
Appendix620

A Broader related work621

Self Supervised Learning - In this section, we detail recent developments in masking-based self-622

supervised learning approaches:623

Masked Image Modeling (MIM) is the strategy of corrupting a data sample by significantly masking a624

portion of the sample and training a model to recover the missing portion, conditioned on the corrupt625

sample. It has become a prominent framework in SSL with the success of [23, 68]. An important626

design consideration here is the output space of the model for supervision, which can be either627

raw pixels [23, 69] or an alternative representation space [70, 71, 72, 68]. While training Masked628

auto-encoders is simple, these models are comparatively sample inefficient during training [43].629

Self-distillation [73] is the idea of training two (usually identical) networks such that a student network630

learns to predict the output representations of a teacher [74] network via a small predictor network631

when observing augmentations of the same data sample. It has been shown to improve performance632

significantly even in the case of abundant data [75]. While degenerate constant representations is a633

concern, a common strategy is to stop gradient backpropagation [25] through the teacher network and634

employ momentum based weight updates [22]. A concrete instance is DINO [42] utilizing ViTs [76]635

as the student & teacher encoder networks. More recently DINOv2 [45] improved downstream636

performance significantly by combining self-distillation and MIM.637

Joint-Embedding Predictive Architectures (JEPA) [46] share similarities with MIM, as both rely on638

masking. However, the JEPA framework conceptually prescribes two key changes: a) information639

restoration in a latent representation space, rather than in input space (pixels or tokens) b) prediction640

of latent embedding conditioned on the masking parameters. This framework has had success across641

various modalities, including audio [77, 78], images [43, 79], and pointclouds [80]. Notably, in this642

paper we consider masking strategies from I-JEPA [43] and V-JEPA [44]. I-JEPA utilizes a spatial643

block-masking strategy and V-JEPA utilizes tube-masking [81] with varying aspect ratios for learning644

representations efficiently in latent space circumventing decoding unnecessary pixel-level details.645

Representation learning in robotics - Pretraining models for multi-task capability has become646

popular recently, especially after the success of self-supervised learning (SSL) in computer vision647

tasks like object classification, segmentation, depth estimation, and image generation. These tasks,648

while typically tested on computer vision datasets, are also very common in robotics. The idea of649

using these pre-trained representations for robot learning was initially explored in [82], showing650

that pre-trained visual representations can sometimes even be better than using ground-truth state651

representations for training control policies.652

Generative SSL via masked image modeling (MIM) [83, 84] has shown successful transfer of pre-653

trained representations from in-the-wild data to real-robot scenarios, enabling basic motor skills such654

as reaching, pushing, and picking. Furthermore, many other works investigate contrastive learning655

approaches to learning general visual representations in robotics [85, 86]. These methods usually656

employ a pixel reconstruction objective based on a time-contrastive objective or focus on contrasting657

video clips leveraging natural language for video-language alignment.658

The field has been moving towards finding general-purpose representations that work well across a659

wide range of problems in robot manipulation learning. Voltron [87], is a framework for language-660

driven visual representation learning for robotics that combines both masked auto-encoding and661

contrastive learning techniques, focusing on multi-task performance. This model is trained to learn662

representations that capture both low-level spatial reasoning and high-level semantic understanding663

by using language supervision from human videos.664

Tactile sensor simulation - Multiple simulators have been proposed for vision-based tactile sensors665

such as [88, 89, 90, 91, 92] with the hope of sim2real generalization of learned policies [93]. However,666

many of these methods are either limited to marker-based tactile sensors [93], or narrow tasks [94, 95].667

Certain other methods [39] also leverage simulated data to train multi-modal representations. However,668
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Arch. EMA decay LR Batch size

Sparsh (MAE) ViT-B/14 N/A 1e-4 100
Sparsh (DINO) ViT-B/14 0.998 1e-4 150
Sparsh (IJEPA) ViT-B/14 0.996 6.25e-4 150
Sparsh (VJEPA) ViT-B/14 0.996 6.25e-4 150

