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A MORE ON FAIRCOCCO

A.1 CLOSED FORM EXPRESSION

We introduced covariance operators on RKHSs, which can be used to quantify unconditional
�
VŶ A

�

and conditional fairness
⇣
VŶ Ä | Y

⌘
. FairCOCCO is based on the Hilbert-Schmidt (HS) norm of the

covariance operators. An operator A : H1 ! H2 is called HS if, for complete orthonormal systems
{�i} of H1 and { j} of H2, the sum

P
i,jh j , A�ii2HS is finite (Reed & Simon, 1980). Thus, for

an HS operator A, the HS norm, ||A||HS is defined as ||A||2HS =
P

i,jh j , A�ii2HS . Provided that
VŶ Ä | Y and VŶ A are HS operators, FairCOCCO scores can be expressed as:

||VŶ Ä | Y ||
2
HS (conditional fairness measure)

||VŶ A||
2
HS (unconditional fairness measure)

The umlaut on A represent extended variable sets, i.e. Ä = (A, Y ). Here, we briefly flesh out the
closed-form expression of the empirical estimators, while more details can be found at (Fukumizu
et al., 2007; Gretton et al., 2005). Let GY be the centered Gram matrices, such that:

GY,ij =
D
kY(·, Yi)� m̂

(N)
Y , kY(·, Yj)� m̂

(N)
Y
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HY

We choose a Gaussian RBF kernel, k(Yi, Yj) = exp
⇣
� ||Yi�Yj ||

2

2�2

⌘
8 i, j 2 N , and employ the

median heuristic introduced by Schölkopf et al. (2002), i.e. � = median{|Yi � Yj |, 8 i 6= j 2 N}
to select bandwidth �. Additionally, m̂(N)

Y = 1/N
PN

i=1 kY(·, Yi) is the empirical mean. GA, GŶ
are defined similarly. Based on this, proxy Gram matrices RY can be defined as follows:

RY = GY (GY + ✏NIN )�1

where ✏ = 1e�4 is a regularization constant, used in the same way as Bach & Jordan (2002), IN is
an identity matrix and RŶ , RA are defined similarly. The empirical estimator of ||V̂Ŷ Ä | Y ||2HS can
then be computed:

Î = ||V̂Ŷ Ä | Y ||
2
HS (12)

= Tr[RŶ RÄ � 2RŶ RÄRY +RŶ RY RÄRY ] (13)

The unconditional fairness score can similarly be estimated empirically as follows (note that uncondi-
tional dependence does not entail using extended variables):

Î = ||V̂Ŷ A||
2
HS (14)

= Tr[RŶ RA] (15)

Choice of Kernels. While, in general, kernel dependence measures depend not only on variable
distributions, but also the choice of kernel, Fukumizu et al. (2007) showed that, in the limit of infinite
data and assumptions on richness of the RKHS, the estimates converges to a kernel-independent
value. We employ a Gaussian RBF (characteristic kernel) in our experiments.

On the computational complexity. For our experiments, we use a Gaussian RBF kernel:
k(Xi, Xj) = exp

⇣
� ||Xi�Xj ||

2

2�2

⌘
8 i, j 2 N where � is the tuneable bandwidth parameter. We

employ the median heuristic introduced by Schölkopf et al. (2002), i.e. � = median{|xi � xj |, 8 i 6=
j 2 N} to select bandwidth.

As the calculation of (9) comprises a matrix inversion operation, the computational complexity scales
with the number of samples in O(N3). We improve the scaling with training samples in two ways,
(1) by employing a low-rank Cholesky decomposition of the Gram matrix (of rank r), resulting in
O(r2N) complexity (Harbrecht et al., 2012) and (2) by estimating regulariser on mini-batches. We
empirically demonstrate that these lead to strong results in real-world experiments.
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A.2 FAIRCOCCO SCORE

Here, we derive FairCOCCO score from the underlying measure using the Cauchy-Schwarz In-
equality. The FairCOCCO score for conditional fairness and unconditional fairness can be written
as:

