
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A GROUNDATTACK AND SELECTOR ωs TYPES

To facilitate better understanding and implementation, we present a detailed pipeline of GroundAttack
and various strategies for the selector ωs in Figure 6. The pipeline below displays the illustrative
frameworks introduced in Section 2.

(a) GroundAttack (b) Selector ωs

Figure 6: GroundAttack generates adversarial negative options that are more confusing, diverse,
and visually groundable than original negatives. It mitigates Easy-Options Bias in VQA benchmarks
through three components: (1) the Captioner (ωc), which converts visual content into detailed
descriptions; (2) the Distractor (ωd), which produces plausible, groundable negative candidates; and
(3) the Selector (ωs), which identifies the most adversarial negatives.

B PROMPTS FOR CAPTIONER ωc AND DISTRACTOR ωd

We define the roles of the captioner ωc and distractor generator ωd as follows:

• We utilize GLM-4.1V-9B as the captioner ωc to convert video or image-based visual inputs
V into descriptive textual captions T .

• For the distractor ωd, we employ Gemma-3n-E48 to generate candidate negative answers
Oc conditioned on the question Q, the correct answer A, and the visual captions T .

• For image inputs, captions are generated based on salient objects, attributes, spatial relation-
ships, and the overall scene.

• For video inputs, captions focus on objects, locations, atmosphere, and dynamic actions.

B.1 PROMPTS FOR IMAGES

We present the three prompts used in GLM-4.1V-9B for image captions as follows:

Prompt for generating fact from image

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

You are an assistant that generates descriptive facts about an image.
Instructions:
1. Input: You will be given an image.
2. Task: Based on the image, produce a concise descriptive caption in one or two sentences.
3. Output format: Return the result strictly as a Python JSON string, using the following structure:
{
"fact": "string"
}

4. Constraints:
- Only output the JSON string, no explanations or additional text.
- All keys and string values must be enclosed in double quotes (‘"‘).
- Ensure the JSON is valid Python syntax.

Prompt for detect object bounding boxes from image

You are an assistant that generates detailed object information from an image.

Instructions:
1. Input: You will be given an image.
2. Task: Detect at least 6 objects. For each object, specify:
- color
- size
- texture
- bounding box coordinates

The bounding box must be represented as normalized percentages of the image dimensions,
in the format [x_min, y_min, x_max, y_max], where each value is between 0.0 and 1.0.

3. Output format: Return the result strictly as a Python JSON string, using the following
structure:

{ "objects": ["string", "string", ...],
"object_details": {
"object1": { "color": "string", "size": "string", "texture": "string", "bounding_box": [x_min, y_min,
x_max, y_max] },
"object2": { "color": "string", "size": "string", "texture": "string", "bounding_box": [x_min, y_min,
x_max, y_max] } } }
4. Constraints:
- Bounding box values must be floats between 0.0 and 1.0, representing percentages of the image
dimensions.
- Only output the JSON string, no explanations or additional text.
- All keys and string values must be enclosed in double quotes (‘"‘).
- Ensure the JSON is valid Python syntax.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt for extract action, spatial relations from image

You are an assistant that extracts actions, scene context, and spatial relations from an image.

Instructions:
1. Input: You will be given an image.
2. Task: Based on the image, identify:
- actions: Any motions or interactions happening.
- human_actions: Specific actions performed by humans.
- spatial_relations: Relative positions between key objects (e.g., "cup on table").
- scene: A single sentence summarizing the overall setting (e.g., "A cozy café interior at dusk").

3. Output format: Return the result strictly as a Python JSON string, using the following structure:

{ "actions": ["string", "string", ...], "spatial_relations": ["string", "string", ...], "scene": "string" }
4. Constraints:
- Only output the JSON string, no explanations or additional text.
- All keys and string values must be enclosed in double quotes (‘"‘).
- Ensure the JSON is valid Python syntax.

Prompt for generating distractors for Image VQA

We present the prompt used in Gemma-3n-E48 for generating 128 candidate negative options as
follows.

You are an expert at generating challenging negative distractors for image-based question answering.
Given an image description, a question, and its correct answer, generate 128 clearly and definitively
incorrect answer options.