Table 2: Training hyperparameters for Sparsh models. All models run for 150 epochs with optimizer
AdamW, a weight decay cosine schedule from 0.04 to 0.4, and a learning rate warmup of 30 epochs.).

in general we find that tactile simulators are still unable to model shadows, as well as real-world669

per-sensor-instance discrepancies, hampering their potential use for representation learning.670

B Touch representation and self-supervision details671

To ensure fair evaluation of all models, our SSL algorithms are largely adapted from official MAE,672

IJEPA, VJEPA, DINO codebases.673

B.1 Training details674

We train all models on 8 Nvidia A-100 (80G) GPUs. In addition to training losses, to monitor675

training progress, we rely on online probes. Specifically, we find that for joint embedding predictive676

architectures, the training losses are not indicative of model convergence during optimization;677

therefore, proxy metrics such as reconstruction quality are helpful. For all methods, we utilize678

DPT [96] based decoders to decode the tactile representations back into tactile images. See Figure 5679

for some examples of tactile reconstructions from Sparsh embeddings. All encoder models are680

trained for 150 epochs. We use AdamW optimizer and use a linear rampup followed by a cosine681

schedule as the learning scheduler. Further, we find that tuning momentum value as well as the682

weight decay factor was important in observing training convergence without collapse. Additional683

information of hyperparameters is detailed in Table 2.684

Figure 5: Visualization of reconstructed tactile images using the online probe to monitor SSL training of Sparsh
models.
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Sparsh (MAE) Sparsh (DINO) Sparsh (IJEPA) Sparsh (VJEPA)
N. parameters 86254848 86255616 86386944 86537472

FPS 104 112 112 60
Table 3: Number of parameters and inference time for Sparsh backbones

B.2 Architecture details685

All encoder models are Vision Transformers (ViT) [76]. Although the main encoder models use686

ViT-B/14 as the standard architecture, following [43] we use a small ViT as the predictor network.687

All the models are pretrained without a [cls] token. For DINO, which decodes the [cls] token688

into classes, we repurpose ViT registers [97] to predict classes. In Table 3 we report the number of689

parameters for each encoder and their respective inference times.690

Tactile images with a stride of 5 i.e., It � It�5 2 Rh⇥w⇥6 are concatenated along the channel691

dimension before the background is removed and reshaped to 224 ⇥ 224 for ViT processing. We692

choose a stride of 5 as consecutive images are similar due to high sensor sampling rates, and to match693

the slip detection window in humans. Ablating the effect of the input image and patch resolution may694

be important for better performance and is left for future work.695

B.3 Dataset splits696

We use three available datasets for training Sparsh, namely YCB-Slide [9], Touch-and-Go [20] and697

Object Folder [37]. The YCB-Slide dataset consist of human sliding interactions with 10 YCB objects.698

Each object has 5 trajectories, with around 3500 frames each from DIGIT sensors with different699

optical characteristics (180k frames in total). For each object, we dedicate four trajectories for training700

and the last one for validation. Touch-and-Go consists of discrete human contact interactions with701

in-the-wild objects, using a GelSight sensor. It consist of 140 videoclips and plain files with labels for702

the frames with a clear contact. We use all frames (220k) in the videoclips since we do not rely on703

labeled data for SSL training, from which 70% is used for training and the remaining for validation.704

The data used from ObjectFolder consist of 81k frames of robot discrete contact interactions with705

objects in a controlled setting. We also use a train/val split of 70/30.706

To complement the dataset, we collected Touch-Slide with additional human sliding interactions on707

toy-kitchen objects with the DIGIT sensor. We use 9 objects, shown in Figure 6 and collected 5708

trajectories for each, generating 180k frames in total.709

Figure 6: Set of objects for collecting sliding contact trajectories in the Touch-Slide dataset.