FairCOCCO Score (unconditional) =
||VŶ A||2HS

||VŶ Ŷ ||HS ||VAA||HS

FairCOCCO Score (conditional) =
||VŶ Ä | Y ||2HS

||RŶ �RŶ RY ||HS ||RÄ �RÄRY ||HS

We start by looking unconditional version of FairCOCCO, we know from (14) and the Cauchy-
Schwarz inequality for the inner-product h·, ·i that:

|||V̂Ŷ A||
2
HS | = |Tr[RŶ RA]| = |hRT

Ŷ
, RAi|

 ||RŶ ||HS ||RA||HS =
q

Tr[RT
Ŷ
RŶ ]

q
Tr[RT

ARA]

= ||V̂Ŷ Ŷ ||HS ||V̂AA||HS

By the inequality, FairCOCCO Score (unconditional) 2 [�1, 1]. Additionally, as the score is also
non-negative, it takes value 2 [0, 1] where 0 indicates perfect fairness (as indicated by Lemma 3.1).
By contrast, the score takes value 1 iff the gram matrices, RŶ and RA, are linearly dependent (i.e.
perfectly unfair). The derivation and interpretation can similarly be shown for the conditional case:

|||V̂Ŷ A | Y ||
2
HS | = |Tr[RŶ RA � 2RŶ RARY +RŶ RY RARY ]|

= |Tr[(RŶ �RŶ RY )(RA �RARY )]| = |h(RŶ �RŶ RY )
T
, (RA �RARY )i|

 ||RŶ �RŶ RY ||HS ||RA �RARY ||HS

Here, RŶ �RŶ RY is related to the conditional covariance operator, i.e. V̂Ŷ Ŷ | Y , which captures the
conditional covariance of Ŷ given Y . See (Fukumizu et al., 2007; 2009; Baker, 1973) and others for
more.

B EXPERIMENTAL DETAILS

B.1 SUPERVISED LEARNING TASKS

B.1.1 MODEL DETAILS

For all experiments, we train a two-layer neural network with ReLU-activated nodes. The number
of nodes chosen is between 40⇠100 depending on the complexity of the data. The network is
trained with Cross Entropy or MSE Loss and is optimized using Adam (Kingma & Ba, 2014). The
hyperparameters include batch size 2 {64, 128, 256}, learning rate 2 {1e�2, 1e�3, 1e�4}, and
fairness penalty 2 {0.0, 0.5, 1.0, 2.0, 5.0} and are chosen through cross-validation. For datasets
without a defined test set, the data is split 60-20-20 into train, validation and test set and results are
averaged over 10 runs. Experiments are run on either a CPU or NVIDIA Tesla K40C GPU, taking
around an hour.

B.1.2 DATASETS

Adult (Kohavi, 1996). The task on the Adult dataset is to classify whether an individual’s income
exceeded $50K/year based on census data. There are 48842 training instances and 14 attributes, 4 of
which are sensitive attributes (age, race, sex, native-country). Here, the sensitive attribute
is chosen to be sex, which can be either female or male.

Drug Consumption (Drugs) (Mirkes, 2015). The classification problem is whether an individual
consumed drugs based on personality traits. The dataset contains 1885 respondents and 12 personality
measurements. Respondents are questioned on drug use on 18 drugs, including a fictitious drug
Semeron to identify over-claimers. Here, we focus on Heroin use, drop the respondents who
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Table 7: Description of datasets. ‘-B’ suffix indicates binary variables, ‘-D’ indicates discrete
variables (i.e. >2 classes) ‘-C’ indicates continuous variables.

Dataset Examples Features Sensitive (A) Outcome (Y )

Single
sensitive

attributes

Adult 45222 12 Gender-B Income-B
Drugs 1885 11 Ethnicity-B Drug use-B

German 1700 20 Foreign-B Income-B
COMPAS 6172 10 Ethnicity -B Recidivism-B

Multiple
sensitive

attributes

C&C 1994 128 Ethnicity-C (⇥4) Crime rate-C
Students 649 33 Age-C, Gender-B Performance-C

KDD-Census 299285 40 Sex-B, Race-B, Age-C Income-B
Credit Card 30000 24 Sex-B, Marriage-D, Education-D Default-B
Law School 20798 12 Male-B, Race-D Pass-B

claimed to use Semeron and transform the categorical response into a binary outcome: “Never
Used” versus “Used”. The binary sensitive attribute is Ethnicity.

