),
maintain and optimize a population of genotypic parameters over successive generations through
operations inspired by biological evolution, such as selection of the fittest, reproduction, genetic
crossover, and mutations. The goal is to gradually adapt the parameters of the entire population in
such a way that individual genotypic samples, or short individuals, perform well when evaluated
against an objective- or fitness function. These algorithms harness the dynamics of evolutionary bi-
ology to discover optimal or near-optimal solutions within vast, complex, and otherwise intractable
parameter spaces. The evaluated numerical fitness score of an individual correlates with its proba-
bility of survival and reproduction, ensuring that individuals with advantageous traits have a greater
chance of passing their genetic information to the next generation, thus driving the evolutionary
process toward more optimal solutions. Such approaches are particularly valuable when heuristic
solutions are needed to explore extensive combinatorial and permutation landscapes.

Some evolutionary algorithms operate with discrete, others with continuous sets of parameters.
Here, we focus on the latter since discrete tasks can be seen as a subcategory of continuous tasks.

1https://github.com/Zhangyanbo/diffusion-evolution

3

https://github.com/Zhangyanbo/diffusion-evolution

Published as a conference paper at ICLR 2025

Typically, the structure of the parameter space is a priori unknown. Thus, the initial population
is often sampled from a standard normal distribution. As explained above, this initially random
population is successively adapted and refined, generation by generation, to perform well on an
arbitrary objective function. Thus, initially randomized parameters are successively varied by evo-
lutionary algorithms into sets of potentially highly structured parameters that perform well on the
specified task, eventually (and hopefully) solving the designated problem by optimizing the ob-
jective function. Thus, evolutionary algorithms can be understood as generative models that use
heuristic information about already explored regions of the parameter space (at least from the pre-
vious generation) to sample potentially better-adapted offspring individuals for the next generation
(c.f., CMA-ES (Hansen et al., 2003), etc.).

2.2 DIFFUSION MODELS

Diffusion models, such as denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) and
denoising diffusion implicit models (DDIM) (Song et al., 2020a), have shown promising generative
capabilities in image, video, and even neural network parameters (Wang et al., 2024). Similar to
other generative approaches such as GANs, VAEs, and flow-based models (Dinh et al., 2016; Chen
et al., 2019), diffusion models transform a simple distribution, often a Gaussian, into a more complex
distribution that captures the characteristics of the training data. Diffusion models achieve this, in
contrast to other techniques, via iterative denoising steps, progressively transforming noisy data into
less noisy (Raya & Ambrogioni, 2024), more coherent representations (Sohl-Dickstein et al., 2015).

Diffusion models have two phases: diffusion and denoising. In the diffusion phase, we are blending
original data points with some extent of Gaussian noise. Specifically, let x0 be the original data
point and xT be the fully distorted data, then the process of diffusion can be represented as:

xt =
√
αtx0 +

√
1− αtϵ, (1)

where the amount of total noise ϵ ∼ N (0, I) added to the data x0 at time step t ∈ [0, T] is controlled
by αt that is monotonously decreasing from α0 = 1 to αT ∼ 0. Thus, while x0 represents the
original data, xT will consist entirely of Gaussian noise. To restore such diffused data, a predictive
model, typically a neural network ϵθ with parameter θ, is trained to predict the added total noise
given xt and time step t. Thus, diffusion models can be trained by minimizing the loss function:

L = Ex0∼pdata,ϵ∼N (0,I)∥ϵθ(
√
αtx0 +

√
1− αtϵ, t)− ϵ∥2, (2)

where pdata is the distribution of training data. So, conventionally, diffusion models are understood
as predicting the added noise during the diffusion process.

In the denoising phase, starting with a noisy pattern, the trained models are used to iteratively remove
the predicted noise from current data: from xT ∼ N (0, I), iteratively refine to xT−1,xT−2, . . . ,
until restoring the data x0. In the DDIM framework, this sampling process is given by:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtw, (3)

where σt controls the amount of noise w ∼ N (0, I) added during the denoising phase. Notably, the
schedule of αt and σt will both affect the denoising process and can be chosen based on our needs
under the DDIM framework.

3 DIFFUSION MODELS ARE EVOLUTIONARY ALGORITHMS

Similar to the relationship between energy and probability in statistical physics, evolutionary search
can be connected to generative tasks by mapping fitness to probability density: higher fitness corre-
sponds to higher probability density. Thus, given a fitness function f : Rn → R, we can choose a
mapping g to transform f into a probability density function p(x) = g[f(x)]. When aligning the
denoising process in a diffusion model with evolution, we want x0 to follow this density function,
i.e., p(x0 = x) = g[f(x)]. This requires an alternative view of diffusion models (Song et al.,
2020a): diffusion models are directly predicting the original data samples from noisy versions of
those samples at each time step. Given the diffusion process xt =

√
αtx0 +

√
1− αtϵ, we can

easily express x0 in terms of the noise ϵ, and vise versa:

x0 =
xt −

√
1− αtϵ√
αt

, and ϵ =
xt −

√
αtx0√

1− αt
. (4)

4

Published as a conference paper at ICLR 2025

In diffusion models, the error ϵ between x0 and xt is estimated by a neural network, i.e.,
ϵ̂ = ϵθ(xt, t). Thus, Equation 4 provides an estimation x̂0 for x0 when replacing ϵ with ϵ̂. Hence,
the sampling process of DDIM (Song et al., 2020a) in Equation 3 can be written as:

xt−1 =
√
αt−1x̂0 +

√
1− αt−1 − σ2

t ϵ̂+ σtw. (5)
(a

) e
vo

lu
tio

n

t = 80

x0

t = 55

x0

t = 30

x0

t = 5

x0

(b
) d

en
sit

y

x0

x

Figure 2: (a) Diffusion Evolution on a two-peak fitness landscape: Populations near the two black
crosses have higher fitness. For each individual xt (black star), its target x̂0 (red dots) is estimated
by a weighted average of its neighbors (c.f., dots within the blue disks, respectively); larger dot-
size indicates higher fitness. The individual then moves a small step forward to the next generation
(orange star). As evolution proceeds, the neighbor range decreases, making the process increasingly
sensitive to local neighbors, thereby enabling global competition originally, while “zooming in”
eventually to balance between optimization and diversity. (b) By mapping the population to a 1-D
space (dashed lines in (a)), we track the progress of Diffusion Evolution. As evolution progresses,
both the individuals (gray) and their estimated origins (red) move closer to the targets (vertical
dashed lines), with the estimated origins advancing faster.