C TacBench tasks and evaluation details710

C.1 Probe details711

The parameters of the model updated via EMA (target encoder for Sparsh (IJEPA) and Sparsh712

(VJEPA), teacher network for Sparsh (DINO), encoder from Sparsh (MAE)) are fixed and used for713

evaluation. The features are pooled via attentive pooling for tasks that require global representations,714

such as slip detection, resultant force estimation, and classification tasks. For tasks that require715

dense reasoning, we use DPT decoders [96] to decode patch representations into full input resolution716

quantities such as normal and shear force fields, and reconstructed tactile images. See Figure ?? for a717

visual illustration of the probe architectures.718
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We follow attentive probing[44, 52] to assess the capabilities of tactile representations on the bench-719

mark, as this approach allows us to determine what representations capture from self-supervision720

alone. For most tasks – except force field visualization and policy learning – in the benchmark, we721

freeze Sparsh and train a cross-attention module (hyperparameters in Table 4) followed by a light722

2-layer MLP probe supervised, using the labeled dataset for each task.723

Parameter Setting
Embedding dimension 784
N heads 12
MLP ratio 4.0
Depth 1
Layer normalization Yes

Table 4: Attentive pooling hyperparameters used for evaluation protocol of representation in downstream tasks.

C.2 [T1] Force estimation724

After attentive pooling, the tactile features with 768 dimensions are passed to a 2-layer MLP with725

192 and 3 units respectively, to get the 3-axis force estimations. Two independent force decoders726

are trained using DIGIT and GelSight-mini data respectively, using the sharp and sphere probe data727

during training and the flat indenter data for testing. The target forces are normalized to be ±1.0 and728

scaled back after prediction. We train the force decoder using Adam optimizer with 1e-4 learning729

rate.730

DIGIT. In Table 5 we report the average RMSE over 25k samples of unseen DIGIT data for the731

force estimation task. We report metrics for each Sparsh model and the E2E approach, under four732

different budgets of training data. We also provide a 95% confidence interval to ground the error733

ranges of each model.734

In Figure 7 we plot the friction cone from the test data, where the colormap represents the error in mN735

for each axis. Note that E2E exhibit larger errors (around 500mN) for the tangential component and736

they are more predominant as the normal force increases. In contrast, the top model Sparsh (DINO)737

estimates with low error (< 100mN) in general across the whole range of tangential and normal738

forces.739

Model Full dataset (50k) 1/3 dataset 1/10 dataset 1/100 dataset

E2E
39.34

[39.21, 39.48]
61.42

[61.12, 61.72]
98.22

[97.61, 98.84]
187.51

[185.51, 188.51]

Sparsh (MAE) 36.61
[36.51, 36.71]

45.96
[45.80, 46.12]

58.55
[58.31, 58.79]

115.39
[114.69, 116.09]

Sparsh (DINO) 36.09
[36.01, 36.17]

44.03
[43.87, 44.19]

51.89
[51.69, 52.10]

97.95
[97.36, 98.52]

Sparsh (IJEPA) 40.27
[40.16, 40.38]

60.04
[59.72, 60.34]

86.57
[86.06, 87.08]

130.37
[129.59, 131.15]

Sparsh (VJEPA) 39.38
[39.30, 39.47]

56.34
[56.07, 56.62]

76.11
[75.67, 76.55]

130.83
[130.29, 131.38]

Table 5: Root Mean Squared Error (mN) and 95% confidence interval for force estimation with DIGIT data. All
models were evaluated on flat indenter data over 25k test samples.

GelSight. In Table 6 we report the average RMSE over 25k samples of unseen GelSight data and740

the corresponding 95% confidence interval. Notice from Figure 8 that the majority of errors are741

localized around the dynamic shear region. It is worth noting that the errors associated with Sparsh742

(DINO) remain below 150mN, whereas E2E exhibits higher errors, particularly in the estimation of743

normal forces.744
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Figure 7: Friction cone of test data and RMSE (mN) for force estimation task with DIGIT sensor.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset

E2E
57.21

[56.44, 57.98]
59.09

[58.15, 60.04]
57.43

[56.44, 58.42]
82.42

[80.98, 83.86]

Sparsh (MAE) 22.72
[22.27, 23.17]

23.28
[22.83, 23.72]

33.56
[33.04, 34.08]

78.98
[77.74, 80.21]

Sparsh (DINO) 20.25
[19.85, 20.65]

23.79
[23.40, 24.18]

32.17
[31.67, 32.67]

53.43
[52.69, 54.17]

Sparsh (IJEPA) 27.91
[27.37, 28.44]

35.20
[24.57, 35.82]

44.93
[44.13, 45.73]

91.81
[90.76, 92.86]

Sparsh (VJEPA) 33.26
[32.67, 33.84]

34.07
[33.39, 34.75]

42.35
[41.60, 43.10]

80.36
[79.26, 81.47]

Table 6: Root Mean Squared Error (mN) and 95% confidence interval for force estimation with GelSight-mini
data. All models were evaluated on flat indenter data over 25k test samples.