South German Credit (German) (Hoffman, 1994). The German dataset contains 1000 instances
with 20 predictor variables of a debtor’s financial history and demographic information, which are
used to predict binary credit risk (i.e. complied with credit contract or not). The sensitive attribute is
a binary variable indicating whether the debtor is of foreign nationality.

COMPAS (Angwin et al., 2016). COMPAS is a commercial software commonly used by judges
and parole officers for scoring a criminal defendant’s likelihood of recidivism. The dataset contains
6172 instances with 10 features. The outcome is a binary variable corresponding to whether violent
recidivism occurred (is_violent_recid) and the sensitive attribute is race, which is binarised
into “Caucasian” and “Non-Caucasian” defendants.

Communities and Crime (C&C) (Redmond, 2009). C&C contains socio-economic data from the
1990 US Census, law enforcement data from the 1990 US LEMAS survey and crime data from
1995 FBI UCR. It contains 1994 instances of communities with 128 attributes. The outcome of the
regression problem is crime rate within each community ViolentCrimesPerPop, which is a
continuous value. There are three sensitive attributes, corresponding to ethnic proportions in the
community—racePctBlack, racePctWhite, racePctAsian.

Student Performance (Students) (Cortez, 2014). The Students dataset predicts academic perfor-
mance in the last year of high school. There are 649 instances with 33 attributes, including past
academic information and student demographics. The response variable is a continuous variable
corresponding to final grade and the sensitive attributes are age (continuous value from 15-22) and
sex (‘F’-female, ‘M’-male).

B.2 TIME SERIES TASK

The data used to develop and evaluate our experiment on fair imitation learning is extracted from
the MIMIC-III ICU database (Johnson et al., 2016a), based on the Sepsis-3 cohort defined by
Komorowski et al. (2018).

Discrimination in Healthcare. Sepsis is one of the leading causes of mortality in intensive care
units (Singer et al., 2016), and while efforts have been made to provide clinical guidelines for
treatment, physicians at the bedside largely rely on experience, giving rise to possible variations in
fair treatments. Prejudice in healthcare has been reported in many instances—for example, healthcare
professionals are more likely to downplay women’s health concerns (Rogers & Ballantyne, 2008)
and racial biases affect pain assessment and treatment prescribed (Hoffman et al., 2016). Thus, it
is critical, when learning to imitate expert policy, that no underlying prejudices are leaked into the
learned policy.

Problem Setup. We have access to a set of expert trajectories D = {⌧1, ..., ⌧N}, where each trajectory
is a sequence of state-action pairs {(s1, a1), ..., (sT , aT )}. The time-varying state space is modelled
with a Markov Decision Process (MDP), i.e. at every time step t, the agent observes current state st

and takes action at.
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Data. We obtain data from MIMIC-III and use the pre-processing scripts provided by Komorowski
et al. (2018) to extract patients satisfying the Sepsis-3 criteria. For each patient, we have relevant
physiological parameters, including demographics, lab values, vital signs and intake/output events.
Data are aggregated into 4 hour windows.

State Space. The pre-processing yields 45 ⇥ 1 feature vectors for each patient at each time step,
which are summarized in Table 8. We consider gender as the sensitive attribute.

Table 8: MIMIC-III Features. Description of patient features recorded at four hour intervals.

Feature Type Features

Demographic Gender, Age, Weight (kg),

Static Re-admission, Glasgow Coma Scale (GCS), Sequential Organ Failure Assessment (SOFA),
Systematic Inflammatory Response Syndrome (SIRS), Shock Index,

Lab Values

Potassium, Sodium, Chloride, Glucose, Magnesium, Calcium, White Blood Cell Count,
Platelets Count, Bicarbonate, Hemoglobin, Partial Thromboplastin Time (PTT), Prothrombin Time (PT),
Arterial pH, Arterial Blood Gas, Arterial Lactate, Blood Urea Nitrogen (BUN), Creatinine,
Serum Glutamic-Oxaloacetic Transaminase (SGOT), Serum Glutamic-Pyruvic Transaminase (SGPT),
Total Bilirubin, International Normalized Ratio (INR),

Vitals Heart Rate, Systolic Blood Pressure, Mean Blood Pressure, Diastolic Blood Pressure,
Respiratory Rate, Temperature (Celsius), FiO2, PaO2, PaCO2, PaO2/FiO2 ratio, SpO2,

Intake/Output Mechanical Ventilation, Fluid Intake (4 hourly), Fluid Intake (Total), Fluid Output (4 hourly),
Fluid Output (Total)

Action Space. We define a binary action for medical intervention based on intravenous (IV) fluid and
maximum vasopressor (VP) dosage in a given 4 hour window, where at = 1 represent either or both
interventions taken, and at = 0 indicates no action taken.