Since the denoising step in diffusion models requires an estimation of x0, we need to derive it
from sample xt and the corresponding fitness f(xt). The estimation of x0 can be expressed as a
conditional probability p(x0 = x|xt). Using Bayes’ theorem and p(x0 = x) = g[f(x)] yields:

p(x0 = x|xt) =
p(xt|x0 = x)p(x0 = x)

p(xt)
=

p(xt|x)g[f(x)]
p(xt)

. (6)

Here, p(xt|x0 = x) can be computed easily by N (xt;
√
αtx, 1 − αt) given the design of the

diffusion process, i.e., xt =
√
αtx0 +

√
1− αtϵ. Since deep-learning-based diffusion models are

trained using mean squared error loss, the x0 estimated by xt should be the weighted average of the
sample x. Hence, the estimation function of x0 becomes:

x̂0(xt,α, t) =
∑

x∼peval(x)

p(x0 = x|xt)x =
∑

x∼peval(x)

g[f(x)]
N (xt;

√
αtx, 1− αt)

p(xt)
x, (7)

where peval is the evaluation sample on which we compute the fitness score, here given by the current
population Xt = (x

(1)
t ,x

(2)
t , ...,x

(N)
t) of N individuals. Equation 7 has three weight terms: The

first term g[f(x)] assigns larger weights to high fitness samples. For each individual sample xt, the
second Gaussian termN (xt;

√
αtx, 1−αt) makes each individual only sensitive to local neighbors

of evaluation samples. The third term p(xt) is a normalization term. Hence, x̂0 can be simplified to:

x̂0(xt,α, t) =
1

Z

∑
x∈Xt

g[f(x)]N (xt;
√
αtx, 1− αt)x, (8)

5

Published as a conference paper at ICLR 2025

where Z is the normalization term:

Z = p(xt) =
∑
x∈Xt

g[f(x)]N (xt;
√
αtx, 1− αt). (9)

When substituting Equation 8 into Equation 4 we can express ϵ̂ as:

ϵ̂(xt,α, t) =
xt −

√
αt x̂0(xt,α, t)
√
1− αt

, (10)

and by substituting Equations 8 and 10 into Equation 5, we derive the Diffusion Evolution algo-
rithm: an evolutionary optimization procedure based on iterative error correction akin to diffusion
models but without relying on neural networks at all, unlike previous works (Krishnamoorthy et al.,
2023; Yan & Jin, 2024). See the psuedocode of Diffusion Evolution in Algorithm 1. When inversely
denoising, i.e., evolving from time T to 0, while increasing αt, the Gaussian term will initially have
a high variance, allowing global exploration at first. As the evolution progresses, the variance de-
creases giving lower weight to distant populations, leads to local optimization (exploitation). This
locality avoids global competition, akin to reproductive isolation in biology, enabling the algorithm
to maintain multiple solutions and balance exploration and exploitation. The weighted average in
Equation 7 then acts as a gene recombination operation. Hence, the denoising process of diffusion
models can be understood in an evolutionary manner: x̂0 represents an estimated high fitness pa-
rameter target. In contrast, xt can be considered as diffused from high-fitness points. The first two
parts in the Equation 5, i.e.,

√
αt−1x̂0 +

√
1− αt−1 − σ2

t ϵ̂, guide the individuals towards high fit-
ness targets in small steps. The last part of Equation 5, σtw, is an integral part of diffusion models,
perturbing the parameters in our approach similarly to random mutations.

Algorithm 1 Diffusion Evolution
Require: Population size N , parameter dimension D, fitness function f , density mapping function

g, total evolution steps T , diffusion schedule α and noise schedule σ.
Ensure: α0 ∼ 1, αT ∼ 0, αi > αi+1, 0 < σi <

√
1− αi−1

1: [x
(1)
T ,x

(2)
T , ...,x

(N)
T]← N (0, IN×D) ▷ Initialize population

2: for t ∈ [T, T − 1, ..., 2] do
3: ∀i ∈ [1, N] : Qi ← g[f(x

(i)
t)] ▷ Fitness are cached to avoid repeated evaluations

4: for i ∈ [1, 2, .., N] do

5: Z ←
N∑
j=1

QjN (x
(i)
t ;
√
αtx

(j)
t , 1− αt)

6: x̂0 ←
1

Z

N∑
j=1

QjN (x
(i)
t ;
√
αtx

(j)
t , 1− αt)x

(j)
t

7: w ← N (0, ID)

8: x
(i)
t−1 ←

√
αt−1x̂0 +

√
1− αt−1 − σ2

t

x
(i)
t −

√
αtx̂0√

1− αt
+ σtw

9: end for
10: end for

Figure 2(a) demonstrates the detailed evolution process of a multi-target fitness landscape with two
optimal points (see exact fitness function in Appendix A.1). Each individual estimates high fitness
parameter targets and moves toward the target along with random mutations. The high fitness pa-
rameter targets x̂0 are estimated based on their neighbors’ fitness scores (neighbors are shown in
blue disks, with radius proportional to

√
1− αt/

√
αt, see Appendix A.3). The estimated targets

x̂0 typically moving toward targets faster than the individuals while the individuals are successively
refined in small denoising steps in the direction of the estimated target, see Figure 2(b). Although x̂0

often have higher fitness, they exhibit lower diversity, hence they are used as a goal of individuals
instead of the final solutions. This difference also provides flexibility in balancing between more
greedy and more diverse strategies.

6

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

We conduct two sets of experiments to study Diffusion Evolution in terms of diversity and solving
complex reinforcement learning tasks. Moreover, we utilize techniques from the diffusion models
literature to improve Diffusion Evolution. In the first experiment, we adopt an accelerated sam-
pling method (Nichol & Dhariwal, 2021) to significantly reduce the number of iterations. In the
second experiment, we propose Latent Space Diffusion Evolution, inspired by latent space diffu-
sion models (Rombach et al., 2022), allowing us to deploy our approach to complex problems with
high-dimensional parameter spaces by exploring a lower-dimensional latent space.

4.1 MULTI-TARGET EVOLUTION

Di
ffE

vo

Rosenbrock Beale Himmelblau Ackley Rastrigin

CM
AE

S
Op

en
ES

M
AP

-E
lit

e

Figure 3: Benchmark experiments (columns) on various fitness functions with selected evolutionary
algorithms (rows). Blue (high fitness) and white (low fitness) regions represent a two-dimensional
parameter space, with fitness normalized to [0, 1] for comparability (see Appendix). The Diffusion
Evolution algorithm identifies multiple optima in 2D benchmarks while preserving genetic diversity.
Red dots mark the final population, and gray lines show trajectories for 64 individuals. In CMA-ES,
gray ellipsoids represent covariance estimates, and gray lines trace the history of estimated averages.

To compare our method to selected mainstream evolutionary algorithms, we choose five different
two-dimensional fitness landscapes as benchmarks: The Rosenbrock and Beale fitness functions
have a single optimal point, while the Himmelblau, Ackley, and Rastrigin functions have multiple
optimal solutions, see Appendix A.4 for more details; we compare our method to other evolutionary
strategies, including CMA-ES (Hansen et al., 2003), OpenES (Salimans et al., 2017), PEPG (Sehnke
et al., 2010), and MAP-Elite (Mouret & Clune, 2015). The experiments show that our Diffusion
Evolution algorithm can find diverse solutions on the Himmelblau, Ackley, and Rastrigin functions.
In contrast, CMA-ES and OpenES struggle, as they either focus on finding a single solution or
get distracted by multiple high-fitness peaks, leading to sub-optimal results. While the MAP-Elite
method demonstrates diverse solutions, the corresponding average fitness is lower than that of our

7

Published as a conference paper at ICLR 2025

Table 1: Average entropy of the top-64 elite populations with 100 different evolutions, along with
average fitness (0 to 1) separated by commas. Higher entropy indicates greater diversity, and higher
fitness reflects better solutions. See Table 3 in the Appendix for details.