C.3 [T1A] Force field visualization745

Since rendering the force field is a dense prediction task, we do not apply the attentive probing746

protocol. Instead, we follow DPT [53], training a CNN encoder with reassemble-fusion modules747

at layers 2,5,8,11 of the Sparsh encoder to progressively upsample the representations to obtain748

a fine-grained prediction of the force field. After the reassemble-fusion modules, we attach two749

task-specific task head, for normal and shear field prediction.750

Since for markerless vision-based sensors is not trivial to get ground truth of the force field, we751

turn to unsupervised learning. Depth estimation and optical flow are analogous to the estimation752

of normal and shear force fields, areas where the computer vision community has proposed several753

unsupervised methodologies [55, 56, 57, 58, 54]. We borrow ideas of unsupervised monocular depth754

estimation, where from two tactile images It and It�n, we learn a pose estimator for getting the755

transform between frames. With the sensor intrinsic K, we map image It from pixel space to camera756

plane, translate estimated depth Dt, apply transform from t to t� n, and transform back to image757

plane to get Ît�n. We supervised based on the reprojection error, MSE between It�n and predicted758

Ît�n. To reconstruct the shear field, we transfer ideas from unsupervised optical flow, where we warp759

the features of image It to It�n based on the estimated flow and compute a photometric consistency760

loss that encourages the estimated flow(shear) to align image patches with a similar appearance. This761

loss is a linear combination of the Charbonnier loss and the structural similarity (SSIM) between762

It�n and Ît�n. We also add a smoothness loss that acts as a regularization term, encouraging the763
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Figure 8: Friction cone of test data and RMSE (mN) for force estimation task with GelSight sensor.

shear field to align the boundaries with the visual edges in the tactile image. In Figure 9 we show764

snapshots of the normal and shear field predictions during sliding trajectories of the DIGIT sensor on765

YCB and spherical probe objects.766

Figure 9: Normalized tactile flow (unitless) visualizations using Sparsh (DINO). Top row shows predicted force
field for four key-frames from a representative YCB-Slide trajectory and bottom row shows interaction with
the spherical probe. Arrows represent the tangential forces, while the colors depict the normal forces. These
visualizations provide directional information about the relative motion of the contact patch. For instance (a)
shows torsional motion resulting from rotating along the edge, (b, c, d) show sliding on the edge, (e) shows a
diverging field when making contact with a spherical probe, and (f, g, h) show forces produced by sliding the
probe top-down.

C.4 [T2] Slip detection767

To collect labeled slip data we perform a normal/shear load test. Using a firmly affixed hemispherical768

probe on a flat surface, a robot presses the DIGIT sensor toward the probe, applying random normal769

forces of up to 5N. Upon reaching the target normal force, the robot slides the probe 2mm to a770

randomly selected position on the sensor surface, allowing us to capture the shear profile with a F/T771

sensor. To label slip, we rely on the friction cone to identify samples on the sticking and slippage772

regions. A description of the procedure is illustrated in Figure 10.773

As eluded to in Section 3, Sparsh’s inference window is approximately 80 milliseconds. This774

is appropriate since this duration matches the reaction time needed by humans to adjust the grip775
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Figure 10: (a) Data collection setup for [T1] Force Estimation and [T2] Slip Detection. The Mecca Robot
Arm with DIGIT / Gelsight is pressed against a static probe with random normal force. The arm then slides the
sensor over the probe which induces shear forces. (b) Slip states over one representative stroke. When the sensor
is pressed against the probe the normal force increases. The gel sensor initially resists sliding due to friction, but
gives in, which results in a slight drop in normal force while the magnitude of shear force increases.