Treatment Outcome. The ground truth treatment outcome in each time step is evaluated using SOFA
(measuring organ failure) and the arterial lactate levels (higher in septic patients). Specifically, the
treatment outcome penalizes high SOFA scores and increases in SOFA and lactate levels from the
previous time step (Raghu et al., 2017):

Yt =� 0.0251(sSOFA
t+1 = s

SOFA
t & s

SOFA
t+1 > 0)� 0.125(sSOFA

t+1 � s
SOFA
T )

� 2tanh(slactatet+1 � s
lactate
t )

Behavioral Cloning. Our proposed framework should work with any imitation learning algorithm as
long as predictions of action rewards are differentiable. For now, we will focus on behavioral cloning.
The expert’s demonstrations D are divided into i.i.d. state-action pairs. We train a neural network as
described in the experimental setup to predict posterior action probabilities.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional results to comprehensively evaluate our proposed methods,
specifically:

1. DP and EO: While the main paper investigates fairness using EO, Appendix C.1 demonstrates
application of FairCOCCO using DP and CAL notions of fairness.

2. Estimation convergence: Appendix C.2 evaluates the convergence of FairCOCCO score
estimation on different mini-batch sizes on real datasets.

3. Statistical testing: Appendix C.3 demonstrates how the FairCOCCO Score can be employed
as a test statistic in permutation-based testing for stronger fairness transparency.

4. Sensitivity: Appendix C.4 investigates performance sensitivities, specifically performance-fairness
trade-offs, according to varying numbers of sensitive attributes.

C.1 ADDITIONAL RESULTS: EXPERIMENTS WITH DP AND CAL

To highlight FairCOCCO’s compatibility with fairness definitions other than EO, we apply it to
demographic parity (DP) and calibration (CAL). We perform the same experiments on 1) binary clas-
sification tasks, 2) regression task with multiple sensitive attributes. The experiments are performed
using the procedures described in the experimental setup.
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Demographic Parity. DP requires statistical independence between predictions and attributes.
Disparate impact (DI) is a metric frequently used to evaluate DP (Feldman et al., 2015):

DI =
P (Ŷ = 1|A = 1)

P (Ŷ = 1|A = 0)
(16)

where A = 1 and A = 0 denote respectively the discriminated and non-discriminated groups. The
US Equal Employment Opportunity Commission Recommendation advocates that DI should not
be below 80%, commonly known as the 80%-rule.4 DI closer to 1 corresponds to lower levels of
disparate impacts across population subgroups. We show the performance of FairCOCCO for DP in
Table 9 and 10, demonstrating superior performance on a benchmark of binary classification tasks as
well as protection of multiple sensitive attributes in regression settings.

Table 9: Performance in binary setting. Accuracy (ACC) and DI under DP. NN is an unregularised
neural network that is used as base learner; the best results are emboldened.

COMPAS German Drug Adult
Method ACC DI ACC DI ACC DI ACC DI

Donini et al. (2018) 0.70± 0.02 0.81± 0.03 0.70± 0.06 0.93± 0.07 0.74± 0.03 0.75± 0.01 0.72 0.84
NN 0.90± 0.02 0.39± 0.32 0.74± 0.07 1.26± 0.54 0.80± 0.08 0.42± 0.22 0.84 0.22

Mary et al. (2019) 0.87± 0.04 0.76± 0.07 0.71± 0.08 0.96± 0.25 0.80± 0.06 0.73± 0.17 0.79 0.83
Steinberg et al. (2020b) 0.86± 0.03 0.83± 0.05 0.71± 0.06 0.93± 0.13 0.77± 0.03 0.86± 0.05 0.77 0.76

FairCOCCO 0.88± 0.03 0.90± 0.06 0.73± 0.06 1.02± 0.19 0.78± 0.02 0.84± 0.07 0.83 0.97

Table 10: Protection of multiple attributes. Level of protection provided to individual attributes
when all attributes are simultaneously protected under DP. Lowest MSE & FairCOCCO scores are
emboldened. (left) C&C dataset, (right) Students dataset.

