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ABSTRACT

Neural ordinary differential equations (Neural ODEs) are an effective framework
for learning dynamical systems from irregularly sampled time series data. These
models provide a continuous-time latent representation of the underlying dynam-
ical system where new observations at arbitrary time points can be used to update
the latent representation of the dynamical system. Existing parameterizations for
the dynamics functions of Neural ODEs limit the ability of the model to retain
global information about the time series; specifically, a piece-wise integration of
the latent process between observations can result in a loss of memory on the
dynamic patterns of previously observed data points. We propose PolyODE, a
Neural ODE that models the latent continuous-time process as a projection onto
a basis of orthogonal polynomials. This formulation enforces long-range mem-
ory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and in a series
of experiments, we demonstrate that it outperforms previous works in the recon-
struction of past and future data, and in downstream prediction tasks. Our code is
available at https://github.com/edebrouwer/polyode.

1 INTRODUCTION

Time series are ubiquitous in many fields of science and as such, represent an important but chal-
lenging data modality for machine learning. Indeed, their temporal nature, along with the potentially
high dimensionality makes them arduous to manipulate as mathematical objects. A long-standing
line of research has thus focused on efforts in learning informative time series representations, such
as simple vectors, that are capable of capturing local and global structure in such data (Franceschi
et al., 2019; Gu et al., 2020). Such architectures include recurrent neural networks (Malhotra et al.,
2017), temporal transformers (Zhou et al., 2021) and neural ordinary differential equations (neural
ODEs) (Chen et al., 2018).

In particular, neural ODEs have emerged as a popular choice for time series modelling due to their
sequential nature and their ability to handle irregularly sampled time-series data. By positing an
underlying continuous time dynamic process, neural ODEs sequentially process irregularly sam-
pled time series via piece-wise numerical integration of the dynamics between observations. The
flexibility of this model family arises from the use of neural networks to parameterize the tempo-
ral derivative, and different choices of parameterizations lead to different properties. For instance,
bounding the output of the neural networks can enforce Lipschitz constants over the temporal pro-
cess (Onken et al., 2021).

The problem this work tackles is that the piece-wise integration of the latent process between obser-
vations can fail to retain a global representation of the time series. Specifically, each change to the
hidden state of the dynamical system from a new observation can result in a loss of memory about
prior dynamical states the model was originally in. This pathology limits the utility of neural ODEs
when there is a necessity to retain information about the recent and distant past; i.e. current neural
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ODE formulations are amnesic. We illustrate this effect in Figure 1, where we see that backward
integration of a learned neural ODE (that is competent at forecasting) quickly diverges, indicating
the state only retains sufficient local information about the future dynamics.

NODE Reconstructions

PolyODE Reconstructions

PolyODE Predictions
NODE Predictions

Data points

Figure 1: PolyODE: Illustration of the abil-
ity of PolyODE to reconstruct past trajecto-
ries. The solid lines show the forecasting tra-
jectories conditioned on past observations for
NODE (blue) and PolyODE (red). The dot-
ted line represents the backward reconstruc-
tion for the past trajectories conditioned on
the latent process at the last observation. We
observe that PolyODE is able to accurately
reconstruct the past trajectories while NODE
quickly diverges. PolyODE is also more accu-
rate in terms of forecasting.

One strategy that has been explored in the past to address this pathology is to regularize the model
to encourage it to capture long-range patterns by reconstructing the time series from the last obser-
vation, using an auto-encoder architecture (Rubanova et al., 2019). This class of approaches results
in higher complexity and does not provide any guarantees on the retention of the history of a time
series. In contrast, our work proposes an alternative parameterization of the dynamics function that,
by design, captures long-range memory within a neural ODE. Inspired by the recent successes of
the HiPPO framework (Gu et al., 2020), we achieve this by enforcing that the dynamics of the hid-
den process follow the dynamics of the projection of the observed temporal process onto a basis of
orthogonal polynomials. The resulting model, PolyODE, is a new neural ODE architecture that en-
codes long-range past information in the latent process and is thus anamnesic. As depicted in Figure
1, the resulting time series embeddings are able to reconstruct the past time series with significantly
better accuracy.