Diffusion
Evolution

Latent
Diffusion
Evolution

CMA-ES PEPG OpenES MAP-
Elite

Rosenbrock 5.86, 0.88 5.64, 0.92 0.00, 1.00 0.85, 1.00 1.96, 0.71 6.00, 0.77
Beale 5.50, 0.96 5.11, 0.93 0.00, 1.00 0.35, 1.00 1.03, 1.00 6.00, 0.37
Himmelblau 5.23, 0.96 4.95, 0.89 0.00, 1.00 0.00, 1.00 0.28, 1.00 6.00, 0.28
Ackley 5.67, 0.78 5.31, 0.73 5.34, 0.66 0.04, 0.96 0.18, 1.00 5.98, 0.50
Rastrigin2 5.79, 0.64 5.34, 0.62 5.70, 0.57 0.00, 0.57 0.01, 1.00 5.95, 0.61
Rastrigin4 5.82, 0.18 5.99, 0.37 5.67, 0.17 0.00, 0.17 0.00, 0.25 5.95, 0.18
Rastrigin32 5.84, 0.02 6.00, 0.19 4.54, 0.01 0.00, 0.02 0.00, 0.02 5.94, 0.02
Rastrigin256 5.84, 0.00 6.00, 0.15 2.41, 0.00 0.00, 0.00 1.65, 0.00 5.95, 0.00

Notations: highest value, second highest value, third highest value. Superscript numbers on Rastrigin func-
tions indicate the dimensions of the fitness function.

method. Our experiments demonstrate that the Diffusion Evolution algorithm can identify high-
fitness and diverse solutions and adapt to various fitness landscapes (see Figure 3 and Table 1).

The most time-consuming part of evolutionary algorithms is often the fitness evaluation. In this
experiment, we adopt an accelerated sampling method from the diffusion models literature to reduce
the number of iterations. As proposed by Nichol & Dhariwal (2021), instead of the default αt

scheduling of DDPM, a cosine scheduling αt = cos(πt/T)/2 + 1/2 leads to better performance
when T is small (see Appendix A.2 for a detailed comparison). With this, we can significantly
reduce the number of fitness evaluations while maintaining sampling diversity and quality.

To systematically compare different methods, we repeated the evolution 100 times for each method.
In all experiments, we rescaled the fitness functions to the range 0 to 1, with 1 representing the
highest fitness (see Appendix A.4). Each experiment was conducted with a population of 512 for
25 iterations, except for the OpenES method, which requires 1000 steps to converge. To quantify
diversity, we then calculated the Shannon entropy of the final population by gridding the space and
counting the individuals in different grid cells (we select the top-64 fitness individuals, focusing
solely on elite individuals). The results in Table 1 show that our method consistently finds diverse
solutions without sacrificing fitness performance. While CMA-ES shows high entropy on the Ackley
and Rastrigin functions, it finds significantly lower fitness solutions compared to Diffusion Evolu-
tion, suggesting CMA-ES is distracted by multiple solutions rather than finding diverse ones (see
examples in Figure 3). Similarly, the MAP-Elite algorithm shows the highest diversity but com-
promises on fitness, yielding the lowest fitness for most tasks. In contrast, our Diffusion Evolution
algorithm neurally excels at balancing quality and diversity, despite not being explicitly designed
for this purpose, as detailed in Appendix A.4.3.

4.2 LATENT SPACE DIFFUSION EVOLUTION

Here, we apply the Diffusion Evolution method to reinforcement learning tasks (Sutton & Barto,
1998) to train neural networks for controlling the cart-pole system (Barto et al., 1983), among other
tasks (see Appendix A.5). This system has a cart with a hinged pole, and the objective is to keep
the pole vertical as long as possible by moving the cart sideways while not exceeding a certain
range, see Figure 4(d). The game is terminated if the pole angle exceeds ±12◦ or the cart position
exceeds ±2.4. Thus, longer duration yields higher fitness. We use a two-layer neural network of
58 parameters to control the cart, with inputs being the current position, velocity, pole angle, and
pole angular velocity. The output of the neural network determines whether to move left or right.
See more details about the neural network in Appendix A.5.1. The task is considered solved when a
fitness score (cumulative reward) of 500 is reached consistently over several episodes.

8

Published as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400 450 500
time steps

2

4

6

8

10
ge

ne
ra

tio
n

(a) evolution process

2 4 6 8 10
generation

10

100

300
500

re
wa

rd

(b) reward comparison
DiffEvo
latent DiffEvo
latent DiffEvo (high-d)
CMA-ES
max reward

1 0 1 2
z1

1

0

1

z 2

(c) latent space comparison

2 0 2
x

(d) cart-pole system

Figure 4: (a) Evolution of cart-pole tasks: The horizontal axis shows survival time, and the ver-
tical axis represents generations. Each point represents an individual’s final state (pole angle, cart
position). Over time, agents survive longer and achieve higher rewards. (b) Latent Diffusion Evo-
lution methods (red) find effective solutions within ten steps, whereas CMA-ES (gray) fails within
the given generations. This latent approach also works in high-dimensional spaces (orange) with up
to 17,410 dimensions. Experiments are repeated 100 times, with medians (solid lines) and ranges
(25%–75%) shown as shaded areas. (c) Projecting individuals’ parameters into a latent space visual-
izes diversity. The same projection is used for all results except for the high-dimensional case. This
highlights the increased solution diversity of the latent method. (d) The cart-pole system includes a
pole hinged to a cart, where the controller balances the pole by moving the cart left or right.

Deploying our original Diffusion Evolution method to high-dimensional parameter spaces may re-
sult in poor performance, see high-dimensional Rastrigin functions in Table 1. To address this issue,
we propose Latent Space Diffusion Evolution: inspired by the latent space diffusion model (Rom-
bach et al., 2022), we map individual parameters into a lower-dimensional latent space in which we
perform the Diffusion Evolution algorithm. This approach significantly improves performance. This
approach is motivated from analyzing the Gaussian term in Equation 8 which we use to estimate the
original points x̂0. In higher dimensions, the increased pairwise distances between parameters cause
the evolution process to become more localized and consequently slower. Moreover, the parameter
or genotype space may have dimensions that do not effectively impact fitness, known as sloppi-
ness (Gutenkunst et al., 2007). Assigning random values to these dimensions often does not affect
fitness, similar to genetic drift (KIMURA, 1991) or neutral genes (King & Jukes, 1969), suggesting
the true high-fitness genotype distribution is lower-dimensional. The straightforward approach is
directly denoising in a lower-dimensional latent space z and estimating high-quality targets z0 via:

ẑ0(zt,α, t) =
∑
z

p(z|zt)z =
1

Z

∑
x∼peval(x)

g[f ′(z)]N (zt;
√
αtz, 1− αt)z. (11)

However, this approach requires a decoder and a new fitness function f ′ for z, which can be chal-
lenging to obtain. To circumvent this, we approximate latent diffusion by using the latent space only
to calculate the distance between individuals. Although we do not know the exact distribution of x a
priori, a random projection can often preserve distance relations between populations, as suggested
by the Johnson-Lindenstrauss lemma (Johnson, 1984). To this end, we change Equation 11 to:

x̂0(xt,α, t) =
∑

x∼peval(x)

p(x|xt)x ≈
1

Z

∑
x∼peval(x)

g[f(x)]N (zt;
√
αtz, 1− αt)x, (12)

9

Published as a conference paper at ICLR 2025

where z = Ex, Eij ∼ N (d,D)(0, 1/D), D is the dimension of x, and d is the latent space dimen-
sion (Johnson, 1984), see Algorithm 2 in the Appendix. Here we choose d = 2 in our experiments
for visualization purposes. The results show the effectiveness of Latent Diffusion Evolution on the
cart-pole task and significant improvements in benchmarks and other reinforcement learning tasks
(see Table 1 and 5). We found that latent evolution remains effective even within a significantly
higher-dimensional parameter space. For example, using a three-layer neural network with 17, 410
parameters, it still achieving strong performance, see Figure 4(b). By combining this approach with
an accelerated sampling method, the cart-pole task can be solved in just 10 generations, using a
population size of 512 and one fitness evaluation per individual. As shown in Appendix A.5, our
approach demonstrates effectiveness in a variety of reinforcement learning tasks. This highlights the
potential of using tools and theories from the diffusion model domain in evolutionary optimization
tasks and vice versa, opening up broad opportunities to improve and understand evolution from a
new perspective.

5 DISCUSSION

By aligning diffusion models with evolutionary processes, we demonstrate that diffusion models
are evolutionary algorithms, and evolution can be viewed as a generative process. The Diffusion
Evolution process inherently includes mutation, selection, hybridization, and reproductive isolation,
indicating that diffusion and evolution are two sides of the same coin. Our Diffusion Evolution algo-
rithm leverages this theoretical connection to improve solution diversity without compromise quality
too much compared to standard approaches. By integrating latent space diffusion and accelerated
sampling, our method scales to high-dimensional spaces, enabling the training of neural network
agents in reinforcement learning environments with exceptionally short training time.

This equivalence between the two fields offers valuable insights from both deep learning and evolu-
tionary computation. Through the lens of machine learning, the evolutionary process can be viewed
as nature’s way of learning and optimizing strategies for survival of species over generations. Sim-
ilarly, our Diffusion Evolution algorithm iteratively refines estimation of high-fitness parameters,
continuously learning and adapting to the fitness landscape. This positions evolutionary algorithms
not merely as optimization tools, but also as learning frameworks that enhance understanding and
functionality through iterative refinement. Conversely, framing evolution as a diffusion process of-
fers a concrete mathematical formulation. In contrast to previous work (Ao, 2005), we provide an
explicit and implementable evolutionary framework.

The connection between diffusion and evolution enables mutual contributions between the two
fields. Diffusion models are extensively studied in the contexts of controlling, optimization, and
probability theory, offering robust tools to analyze and enhance evolutionary algorithms. In our ex-
periments, leveraging concepts from diffusion models enabled flexible strategies while maintaining
the effectiveness of evolutionary processes. For instance, accelerated sampling methods (Nichol &
Dhariwal, 2021) can be applied seamlessly to Diffusion Evolution to accelerate the optimization
process. Latent diffusion models (Rombach et al., 2022) inspired our Latent Space Diffusion Evolu-
tion, enabling evolution in high-dimensional spaces and substantially improving performance. Other
advancements in the diffusion model field hold the potential to enhance our understanding of evolu-
tionary processes. For instance, non-Gaussian noise diffusion models (Bansal et al., 2024), discrete
denoising diffusion models, classifier free guidance (Ho & Salimans, 2022), and theoretical stud-
ies, e.g., spontaneous symmetry breaking (Raya & Ambrogioni, 2024) in the generative process of
diffusion models unveil entirely new possibilities and perspectives for understanding and advancing
evolutionary methods; c.f. our complimentary Conditional Diffusion Evolution (Hartl et al., 2024).
While diffusion models are inherently designed with a finite number of sampling steps, viewing
them through the lens of non-equilibrium thermodynamics, such as Langevin dynamics (Song et al.,
2020b), may allow for open-ended evolution, a characteristic inherent in natural evolution.

However, this parallel we draw here between evolution and diffusion models also gives rise to sev-
eral challenges and open questions. Could other diffusion model implementations yield different
evolutionary methods with diverse and unique features? Can advancements in diffusion models help
introduce inductive biases into evolutionary algorithms? How do latent diffusion models correlate
with neutral genes? Additionally, can insights from the field of evolution enhance diffusion models?
These questions highlight the potential of this duality and synergy between diffusion and evolution.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The authors acknowledge the Tufts University High Performance Compute Cluster 2 and the Vienna
Scientific Cluster 3 which have been utilized for the research reported in this paper. M.L. gratefully
acknowledges support via grant 62212 from the John Templeton Foundation, via grant TWCF0606
from the Templeton World Charity Foundation, and via a sponsored research agreement from As-
tonishing Labs. BH acknowledges an APART-MINT stipend by the Austrian Academy of Sciences.

REFERENCES

Ping Ao. Laws in darwinian evolutionary theory. Physics of life Reviews, 2(2):117–156, 2005.

James Mark Baldwin. A new factor in evolution. Diacronia, pp. 1–13, 2018.

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms
without noise. Advances in Neural Information Processing Systems, 36, 2024.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics,
pp. 834–846, 1983.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators, 2024.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. Advances in Neural Information Processing Systems, 32, 2019.

Aaron C Courville, Nathaniel D Daw, and David S Touretzky. Bayesian theories of conditioning in
a changing world. Trends in cognitive sciences, 10(7):294–300, 2006.

Charles Darwin. The origin of species, 1859-1959. Bios, 30(2):67–72, 1959.

Richard Dawkins. The blind watchmaker: Why the evidence of evolution reveals a universe without
design. WW Norton & Company, 1996.

Richard Dawkins. The selfish gene. Oxford university press, 2016.

Peter Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical modeling
of neural systems. Computational neuroscience. Massachusetts Institute of Technology Press,
2001. ISBN 978-0-262-04199-7.

Daniel C Dennett. Darwin’s dangerous idea. The Sciences, 35(3):34–40, 1995.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Chris Fields and Michael Levin. Does evolution have a target morphology? Organisms. Journal of
Biological Sciences, 4(1):57–76, 2020.

David E Golberg. Genetic algorithms in search, optimization, and machine learning. Addion wesley,
1989(102):36, 1989.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Stephen Jay Gould. The structure of evolutionary theory. Harvard university press, 2002.

John J Grefenstette. Genetic algorithms and machine learning. In Proceedings of the sixth annual
conference on Computational learning theory, pp. 3–4, 1993.

2https://it.tufts.edu/high-performance-computing
3https://www.vsc.ac.at

11

https://it.tufts.edu/high-performance-computing
https://www.vsc.ac.at

Published as a conference paper at ICLR 2025

Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers, and
James P Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS
computational biology, 3(10):e189, 2007.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18, 2003.

Benedikt Hartl, Yanbo Zhang, Hananel Hazan, and Michael Levin. Heuristically adaptive diffusion-
model evolutionary strategy, 2024. URL https://arxiv.org/abs/2411.13420.

Geoffrey E Hinton, Steven J Nowlan, et al. How learning can guide evolution. Complex systems, 1
(3):495–502, 1987.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, 1992.

John H Holland. Emergence: From chaos to order. OUP Oxford, 2000.

William B Johnson. Extensions of lipshitz mapping into hilbert space. In Conference modern
analysis and probability, 1984, pp. 189–206, 1984.

Eric R. Kandel. Principles of Neural Science, Fifth Edition. McGraw Hill Professional, 2013. ISBN
978-0-07-139011-8.

Motoo KIMURA. The neutral theory of molecular evolution: A review of recent evidence. The
Japanese Journal of Genetics, 66(4):367–386, 1991. doi: 10.1266/jjg.66.367.

Jack Lester King and Thomas H. Jukes. Non-darwinian evolution. Science, 164(3881):788–798,
1969. doi: 10.1126/science.164.3881.788. URL https://www.science.org/doi/abs/
10.1126/science.164.3881.788.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Kostas Kouvaris, Jeff Clune, Loizos Kounios, Markus Brede, and Richard A Watson. How evolu-
tion learns to generalise: Using the principles of learning theory to understand the evolution of
developmental organisation. PLoS computational biology, 13(4):e1005358, 2017.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-
gelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 17842–17857. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/krishnamoorthy23a.html.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011.

Michael Levin. Technological approach to mind everywhere: an experimentally-grounded frame-
work for understanding diverse bodies and minds. Frontiers in systems neuroscience, 16:768201,
2022.

Michael Levin. Darwin’s agential materials: evolutionary implications of multiscale competency in
developmental biology. Cellular and Molecular Life Sciences, 80(6):142, 2023.

12

https://arxiv.org/abs/2411.13420
https://www.science.org/doi/abs/10.1126/science.164.3881.788
https://www.science.org/doi/abs/10.1126/science.164.3881.788
https://proceedings.mlr.press/v202/krishnamoorthy23a.html
https://proceedings.mlr.press/v202/krishnamoorthy23a.html

Published as a conference paper at ICLR 2025

Kevin J Mitchell and Nick Cheney. The genomic code: The genome instantiates a generative model
of the organism. arXiv preprint arXiv:2407.15908, 2024.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Ao Ping et al. Equivalent formulations of “the equation of life”. Chinese Physics. B, 23, 2014.

Daniel A Power, Richard A Watson, Eörs Szathmáry, Rob Mills, Simon T Powers, C Patrick Don-
caster, and BłaŻej Czapp. What can ecosystems learn? expanding evolutionary ecology with
learning theory. Biology direct, 10:1–24, 2015.

Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new frontier for evolu-
tionary computation. Frontiers in Robotics and AI, 3:202845, 2016.

Gabriel Raya and Luca Ambrogioni. Spontaneous symmetry breaking in generative diffusion mod-
els. Advances in Neural Information Processing Systems, 36, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Robert Rosen. Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life.
Columbia University Press, 1991.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen
Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

John Maynard Smith and Eors Szathmary. The major transitions in evolution. OUP Oxford, 1997.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: an introduction mit press. Cam-
bridge, MA, 22447:10, 1998.

Eörs Szathmáry. Toward major evolutionary transitions theory 2.0. Proceedings of the National
Academy of Sciences, 112(33):10104–10111, 2015.

Vitaly Vanchurin, Yuri I Wolf, Mikhail I Katsnelson, and Eugene V Koonin. Toward a theory
of evolution as multilevel learning. Proceedings of the National Academy of Sciences, 119(6):
e2120037119, 2022.

Pradnya A Vikhar. Evolutionary algorithms: A critical review and its future prospects. In 2016
International conference on global trends in signal processing, information computing and com-
munication (ICGTSPICC), pp. 261–265. IEEE, 2016.

Andreas Wagner. Arrival of the fittest: How nature innovates. Current, 2015.

Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural network diffusion. arXiv preprint arXiv:2402.13144, 2024.

13

Published as a conference paper at ICLR 2025

Richard Watson and Michael Levin. The collective intelligence of evolution and development. Col-
lective Intelligence, 2(2):26339137231168355, 2023.

Richard A Watson and Eörs Szathmáry. How can evolution learn? Trends in ecology & evolution,
31(2):147–157, 2016.

Richard A Watson, Rob Mills, CL Buckley, Kostas Kouvaris, Adam Jackson, Simon T Powers,
Chris Cox, Simon Tudge, Adam Davies, Loizos Kounios, et al. Evolutionary connectionism:
algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco
and evolutionary transitions. Evolutionary biology, 43:553–581, 2016.

Richard A Watson, Michael Levin, and Christopher L Buckley. Design for an individual: con-
nectionist approaches to the evolutionary transitions in individuality. Frontiers in Ecology and
Evolution, 10:823588, 2022.

Xueming Yan and Yaochu Jin. Emodm: A diffusion model for evolutionary multi-objective opti-
mization. arXiv preprint arXiv:2401.15931, 2024.

14

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 TWO-PEAKS MODELS

We first apply our method to a simple two-dimensional fitness function, with two optimal points,
to demonstrate its behavior and capability of finding multiple solutions. We choose a continuous
mixed Gaussian density function. The fitness function is a mixed Gaussian density function with
means located at (1, 1) and (−1,−1). The fitness function is:

f(x, y) =
[
N ((x, y);µ1, σ

2) +N ((x, y);µ2, σ
2)
]
/2, (13)

where µ1 = (1, 1) and µ2 = (−1,−1). And the σ = 0.1.

A.2 ALPHA AND NOISE SCHEDULE

101 102 103

Number of total steps

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e f

itn
es

s (
to

p
64

 el
ite

s)

(b) compare performance

Linear
Cosine
DDPM

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0
(a) schedule

Linear
Cosine
DDPM

Figure 5: (a) Different α scheduling methods used, here for a total of T = 100 evolutionary steps.
(b) Average final fitness and standard deviation of 100 experiments of 2-dimensional Rastrigin
function with different numbers of total evolutionary steps is analyzed under various α schedul-
ing methods. In general, a larger number of total evolution steps lead to higher average fitness. Most
α scheduling methods result in fitness plateauing around T = 100. However, cosine scheduling
achieves higher fitness when the total number of evolution steps is lower than 100, demonstrating
its capability to accelerate sampling by reducing the total number of fitness evaluations.

In our experiments, we tested three different schedules for αt, see Figure 5(a). The first is a simple
linear schedule, used in the two-peaks demonstration:

αt = 1− t

T
. (14)

The second is the schedule used in DDPM (Ho et al., 2020), which can be approximated by:

αt = exp

(
−β0t−

γt2

T

)
, (15)

where β0 and γ are hyperparameters. These are calculated by constraining α0 = 1− ε and αT = ε,
with ε = 10−4 as the default.

The third schedule is the cosine schedule proposed by Nichol & Dhariwal (2021) and is used in both
Figures 3 and 4:

αt =
1

2
cos

(
πt

T

)
+

1

2
. (16)

The cosine α scheduling demonstrates better performance when the total number of evolution steps
are fewer than 100 (see Figure 5(b)), aligning with the conclusions reported by Nichol & Dhariwal
(2021). Hence, we use cosine α scheduling by default unless otherwise specified.

15

Published as a conference paper at ICLR 2025

For σt, we follow the DDIM setting with a slight modification for better control:

σt = σm

√
1− αt−1

1− αt

√
1− αt

αt−1
, (17)

where 0 ≤ σm ≤ 1 is a hyperparameter to control the magnitude of noise. We use σm = 1 for
most experiments, except for the experiment demonstrating the process in Figure 2, which requires
a lower noise magnitude σm = 0.1 for better visualization.

A.3 NEIGHBORHOOD OF INDIVIDUALS

In Figure 2, we use blue discs to represent the neighborhood of each individual. The mean and stan-
dard deviation of an individual’s neighborhood can be derived from the Gaussian term in Equation 8.
Transforming this term into an equivalent form with x as the variable and xt as the parameter yields:

N (xt;
√
αtx, 1− αt) =

1
√
αt
N

(
x;

xt√
αt

,

√
1− αt

αt

)
. (18)

Hence, this Gaussian term can be transformed into a form where x is the variable, which is more
intuitive for identifying data points x as the neighbors of xt/

√
αt. Thus, the neighborhood-discs

are centered at µ = xt/
√
αt and have a squared radius of r2 = (1− αt)/αt.

A.4 FITNESS FUNCTIONS

Table 2: Fitness functions used in our experiments. The superscript on Rastrigin indicates the
dimension of the function.

Name Formula features

Rosenbrock f(x, y) = 100(y − x2)2 + (1− x)2 The minimal value position is
(x, y) = (1, 1), where f(1, 1) =
0.

Beale f(x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 +
(2.625− x+ xy3)2

The minimal value position
is (x, y) = (3, 0.5), where
f(3, 0.5) = 0.

Himmelblau f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2 This function has four minimal
value points, they are:
f(3.0, 2.0) = 0.0,
f(−2.81, 3.13) = 0.0,
f(−3.78,−3.28) = 0.0,
f(3.58,−1.85) = 0.0

Ackley f(x, y) = −20 exp

(
−0.2

√
x2+y2

2

)
−

exp
(
cos 2πx+cos 2πy

2

)
+ e+ 20

When restricting the range of
x, y between -4 to 4, the maxi-
mal points are located at the four
corners.

Rastriginn f(x) = An+
∑n

i=1[x
2
i −A cos(2πxi)] Here A = 10, and n is the di-

mension. Similar as the Ack-
ley function above, when restrict-
ing the range of x, the maximal
points are located at the four cor-
ners.

To benchmark the solution diversity and performance, we choose eight different fitness functions
to compare our method with other evolutionary strategies. All the functions depend on variable x,

16

Published as a conference paper at ICLR 2025

with the objective being to minimize or maximize the function value. Specifically, we constrain the
range of xi to (−4, 4) and set the objective of the Rastrigin function to be maximization instead of
minimization to benchmark the capability of finding multiple solutions. All the functions are scaled
by 4, i.e., f(x)→ f ′(4x), to ensure that the standard Gaussian distribution can cover the parameter
space. The details of these fitness functions are shown in Table 2.

A.4.1 PROBABILITY MAPPING FUNCTION

T = 0.1 T = 0.5 T = 1.0 T = 2.0 T = 5.0 T = 10.0
0.00

0.25

0.50

0.75

(a
) F

in
al

Fi
tn

es
s

Rosenbrock
Beale
Himmelblau
Ackley
Rastrigin2

Rastrigin4

Rastrigin32

Rastrigin256

10 1 100 101

Temperature

4

5

6

(b
) E

nt
ro

py

10 1 100 101

Temperature

0

10

20

30

40

(c
) Q

D-
Sc

or
e

Figure 6: Effects of temperature T on the probability mapping function g. (a) Average fitness and
standard deviation of 100 run with g functions under different temperature T settings are shown. A
value of one represents the highest fitness, while zero indicates the lowest fitness. The general trend
reveals that as T increases, Diffusion Evolution tends to sample fewer high-fitness populations. (b)
The average entropy of sampled parameters increases as temperature rises, plateauing rapidly around
T = 1. The shaded areas indicate the standard deviation of the entropy. (c) When measured by QD-
score, many tasks achieve their maximum QD-score around T = 1, suggesting this is the optimal
setting for most tasks.

To standardize the comparison, we apply the following fitness mapping function g to convert target
values to the highest fitness:

(g ◦ f)(x) =
e−D(f(x),f∗)/(sT) − gmin

1− gmin
(19)

Here, T is the temperature parameter used to control the sharpness of the probability density func-
tion, and f∗ is the target fitness value, with s as the scale factor to make different functions com-
parable. The D represents the distance function, defined as D(x, y) = |x − y|, and Dmax is the
maximum possible distance between the target fitness and the sampled fitness within the given pa-
rameter region. The gmin is defined as exp(−Dmax/(sT)), representing the minimal possible prob-
ability value before rescaling. For each fitness function, we determine f∗ as the minimal or maximal
value, depending on the optimization objective. The scale factor is determined by the standard de-
viation of fitness around their optimal points, with ranges adjusted for different functions. After this
transformation, the lowest fitness is zero, and the highest fitness is one.

While we acknowledge that the choice of the probability mapping function can vary depending on
the task, we use Equation 19 with a T hyper-parameter to investigate how the probability mapping
function affects the results and to determine the optimal g function. As illustrated in Figure 6,
higher temperatures generally make fitness values less distinguishable, leading the algorithm to
sample fewer high-fitness individuals while simultaneously increasing diversity. By evaluating the

17

Published as a conference paper at ICLR 2025

QD-score, as shown in Figure 6(c), we recommend selecting T = 1 for most probability mapping
functions when an appropriate scale factor s is applied. For this reason, we use T = 1 for all
benchmark and reinforcement learning experiments, except in Figure 3, where we set T = 0.25 for
better visualization.

Table 3: A detailed version of Table 1 is presented, where each cell contains two lines. The first line
indicates the entropy of the top-64 elite populations after evolution, while the second line represents
the average fitness (ranging from 0 to 1). Standard deviations for both entropy and fitness are
provided in parentheses. The superscript numbers on the Rastrigin functions indicate the dimension
of the fitness function.

Diffusion
Evolution

Latent
Diffusion
Evolution

CMA-ES PEPG OpenES MAP-Elite

Rosenbrock 5.86 (0.10)
0.88 (0.06)

5.64 (0.24)
0.92 (0.06)

0.00 (0.00)
1.00 (0.00)

0.85 (0.26)
1.00 (0.00)

1.96 (0.21)
0.71 (0.00)

6.00 (0.01)
0.77 (0.00)

Beale 5.50 (0.16)
0.96 (0.01)

5.11 (0.37)
0.93 (0.06)

0.00 (0.00)
1.00 (0.00)

0.35 (0.21)
1.00 (0.00)

1.03 (0.45)
1.00 (0.01)

6.00 (0.01)
0.37 (0.01)

Himmelblau 5.23 (0.20)
0.96 (0.01)

4.95 (0.39)
0.89 (0.11)

0.00 (0.00)
1.00 (0.00)

0.00 (0.00)
1.00 (0.00)

0.28 (0.46)
1.00 (0.00)

6.00 (0.01)
0.28 (0.01)

Ackley 5.67 (0.13)
0.78 (0.07)

5.31 (0.42)
0.73 (0.17)

5.34 (1.30)
0.66 (0.20)

0.04 (0.17)
0.96 (0.13)

0.18 (0.38)
1.00 (0.00)

5.98 (0.02)
0.50 (0.01)

Rastrigin2 5.79 (0.10)
0.64 (0.04)

5.34 (0.43)
0.62 (0.08)

5.70 (0.38)
0.57 (0.11)

0.00 (0.00)
0.57 (0.16)

0.01 (0.04)
1.00 (0.00)

5.95 (0.04)
0.61 (0.01)

Rastrigin4 5.82 (0.09)
0.18 (0.01)

5.99 (0.01)
0.37 (0.03)

5.67 (0.59)
0.17 (0.02)

0.00 (0.00)
0.17 (0.03)

0.00 (0.00)
0.25 (0.00)

5.95 (0.04)
0.18 (0.00)

Rastrigin32 5.84 (0.07)
0.02 (0.00)

6.00 (0.00)
0.19 (0.01)

4.54 (1.13)
0.01 (0.00)

0.00 (0.00)
0.02 (0.00)

0.00 (0.00)
0.02 (0.00)

5.94 (0.04)
0.02 (0.00)

Rastrigin256 5.84 (0.08)
0.00 (0.00)

6.00 (0.00)
0.15 (0.00)

2.41 (1.78)
0.00 (0.00)

0.00 (0.00)
0.00 (0.00)

1.65 (0.30)
0.00 (0.00)

5.95 (0.04)
0.00 (0.00)

Notations: highest value, second highest value, third highest value.
Superscript numbers on Rastrigin functions indicate the dimensions of the fitness function.

A.4.2 ESTIMATING ENTROPY TO QUANTIFY DIVERSITY

To quantify the diversity of the solutions, we divided the D-dimensional space into 80D grids and
counted the frequencies of elite solutions within this space. We intentionally used this simple and
coarse method to quantify entropy in order to eliminate the contribution of local diversity, focusing
solely on the diversity of solutions across different basins. The entropy is calculated by:

H =

N∑
i=1

Pi log2 Pi, (20)

where Pi is the probability of having a sample in grid i.

A.4.3 QUALITY-DIVERSITY SEARCH

We use MAP-Elite (Mouret & Clune, 2015) to perform quality-diversity search experiments, en-
abling us to compare our method’s ability to balance quality and diversity. Briefly, in addition to
the fitness function, MAP-Elite requires an additional feature descriptor, c(x). Using this feature
descriptor, MAP-Elite only compares individuals within the same feature class. If a new individual
introduces a novel feature, it is accepted and stored regardless of its fitness. Conversely, if the fea-
ture is already present, the fitness of the new individual is compared to the existing best individual

18

Published as a conference paper at ICLR 2025

within that feature class. To ensure a fair comparison between MAP-Elite and other evolutionary
tasks, we use the same number of fitness evaluations. For instance, if Diffusion Evolution uses 512
populations and 25 iterations, then MAP-Elite is allocated 512× 25 = 12, 800 iterations, with each
iteration proposing one new individual and evaluating its fitness once.

To apply MAP-Elite to benchmark functions, we manually designed a feature descriptor by dividing
the parameter space into segments of a specified unit length l. Specifically, the feature descriptor is
defined as:

c(x) = (⌊x1/l⌋, ⌊x2/l⌋, · · · , ⌊xD/l⌋) . (21)

For simplicity, we set l = 1 in all experiments. We quantify the balance between quality and
diversity using the quality-diversity score (QD-score) (Pugh et al., 2016), calculated as the sum
of the highest rewards in each feature class. For methods other than MAP-Elite, we apply the
same classification approach to divide individuals into feature classes and compute the QD-score
by summing the highest rewards within each class. The comparison of QD-scores is presented in
Table 4.

In two-dimensional fitness functions, Diffusion Evolution and Latent Diffusion Evolution achieve
QD-scores comparable to MAP-Elite. However, in higher-dimensional tasks, the QD-score of MAP-
Elite drops significantly, whereas our Latent Diffusion Evolution demonstrates substantial better
performance. This result indicates that our method effectively balances quality and diversity, partic-
ularly in high-dimensional settings, without being designed to do so.

Table 4: The QD-scores of experiments on fitness functions with different algorithms are re-
ported. All values are averaged over 100 experiments, with the standard deviations of the QD-
scores provided in brackets. Our Diffusion Evolution demonstrates competitive performance on
QD-scores compared to MAP-Elite. In higher-dimensional experiments, our Latent Diffusion Evo-
lution achieves the highest QD-score among all tested methods.

Diffusion
Evolution

Latent
Diffusion
Evolution

CMA-ES PEPG Open-ES MAP-Elite

Rosenbrock 35.4 (1.82) 23.4 (9.78) 1.00 (0.00) 1.25 (0.43) 0.73 (0.12) 42.0 (0.36)

Beale 20.0 (0.94) 13.0 (4.50) 1.00 (0.00) 2.00 (0.00) 1.84 (0.72) 23.7 (0.48)

Himmelblau 15.8 (1.18) 11.4 (3.99) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 18.1 (0.42)

Ackley 28.3 (1.35) 16.7 (9.07) 13.4 (4.53) 1.13 (0.34) 2.14 (0.63) 33.0 (0.53)

Rastrigin2 35.2 (2.18) 17.8 (9.36) 18.9 (6.24) 2.30 (0.64) 3.99 (0.00) 45.2 (0.93)

Rastrigin4 10.6 (0.50) 33.1 (6.66) 6.03 (2.30) 0.67 (0.12) 1.01 (0.00) 13.5 (0.22)

Rastrigin32 0.96 (0.04) 73.4 (2.10) 0.12 (0.03) 0.06 (0.01) 0.07 (0.01) 1.20 (0.02)

Rastrigin256 0.11 (0.01) 70.2 (0.62) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.14 (0.00)
Notations: highest value, second highest value, third highest value.
Superscript numbers on Rastrigin functions indicate the dimensions of the fitness function.

A.5 REINFORCEMENT LEARNING EXPERIMENTS

We applied our Diffusion Evolution and Latent Diffusion Evolution methods to various reinforce-
ment learning tasks using neural network architectures described in Appendix A.5.1, including Ac-
robot, Cart Pole, Mountain Car, Continuous Mountain Car, and Pendulum. Our approach consis-
tently achieves higher final rewards compared to CMA-ES, with statistically significant differences.

To assess the robustness of our method, we introduced a new scaling hyper-parameter s, which
transforms the original fitness function f(x) into fs(x) = f(sx). This enables evaluation of per-
formance across diverse parameter spaces. The results, presented in Table 5 and 6, demonstrate that
our method is robust across different choices of the scaling parameter s. Furthermore, we observe
that Latent Diffusion Evolution is always outperforming the original Diffusion Evolution in terms
of success rate, supporting the rationale for introducing the latent approach. The CMA-ES method,

19

Published as a conference paper at ICLR 2025

although successful with certain populations, does not achieve a high success rate within the given
steps. We hypothesize that the reason might be that CMA-ES is distracted by multiple solutions,
leading to a significant proportion of unsuccessful outcomes.

Table 5: Grid search of reinforcement learning tasks with multiple environments, incorporating
a parameter scaling factor, was conducted. This scaling factor tests different landscapes of the
parameter space and evaluates the robustness of evolutionary algorithms. Here, higher rewards
indicate better performance, with the highest rewards per line shown in bold, and standard deviations
(over 100 experiments) presented in brackets. The results demonstrate that Diffusion Evolution
algorithms consistently achieve the highest rewards across different scaling factors. Furthermore,
Latent Diffusion Evolution exhibits greater stability with respect to the scaling factor and often
yields higher rewards.

Scaling Environment Diffusion
Evolution

Latent
Diffusion
Evolution

Large Latent
Diffusion
Evolution

CMA-ES

0.1

Acrobot -279.5 (187.2) -149.0 (115.0) -157.6 (116.9) -486.9 (56.7)

Cart Pole 447.4 (121.2) 447.0 (124.3) 407.6 (154.9) 32.64 (71.81)

Mountain Car -163.2 (39.39) -139.7 (35.63) -138.1 (37.58) -199.2 (7.29)

Mountain Car† -0.89 (1.19) -0.02 (0.05) -0.01 (0.05) -0.14 (0.21)

Pendulum -1231 (337.6) -1224 (347.0) -1227 (340.7) -1257 (302.6)

1.0

Acrobot -199.9 (160.3) -127.0 (93.06) -147.6 (107.2) -471.0 (81.48)

Cart Pole 482.9 (73.24) 491.6 (50.2) 445.0 (124.20) 77.67 (127.3)

Mountain Car -134.7 (34.8) -130.6 (33.3) -134.8 (37.5) -194.7 (18.3)

Mountain Car† 55.97 (47.9) 78.59 (39.05) 88.58 (21.66) 33.94 (63.75)

Pendulum -1262 (330.4) -1187 (408.5) -1094 (532.6) -1397 (217.4)

10.0

Acrobot -191.8 (156.3) -121.0 (76.98) -149.8 (105.0) -469.2 (83.56)

Cart Pole 478.7 (78.58) 488.6 (59.73) 428.9 (142.7) 79.47 (130.3)

Mountain Car -134.2 (34.9) -129.5 (32.78) -133.9 (36.60) -194.85 (17.89)

Mountain Car† 79.44 (37.46) 91.66 (11.30) 83.41 (33.82) 10.90 (68.52)

Pendulum -1132 (488.4) -1077 (520.5) -1101 (519.5) -1368 (246.34)

100.0

Acrobot -190.7 (156.28) -120.6 (76.73) -151.7 (110.32) -469.6 (83.27)

Cart Pole 477.9 (82.10) 489.5 (57.86) 443.1 (128.48) 77.72 (127.89)

Mountain Car -133.6 (34.99) -130.6 (33.74) -134.6 (37.45) -194.6 (18.22)

Mountain Car† 78.56 (39.49) 90.67 (16.02) 82.38 (35.57) 12.97 (69.27)

Pendulum -1119 (494.4) -1066 (535.6) -1102 (521.7) -1367 (243.0)

Mountain Car†: continuous version of Mountain Car
Notations: highest value, second highest value, third highest value.

A.5.1 NEURAL NETWORK

The controller of the cart-pole system has four observational inputs: the current position, velocity,
pole angle, and pole angular velocity. The system accepts two actions: move left or right. To model
the controller, we use artificial neural networks with an input layer of 4 neurons corresponding to
the four observations and an output layer of 2 neurons corresponding to the two actions. The action
is determined by which output neuron has the higher value.

Our standard experiment uses a one-hidden-layer neural network with the hidden layer of 8 neurons,
resulting in (4×8+8)+(8×2+2) = 58 parameters. We also use a deeper neural network with two
hidden layers (each has 128 neurons), totaling (4×128+128)+(128×128+128)+(128×2+2) =
17, 410 parameters. Both neural networks use the ReLU activation function.

We use similar neural network configurations for other reinforcement learning tasks, with adapta-
tions based on the number of observations as well as the size and type (continuous or discrete) of

20

Published as a conference paper at ICLR 2025

Table 6: Success rate of selected environments with different scaling factors. The Pendulum exper-
iment is not included as it does not have a definition of success.

Scaling Environment Diffusion
Evolution

Latent
Diffusion
Evolution

Large Latent
Diffusion
Evolution

CMA-ES

0.1

Acrobot 59.3% 91.6% 91.1% 6.2%

Cart Pole 80.0% 80.8% 68.7% 1.5%

Mountain Car 53.8% 86.6% 88.6% 1.6%

Mountain Car† 0.0% 0.0% 0.0% 0.0%

1.0

Acrobot 79.1% 95.2% 93.0% 13.5%

Cart Pole 92.5% 96.4% 79.4% 5.9%

Mountain Car 92.0% 97.1% 91.9% 10.2%

Mountain Car† 59.4% 80.7% 96.9% 56.7%

10.0

Acrobot 80.9% 97.3% 93.6% 14.4%

Cart Pole 90.4% 95.6% 76.4% 6.4%

Mountain Car 93.1% 98.2% 93.7% 10.2%

Mountain Car† 92.0% 99.3% 94.0% 43.5%

100.0

Acrobot 81.0% 97.2% 92.6% 14.1%

Cart Pole 90.9% 95.8% 80.0% 6.0%

Mountain Car 93.5% 97.1% 92.1% 10.5%

Mountain Car† 91.4% 98.7% 93.3% 45.3%
Mountain Car†: continuous version of Mountain Car
Notations: highest value, second highest value, third highest value.

operations. The design of neural networks generally follows similar principles in machine learning.
Specifically, we rescaled the input to have a standard deviation of one to improve training.

A.6 LATENT SPACE DIFFUSION EVOLUTION

Following is the pseudocode for Latent Space Diffusion Evolution algorithm. The difference from
the original Diffusion Evolution (Algorithm 1) is indicated in light blue.

21

Published as a conference paper at ICLR 2025

Algorithm 2 Latent Space Diffusion Evolution
Require: Population size N , parameter dimension D, latent space dimension d, fitness function f ,

density mapping function g, total evolution steps T , diffusion schedule α and noise schedule σ.
Ensure: α0 ∼ 1, αT ∼ 0, αi > αi+1, 0 < σi <

√
1− αi−1

1: E(d,D) ← N (0, 1/D) ▷ Initialize the random mapping
2: [x

(1)
T ,x

(2)
T , ...,x

(N)
T]← N (0, IN×D) ▷ Initialize population

3: for t ∈ [T, T − 1, ..., 2] do
4: ∀i ∈ [1, N] : Qi ← g[f(x

(i)
t)] ▷ Fitness are cached to avoid repeated evaluations

5: ∀i ∈ [1, N] : z
(i)
t ← Ex

(i)
t ▷ Encode individual parameters into latent space

6: for i ∈ [1, 2, .., N] do

7: Z ←
N∑
j=1

QjN (z
(i)
t ;
√
αtz

(j)
t , 1− αt)

8: x̂0 ←
1

Z

N∑
j=1

QjN (z
(i)
t ;
√
αtz

(j)
t , 1− αt)x

(j)
t

9: w ← N (0, ID)

10: x
(i)
t−1 ←

√
αt−1x̂0 +

√
1− αt−1 − σ2

t

x
(i)
t −

√
αtx̂0√

1− αt
+ σtw

11: end for
12: end for

22

	Introduction
	Background
	Evolutionary Algorithms
	Diffusion Models

	Diffusion Models are Evolutionary Algorithms
	Experiments
	Multi-target Evolution
	Latent Space Diffusion Evolution

	Discussion
	Appendix
	Two-peaks models
	Alpha and Noise Schedule
	Neighborhood of Individuals
	Fitness Functions
	Probability Mapping Function
	Estimating Entropy to Quantify Diversity
	Quality-Diversity Search

	Reinforcement Learning Experiments
	Neural Network

	Latent Space Diffusion Evolution