force when detecting partial slip [47]. We train two heads: one for slip detection and the other776

for the estimation of normalized force change (�). We find empirically that training both heads777

simultaneously improves slip detection, given their high correlation. The MLP probes are trained778

with cross-entropy for slip detection and mean absolute error (MAE) for � force regression as loss779

functions. Our dataset comprises 125k samples, with only 13% corresponding to slip instances. We780

reserve 25k samples for evaluating model performance.781

Table 7 provides F1-score metrics for all models under different amounts of training data. Sparsh782

(VJEPA) outperforms all models, even when trained under low data regimes. In Figure 11 we contrast783

the predictions over time for a sample trajectory between Sparsh (VJEPA) and E2E models trained784

with 33% of the data. Note that for Sparsh (VJEPA) the errors are around the friction boundary, where785

the probe is starting to slide. Also, it is worth noticing that a poor estimation of changes in shear and786

normal forces is reflected in the accuracy of distinguishing between slip and no-slip. In Figure 12, we787

illustrate a failure case for Sparsh (VJEPA), as its results do not align with the ground truth. However,788

it is important to note that slip labeling is prone to errors due to its reliance on an experimental789

coefficient of friction. Despite the inaccuracies in the friction boundary for this trajectory, Sparsh790

(VJEPA) successfully detects the slip samples.791

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset
E2E 0.767 0.238 0.299 0.214

Sparsh (MAE) 0.783 0.818 0.691 0.269
Sparsh (DINO) 0.685 0.561 0.548 0.489
Sparsh (IJEPA) 0.776 0.791 0.775 0.726
Sparsh (VJEPA) 0.820 0.828 0.800 0.760

Table 7: Performance of models on slip detection task under different budgets of training data. We use F1 score
as metric, given that it ensures the model accurately identifies slip events without favoring the majority class. A
high F1 score indicates effective and reliable slip detection.

C.5 [T3] Pose estimation792

We collect a dataset of trajectories with time-synchronized pairs of object pose measurements and793

sensor observations using an Allegro hand equipped with DIGIT sensors on each finger, mounted794

on a robot arm. The object was placed on a table and with the palm facing downward, we pressed795

against it with the fingertips (see Figure 3). We manually perturbed the object’s pose by sliding and796

rotating it under the Allegro fingertips. The pose of the object was tracked using ArUco tags. Given797

ground truth object pose measurements in the world frame, we preprocess them into relative pose798

change (�x,�y,�✓) 2 SE(2) in the sensor frame.799
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Figure 11: Contrast between Sparsh (VJEPA) and E2E for a test trajectory with a spherical probe sliding on the
DIGIT sensor. Sparsh (VJEPA), even though trained only on 33% of the data, can detect slip accurately, which
is correlated with its ability to estimate changes in normal and shear forces.

Figure 12: Failure case where the ground truth does not reflect slip since it relies on an experimental coefficient
of friction. Despite the inaccuracies in the friction boundary for this trajectory, Sparsh (VJEPA) successfully
detects slip samples.

Since we follow a regression-by-classification approach, we discretize the range of motion for each800

degree of freedom into multiple intervals in Log-uniform space. This allows us to achieve a better801

data distribution across all classes, as most pose changes are concentrated around zero. The strategy802

of classification-regression is also commonly explored for monocular depth estimation [98].803

After attentive pooling, the features are passed to three heads, one for each degree of freedom. Each804

head is an MLP with two layers, which outputs the probability distribution over 11 classes (pose805

change bins). In Figure 13 we present the binning as well as the confusion matrices on test data806

for each degree of freedom, comparing E2E, Sparsh (DINO) and Sparsh (IJEPA) for pose estimation807

when trained on 33% of the available labeled data. Note that Sparsh can accurate distinguish pose808

changes in a low data regime, while a conventional task-specific approach struggles discerning the809
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differences between adjacent bins, and finally tends to default to zero or maximum relative pose810

change, losing resolution in estimation.811

Figure 14 shows a test trajectory over time with its ground truth labels. The colors on the plot812

represent the class agreement between the pose decoders trained with Sparsh (DINO) (using 33% of813

the data) and the ground truth. Darker colors indicate no error, while brighter colors indicate greater814

misclassification. In Table 8 we report for each model accuracy in pose estimation over 630 test815

samples and 95% confidence interval.816

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset

E2E
0.812

[0.811, 0.813]
0.245

[0.244, 0.247]
0.162

[0.160, 0.164]
0.162

[0.160, 0.164]