Joint racePctBlack racePctWhite racePctAsian racePctHisp
Method MSE COCCO COCCO COCCO COCCO COCCO

NN
0.22
± 0.01

0.20
± 0.08

0.16
± 0.06

0.24
± 0.03

0.03
± 0.01

0.09
± 0.05

FACL
0.53
± 0.04

0.09
± 0.02

0.07
± 0.01

0.15
± 0.04

0.05
± 0.03

0.07
± 0.02

FARMI
0.60
± 0.07

0.12
± 0.03

0.15
± 0.02

0.15
± 0.02

0.04
± 0.01

0.06
± 0.03

FairCOCCO
0.49
± 0.06

0.08
± 0.02

0.05
± 0.01

0.07
± 0.02

0.03
± 0.01

0.04
± 0.01

Joint age sex
Method MSE COCCO COCCO COCCO

NN
0.25

± 0.05
0.16

± 0.06
0.13

± 0.03
0.11

± 0.07

FACL
0.30

± 0.02
0.08

± 0.01
0.04

± 0.01
0.03

± 0.02
FARMI

0.35
± 0.05

0.11
± 0.03

0.09
± 0.02

0.05
± 0.01

FairCOCCO
0.33

± 0.02
0.06

± 0.02
0.03

± 0.01
0.04

± 0.02

Calibration. CAL requires conditional independence between target and sensitive attributes given
predictions. As the conditioning variable is continuous, we report the FairCOCCO score on the
same experiments. We see in Table 11 and 12 that FairCOCCO achieves superior fair and predictive
outcomes under different definitions of fairness when compared to other methods.

Table 11: Performance in binary setting. Accuracy (ACC) and FairCOCCO (COCCO) under
CAL; the best results are emboldened.

COMPAS German Drug Adult
Method ACC COCCO ACC COCCO ACC COCCO ACC COCCO

Donini et al. (2018) 0.76± 0.03 0.12± 0.02 0.70± 0.05 0.06± 0.01 0.80± 0.07 0.13± 0.21 0.78 0.16
NN 0.90± 0.02 0.07± 0.02 0.74± 0.07 0.07± 0.03 0.80± 0.08 0.24± 0.08 0.84 0.18

Mary et al. (2019) 0.87± 0.12 0.07± 0.03 0.71± 0.11 0.06± 0.02 0.79± 0.03 0.08± 0.03 0.81 0.15
(Steinberg et al., 2020b) 0.88± 0.03 0.06± 0.01 0.73± 0.06 0.04± 0.02 0.77± 0.05 0.16± 0.05 0.80 0.14

FairCOCCO 0.89± 0.02 0.02± 0.02 0.71± 0.05 0.02± 0.01 0.78± 0.06 0.11± 0.06 0.83 0.11

C.2 FAIRCOCCO ESTIMATION

In this section, we provide additional results on convergence of FairCOCCO Score estimation as
a function of batch size, similar to the experiment performed in the main paper. We show convergence
on Adult and German dataset in Figure 2. We note that while convergence of estimation depends
on properties of different datasets, the estimation of FairCOCCO Score stabilizes at batch sizes
> 256.
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Table 12: Protection of multiple attributes. Level of protection provided to individual attributes
when all attributes are simultaneously protected under CAL. Lowest MSE and FairCOCCO score
are emboldened. (left) C&C dataset, (right) Students dataset.