Guidelines:
1. **Grounded in the image**: Each distractor must reference actual events, objects, or details
mentioned in the image description.
2. **Specifically Incorrect**: None of the distractors should correctly answer the given question.
3. **Deceptively Similar**: Distractors should resemble the correct answer in format, length, or
type, making them plausible at first glance.
4. **No Hallucinations**: Do not introduce objects, actions, or details not present in the image
description.

Example:
[Image Description]: A white dog is lying on a pet bed.

[Question]: What does the white dog do after going to the cushion?
[Correct Answer]: Smells the black dog

[Negative Options] (JSON format):
{
"new_negatives": {
"0": "Lies down on the pet bed.",
"1": "Walks toward the black dog.",
"2": "Explores the pet bed.",
"3": "Watches the black dog."
...
} } ### Output:
- Provide exactly 128 numbered negative options.
- The output must be valid JSON following the structure above.
- Ensure the output is UTF-8 encoded.

B.2 PROMPTS FOR VIDEOS

We present the three prompts used in GLM-4.1V-9B for video captions as follows:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt for generating fact from video

You are an assistant that generates descriptive facts about a video.

Instructions:
1. **Input**: You will be given a few video frames.
2. **Task**: Based on these frames, produce a concise descriptive caption in few sentences.
3. **Output Format**: Return the result strictly as a Python JSON string, using the following
structure:

{
"fact": "string"
}

4. **Constraints**:
- Only output the JSON string; no explanations or additional text.
- All keys and string values must be enclosed in double quotes (").
- Ensure the JSON is valid Python syntax.

Prompt for detect objects from video

You are an assistant that generates detailed object information from a video.

Instructions:
1. **Input**: You will be given a few video frames.
2. **Task**: Detect at least 6 objects. For each object, specify:
- color
- size
- texture
- spatial relations between objects

3. **Output Format**: Return the result strictly as a Python JSON string, using the following
structure:

{ "objects": ["string", "string", ...],
"object_details":
"object1": "color": "string", "size": "string", "texture": "string" ,
"object2": "color": "string", "size": "string", "texture": "string" ,
"spatial_relations": [
"object1 on top of object2",
"object3 next to object4", ...]
4. **Constraints**:
- Only output the JSON string; no explanations or additional text.
- All keys and string values must be enclosed in double quotes (").
- Ensure the JSON is valid Python syntax.

Prompt for extracting actions from video

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

You are an assistant that extracts actions, scene context, and spatial relations from a video.

Instructions:
1. **Input**: You will be given a few video frames.
2. **Task**: Based on these frames, identify:
- **actions**: Any motions or interactions happening.
- **human_actions**: Specific actions performed by humans.
- **spatial_relations**: Relative positions between key objects (e.g., "cup on table").
- **scene**: A single sentence summarizing the overall setting (e.g., "A cozy café interior at dusk").

3. **Output Format**: Return the result strictly as a Python JSON string, using the following
structure:

{
"actions": ["string", "string", ...],
"spatial_relations": ["string", "string", ...],
"scene": "string"
}

4. **Constraints**:
- Only output the JSON string; no explanations or additional text.
- All keys and string values must be enclosed in double quotes (").
- Ensure the JSON is valid Python syntax.
Prompt for generating distractors for Video VQA We present the prompt used in Gemma-3n-E48
for generating 128 candidate negative options as follows.

You are an expert at generating challenging negative distractors for video-based question answering.
Given a video description, a question, and its correct answer, generate 128 clearly and definitively
incorrect answer options.

Guidelines:
1. **Grounded in the Video**: Each distractor must reference actual events, objects, or details
mentioned in the video description.
2. **Specifically Incorrect**: None of the distractors should correctly answer the given question.
3. **Deceptively Similar**: Distractors should resemble the correct answer in format, length, or
type, making them plausible at first glance.
4. **No Hallucinations**: Do not introduce objects, actions, or details not present in the video
description.

Example:
[Video Description]: A white dog is lying on a pet bed.

[Question]: What does the white dog do after going to the cushion?
[Correct Answer]: Smells the black dog

[Negative Options] (JSON format):
{
"new_negatives": {
"0": "Lies down on the pet bed.",
"1": "Walks toward the black dog.",
"2": "Explores the pet bed.",
"3": "Watches the black dog."
...
} } ### Output:
- Provide exactly 128 numbered negative options.
- The output must be valid JSON following the structure above.
- Ensure the output is UTF-8 encoded.

17