Sparsh (MAE) 0.896
[0.896, 0.897]

0.719
[0.718, 0.721]

0.417
[0.414, 0.420]

0.223
[0.221, 0.225]

Sparsh (DINO) 0.913
[0.912, 0.914]

0.834
[0.832, 0.836]

0.460
[0.457, 0.461]

0.242
[0.240, 0.245]

Sparsh (IJEPA) 0.851
[0.850, 0.852]

0.601
[0.599, 0.603]

0.323
[0.321, 0.325]

0.212
[0.210, 0.215]

Sparsh (VJEPA) 0.856
[0.854, 0.857]

0.648
[0.646, 0.651]

0.368
[0.367, 0.370]

0.228
[0.225, 0.231]

Table 8: Accuracy and 95% confidence interval for pose estimation task following the regression-by-
classification paradigm. Relative pose between object and ring finger. Metrics computed over 630 test samples.

C.6 [T4] Grasp stability817

We use the Feeling of Success dataset [8], which contains data from a pair of GelSight sensors (with818

markers) attached to a jaw gripper (left and right fingers). The goal is to determine the success or the819

failure of the grasp attempt.820

We pass to the SSL model the ‘before’ and ‘during’ as tactile history. We create our randomized821

split with all objects, using approximately 8k grasps for training and the remaining 1.3k grasps for822

evaluation. Using attentive probing, we freeze Sparsh and train a 2-layer MLP with two output units823

for grasp success classification.824

In Table 9 report the accuracy for binary classification to compare the performance of the models825

across different training budgets, including a 95% confidence interval. Figure 15 shows the confusion826

matrices on test samples for E2E, Sparsh (DINO) and Sparsh (IJEPA) trained on a 33% of labeled827

data.828

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset

E2E
0.784

[0.783, 0.785]
0.725

[0.722, 0.728]
0.682

[0.680, 0.684]
0.478

[0.472, 0.482]

Sparsh (MAE) 0.815
[0.813, 0.817]

0.696
[0.691, 0.702]

0.764
[0.761, 0.768]

0.466
[0.461, 0.471]

Sparsh (DINO) 0.780
[0.777, 0.782]

0.706
[0.702, 0.710]

0.773
[0.772, 0.775]

0.473
[0.467, 0.479]

Sparsh (IJEPA) 0.802
[0.800, 0.804]

0.782
[0.779, 0.784]

0.768
[0.766, 0.770]

0.598
[0.597, 0.601]

Sparsh (VJEPA) 0.809
[0.805, 0.813]

0.702
[0.700, 0.704]

0.743
[0.740, 0.746]

0.523
[0.519, 0.527]

Table 9: Accuracy and 95% confidence interval for grasp stability classification over different budget sizes of
training data, using Feeling of Success dataset. Results over 1.3k grasps.
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Figure 13: Confusion matrix on test data for �Tx, �Ty , �Yaw for E2E, Sparsh (DINO) and Sparsh (IJEPA)
trained on 33% of the available labeled data. The test dataset consist of 630 samples.

C.7 [T5] Bead maze829

The goal in bead maze is to guide the bead along the wire, as shown in Figure 3. We don’t rely on830

vision for hand-eye coordination, making the task fundamentally tactile since forces in the fingers831

indicate whether the bead is moving smoothly or encountering resistance. In our setup, we use832

a Franka arm with a robotic hand mounted on the wrist and DIGIT sensors on the fingers. To833

collect demonstrations for training the policy, we start the task with the bead grasped between834

the thumb and index fingers and move the arm to guide the bead along the wire. We collect 30835

demonstrations on different maze patterns with mix of VR-based and manual kinesthetic-based836

teleoperation, corresponding to a total of ⇠34k training pairs of tactile images and robot joint angles.837

For training the policy, we adapt Diffusion Policy [64] to our problem setting. Given a small history838

of tactile images (. . . , zt�1, zt), and robot proprioception (. . . , qt�1, qt), we train the policy to839

predict changes in joint angles as actions a , (�qt,�qt+1, ...);�q 2 R7, instead of position control.840

Following the guidelines in Diffusion Policy, we use an observation horizon of 2 and an action841

prediction horizon of 8. We adhere to the official implementation for policy architecture and training842

hyper-parameters. For conditioning on tactile input, we modify the CNN encoder from Diffusion843

Policy and replace it with Sparsh backbones with fixed parameters. For training an end-to-end policy,844

the encoder corresponds to a ViT-Base encoder with randomly initialized weights.845

In Table 10 we report to position error of E2E, Sparsh (DINO) and Sparsh (IJEPA) with respect to test846

demonstrations on an unseen maze, highlighting the fidelity of Sparsh (DINO) and Sparsh (IJEPA) to847
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Figure 14: Ground truth relative pose classes for Tx, Ty , and Yaw for a test trajectory. The colormap represents
the class agreements between the ground truth and the pose decoder, with darker colors indicating no error and
brighter colors indicating greater misclassification.

Figure 15: Confusion matrix on test data for grasp stability, comparing E2E, Sparsh (DINO) and Sparsh (IJEPA)
trained on 33% of the available labeled data. The test dataset consist of 1.3k grasps.

follow a similar trajectory. Nevertheless, this doesn’t necessarily transfer to real-world performance,848

since the locality of the observations and predictions make the errors in the adjusted joint angles849

to compound fast, which results in unforeseen collisions and the subsequent lose of the grasp. In850

an overfitting setting, training a policy for a single maze, policies using Sparsh (DINO) and Sparsh851

(IJEPA) are able to complete almost 30% of the maze on the real robot. However, it is expected852

an specialist policy trained end-to-end to perform better in the overfitting setting. Experimentally,853

we found than an E2E policy trained for a single maze is able to complete almost 80% of the maze854

running on the real robot.855

In Table 11 we summarize the performance of Sparsh across the benchmark. We find that with856

respect to an E2E approach, with Sparsh we can achieve an improvement of 98.75% on average.857

Sparsh (DINO) and Sparsh (IJEPA) are in general the best models across the board, showing the858

benefits of learning touch representations in latent space. An MAE approach, which relies on pixel859

space supervision, is still competitive, although it was not evaluated on the policy task.860
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Model Full dataset 1/2 dataset 1/10 dataset

Sparsh-(E2E) 8.46
[7.61, 9.32]

7.14
[6.26, 8.05]

9.80
[8.78, 10.82]

Sparsh-(DINO) 5.54
[4.90, 6.17]

5.98
[5.29, 6.67]

5.71
[5.13,6.29]

Sparsh-(IJEPA) 5.47
[4.82, 6.13]

5.72
[5.05, 6.40]

5.46
[4.82, 6.10]

Table 10: Position error (mm) and 95% confidence interval for the Bead Maze task. We compare the ground truth
trajectory from a test demonstration in an unseen maze against the compounded trajectory from the predicted
delta joint angles from each policy.

Task Best SSL vs E2E DINO vs IJEPA MAE vs Best VJEPA vs Best
Force estimation (DIGIT) 28.31% 26.67% �4.38% �27.96%
Force estimation (GelSight) 59.74% 32.41% 1.72% �64.23%
Slip detection 242.70% 29.08% �1.21% 0.00%
Pose estimation 235.89% �37.91% �13.81% �22.33%
Grasp stability 5.14% 8.45% �10/17% �7.83%
Bead maze 19.72% �5.26% - -
Average 98.75% 8.91% �5.57% �24.47%

Table 11: Performance of Sparsh across TacBench and comparison between SSL approaches.
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