Joint racePctBlack racePctWhite racePctAsian racePctHisp
Method MSE COCCO COCCO COCCO COCCO COCCO

NN
0.22
± 0.01

0.16
± 0.03

0.16
± 0.04

0.13
± 0.03

0.07
± 0.08

0.12
± 0.03

FACL
0.55
± 0.10

0.14
± 0.02

0.11
± 0.01

0.09
± 0.03

0.11
± 0.01

0.09
± 0.04

FARMI
0.53
± 0.05

0.15
± 0.05

0.13
± 0.02

0.12
± 0.03

0.05
± 0.01

0.10
± 0.03

FairCOCCO
0.47
± 0.09

0.06
± 0.01

0.08
± 0.01

0.07
± 0.02

0.03
± 0.01

0.06
± 0.01

Joint age sex
Method MSE COCCO COCCO COCCO

NN
0.25

± 0.05
0.11

± 0.05
0.09

± 0.01
0.05

± 0.06

FACL
0.32

± 0.03
0.14

± 0.02
0.12

± 0.02
0.07

± 0.02

FARMI
0.36

± 0.06
0.15

± 0.01
0.11

± 0.02
0.10

± 0.02

FairCOCCO
0.37

± 0.05
0.04

± 0.02
0.06

± 0.01
0.03

± 0.03

(a) (b)

Figure 2: Estimation of FairCOCCO Score. (a) Adult dataset, (b) German dataset.

C.3 STATISTICAL TESTING

We demonstrate how the proposed fairness measures can be employed as a test statistic to perform
statistical tests, resulting in stronger guarantees and transparency (Fukumizu et al., 2007; Gretton
et al., 2005). We highlight that while other fairness measures (MI and MCC) can be developed as test
statistics, the empirical estimation of these measures involve multiple levels of approximations, and it
is unclear whether the approximated statistics still retain the theoretical properties. Figure 3 shows
the distributions of predictions with fairness regularization. Notably, EO only requires statistical
independence between predictions and sensitive attributes given true outcome, whereas DP enforces
“strict” independence between predictions and attributes.

Table 13: Statistical testing. Accuracy-fairness trade-offs under different fairness notions and
corresponding test of statistical significance. (left) EO setting, (right) DP setting.

� ACC DEO COCCO p-value

0.0 78.33 0.66 0.21 0.00
0.2 76.67 0.39 0.14 0.14
0.5 70.36 0.07 0.03 0.45
1.0 67.78 0.03 0.02 0.74
2.0 60.57 0.00 0.01 0.90

� ACC DI COCCO p-value

0.0 78.33 3.05 0.07 0.00
0.2 72.56 1.54 0.03 0.04
0.5 69.33 1.77 0.01 0.09
1.0 67.38 1.13 0.01 0.14
2.0 64.60 0.92 0.00 0.27

As the null distribution is not known (Fukumizu et al., 2007), permutation testing is performed. Table
13 reveals the accuracy-fairness trade-offs and p-values under different regulation strengths. The
p-values indicate the probability of observing the test statistic under null hypothesis of (conditional)
independence. As we expect, stronger fairness regularization leads to lower levels of unfairness as
measured by DI and DEO, as well as stronger guarantees in statistical tests. For example, at � = 2.0,
we can say with 90% chance that predictions are conditionally independent of sensitive attributes
(under EO) or 27% chance that predictions are independent of sensitive attributes (under DP).
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Figure 3: Visualizing FairCOCCO regularization. (Top) distribution of predictions for label 1
of different group memberships under EO. (Bottom) distribution of predictions for different group
memberships under DP. Predictions are produced by regularized logistic regression model with
� = 0,� = 0.5,� = 1.0, respectively, across each row.

C.4 SENSITIVITY ANALYSIS: ACCURACY-FAIRNESS TRADE-OFFS

One of the key contributions of this study is the introduction of a differentiable fairness penalty
that can naturally extend to multiple sensitive attributes. In this section, we generate the frontier of
possible values on three experiments to better evaluate the sensitivity of our proposed methods to
different numbers of sensitive attributes:

Figure 4: Fairness-accuracy trade-off. (left) C&C dataset with four sensitive attributes; (middle)
students dataset with two sensitive attributes; (right) drugs dataset with three sensitive attributes.

• Regression on C&C with 4 attributes: racePctBlack, racePctAsian, racePctWhite,
and racePctHisp,

• Regression on Students with 2 attributes: age and gender,
• Binary classification task on Drugs with 3 attributes: age, gender, and ethnicity.

As Figure 4 illustrates, similarly, fairness and prediction outcomes are achieved at various number of
sensitive attributes.

20