Contributions (1) We propose a novel dynamics function for a neural ODE resulting in PolyODE,
a model that learns a global representation of high-dimensional time series and is capable of long-
term forecasting and reconstruction by design. PolyODE is the first investigation of the potential of
the HiPPO operator for neural ODEs architectures.

(2) Methodologically, we highlight the practical challenges in learning PolyODE and show how
adaptive solvers for ODEs can overcome them. Theoretically, we provide bounds characterizing the
quality of reconstruction of time series when using PolyODE.

(3) Empirically, we study the performance of our approach by assessing the ability of the learnt
embeddings to reconstruct the past of the time series and by studying their utility as inputs for
downstream predictive tasks. We show that our model provides better time series representations,
relative to several existing neural ODEs architectures, based on the ability of the representations to
accurately make predictions on several downstream tasks based on chaotic time series and irregularly
sampled data from patients in intensive care unit.

2 RELATED WORK

Time series modelling in machine learning: There is vast literature on the use of machine learning
for time series modelling and we highlight some of the ideas that have been explored to adapt
diverse kinds of models for irregular time series data. Although not naturally well suited to learning
representations of such data, there have been modifications proposed to discrete-time models such
as recurrent neural networks (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) to handle such
data. Models such as mTANs (Shukla and Marlin, 2021) leverage an attention-based approach to
interpolate sequences to create discrete-time data from irregularly sampled data. Another strategy
has been architectural modifications to the recurrence equations e.g. CT-GRU (Mozer et al., 2017),
GRU-D (Che et al., 2018) and Unitary RNNs (Arjovsky et al., 2016). Much more closely aligned
to our work, and a natural fit for irregularly sampled data is research that uses differential equations
to model continuous-time processes (Chen et al., 2018). By parameterizing the derivative of a time
series using neural networks and integrating the dynamics over unobserved time points, this class
of models is well suited to handle irregularly sampled data. This includes models such as ODE-
RNN (Rubanova et al., 2019), ODE-LSTM (Lechner and Hasani, 2020) and Neural CDE (Kidger
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et al., 2020). ODE-based approaches require the use of differential equation solvers during training
and inference, which can come at the cost of runtime (Shukla and Marlin, 2021). PolyODEs lie
in this family of models; specifically, this work proposes a new parameterization of the dynamics
function and a practical method for learning that enables this model family to accurately forecast the
future and reconstruct the past greatly enhancing the scope and utility of the learned embeddings.

Orthogonal polynomials: PolyODEs are inspired by a rich line of work in orthogonal decomposi-
tion of time series data. Orthogonal polynomials have been a mainstay in the toolkit for engineering
(Heuberger et al., 2003) and uncertainty quantification (Li et al., 2011). In the context of machine
learning, the limitations of RNNs to retain long-term memory have been studied empirically and
theoretically (Zhao et al., 2020). Indeed, the GRU (Chung et al., 2014) and LSTM (Graves et al.,
2007) architectures were created in part to improve the long-term memory of such models. Recent
approaches for discrete-time models have used orthogonal polynomials and their ability to repre-
sent temporal processes in a memory-efficient manner. The Legendre Memory Unit (Voelker et al.,
2019) and Fourier Recurrent Unit can be seen as a projection of data onto Legendre polynomials
and Fourier basis respectively.

Our method builds upon and is inspired by the HiPPO framework which defines an operator to com-
pute the coefficients of the projections on a basis of orthogonal polynomials. HiPPO-RNN and S4
are the most prominent examples of architectures building upon that framework (Gu et al., 2020;
2021). These models rely on a linear interpolation of the data in between observations, which can
lead to a decrease of performance when the sampling rate of the input process is low. Furthermore,
HiPPO-RNN and S4 perform the orthogonal polynomial projection of a non-invertible representa-
tion of the input data, which therefore doesn’t enforce reconstruction in the observation space by
design. