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A GROUNDATTACK AND SELECTOR s TYPES

To facilitate better understanding and implementation, we present a detailed pipeline of GroundAttack
and various strategies for the selector 1, in Figure [6. The pipeline below displays the illustrative

frameworks introduced in Section 2]
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Figure 6: GroundAttack generates adversarial negative options that are more confusing, diverse,
and visually groundable than original negatives. It mitigates Easy-Options Bias in VQA benchmarks
through three components: (1) the Captioner (¢).), which converts visual content into detailed
descriptions; (2) the Distractor (¢4), which produces plausible, groundable negative candidates; and
(3) the Selector (¢)5), which identifies the most adversarial negatives.

B PROMPTS FOR CAPTIONER . AND DISTRACTOR 4

We define the roles of the captioner . and distractor generator 4 as follows:

* We utilize GLM-4.1V-9B as the captioner ). to convert video or image-based visual inputs
V into descriptive textual captions T'.

* For the distractor 14, we employ Gemma-3n-E48 to generate candidate negative answers
O. conditioned on the question @, the correct answer A, and the visual captions T'.

 For image inputs, captions are generated based on salient objects, attributes, spatial relation-

ships, and the overall scene.

* For video inputs, captions focus on objects, locations, atmosphere, and dynamic actions.

B.1 PROMPTS FOR IMAGES

We present the three prompts used in GLM-4.1V-9B for image captions as follows:

Prompt for generating fact from image
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You are an assistant that generates descriptive facts about an image.

### Instructions:

1. Input: You will be given an image.

2. Task: Based on the image, produce a concise descriptive caption in one or two sentences.

3. Output format: Return the result strictly as a Python JSON string, using the following structure:
{
"fact": "string"

}

4. Constraints:

- Only output the JSON string, no explanations or additional text.

- All keys and string values must be enclosed in double quotes (*"*).
- Ensure the JSON is valid Python syntax.

Prompt for detect object bounding boxes from image

You are an assistant that generates detailed object information from an image.

#i## Instructions:

1. Input: You will be given an image.

2. Task: Detect at least 6 objects. For each object, specify:
- color

- size

- texture

- bounding box coordinates

The bounding box must be represented as normalized percentages of the image dimensions,
in the format [x_min, y_min, X_max, y_max]|, where each value is between 0.0 and 1.0.

3. Output format: Return the result strictly as a Python JSON string, using the following
structure:

{ "objects": ["string", "string", ...],

"object_details": {

"objectl": { "color": "string", "size": "string", "texture": "string", "bounding_box": [x_min, y_min,
X_max, y_max] },

"object2": { "color": "string", "size": "string", "texture": "string", "bounding_box": [x_min, y_min,
X_max,y_max] } } }

4. Constraints:

- Bounding box values must be floats between 0.0 and 1.0, representing percentages of the image
dimensions.

- Only output the JSON string, no explanations or additional text.

- All keys and string values must be enclosed in double quotes ("*).

- Ensure the JSON is valid Python syntax.
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Prompt for extract action, spatial relations from image
You are an assistant that extracts actions, scene context, and spatial relations from an image.

#i## Instructions:

1. Input: You will be given an image.

2. Task: Based on the image, identify:

- actions: Any motions or interactions happening.

- human_actions: Specific actions performed by humans.

- spatial_relations: Relative positions between key objects (e.g., "cup on table").

- scene: A single sentence summarizing the overall setting (e.g., "A cozy café interior at dusk").

3. Output format: Return the result strictly as a Python JSON string, using the following structure:
{ "actions": ["string", "string", ...], "spatial_relations": ["string", "string", ...], "scene": "string" }
4. Constraints:

- Only output the JSON string, no explanations or additional text.

- All keys and string values must be enclosed in double quotes ("*).

- Ensure the JSON is valid Python syntax.

Prompt for generating distractors for Image VQA
We present the prompt used in Gemma-3n-E48 for generating 128 candidate negative options as

follows.

You are an expert at generating challenging negative distractors for image-based question answering.
Given an image description, a question, and its correct answer, generate 128 clearly and definitively
incorrect answer options.

### Guidelines:
1. **Grounded in the image**: Each distractor must reference actual events, objects, or details

mentioned in the image description.

2. **Specifically Incorrect®*: None of the distractors should correctly answer the given question.
3. **Deceptively Similar**: Distractors should resemble the correct answer in format, length, or
type, making them plausible at first glance.

4. **No Hallucinations**: Do not introduce objects, actions, or details not present in the image
description.

### Example:
[Image Description]: A white dog is lying on a pet bed.

[Question]: What does the white dog do after going to the cushion?
[Correct Answer]: Smells the black dog

[Negative Options] (JSON format):
{
"new_negatives": {

"0": "Lies down on the pet bed.",
"1": "Walks toward the black dog.",
"2": "Explores the pet bed.",

"3": "Watches the black dog."

} } ### Output:

- Provide exactly 128 numbered negative options.

- The output must be valid JSON following the structure above.
- Ensure the output is UTF-8 encoded.

B.2 PROMPTS FOR VIDEOS

We present the three prompts used in GLM-4.1V-9B for video captions as follows:
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Prompt for generating fact from video

You are an assistant that generates descriptive facts about a video.

### Instructions:

1. **Input**: You will be given a few video frames.

2. **Task**: Based on these frames, produce a concise descriptive caption in few sentences.

3. **QOutput Format**: Return the result strictly as a Python JSON string, using the following

structure:

{

"fact": "string"

}

4. **Constraints**:

- Only output the JSON string; no explanations or additional text.
- All keys and string values must be enclosed in double quotes (").
- Ensure the JSON is valid Python syntax.

Prompt for detect objects from video

You are an assistant that generates detailed object information from a video.

### Instructions:

1. **Input**: You will be given a few video frames.

2. **Task**: Detect at least 6 objects. For each object, specify:
- color

- size

- texture

- spatial relations between objects

3. **Qutput Format**: Return the result strictly as a Python JSON string, using the following
structure:

{ "objects": ["string", "string", ...],

"object_details":

"object]l": "color": "string", "size": "string", "texture": "string" ,
"object2": "color": "string", "size": "string", "texture": "string" ,
"spatial_relations": [

"object] on top of object2",

"object3 next to object4”, ... ]

4. **Constraints**:

- Only output the JSON string; no explanations or additional text.
- All keys and string values must be enclosed in double quotes (").
- Ensure the JSON is valid Python syntax.

Prompt for extracting actions from video
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You are an assistant that extracts actions, scene context, and spatial relations from a video.

#i## Instructions:

1. **Input**: You will be given a few video frames.

2. #*Task**: Based on these frames, identify:

- *¥*actions**: Any motions or interactions happening.

- **human_actions**: Specific actions performed by humans.

- **gpatial_relations**: Relative positions between key objects (e.g., "cup on table").

- *¥gcene**: A single sentence summarizing the overall setting (e.g., "A cozy café interior at dusk").

3. **Qutput Format**: Return the result strictly as a Python JSON string, using the following
structure:

{ "non

"actions": ["string", "string", ...],
" "

"spatial_relations": ["string", "string", ...],

n,on

"scene": "string"

}

4. **Constraints**:

- Only output the JSON string; no explanations or additional text.

- All keys and string values must be enclosed in double quotes (").

- Ensure the JSON is valid Python syntax.

Prompt for generating distractors for Video VQA We present the prompt used in Gemma-3n-E48
for generating 128 candidate negative options as follows.

You are an expert at generating challenging negative distractors for video-based question answering.
Given a video description, a question, and its correct answer, generate 128 clearly and definitively
incorrect answer options.

### Guidelines:

1. **Grounded in the Video**: Each distractor must reference actual events, objects, or details
mentioned in the video description.

2. **Specifically Incorrect**: None of the distractors should correctly answer the given question.
3. **Deceptively Similar**: Distractors should resemble the correct answer in format, length, or
type, making them plausible at first glance.

4. **No Hallucinations**: Do not introduce objects, actions, or details not present in the video
description.

### Example:
[Video Description|: A white dog is lying on a pet bed.

[Question]: What does the white dog do after going to the cushion?
[Correct Answer|: Smells the black dog

[Negative Options] (JSON format):
{
"new_negatives": {

"0": "Lies down on the pet bed.",
"1": "Walks toward the black dog.",
"2": "Explores the pet bed.",

"3": "Watches the black dog."

} } ### Output:

- Provide exactly 128 numbered negative options.

- The output must be valid JSON following the structure above.
- Ensure the output is UTF-8 encoded.
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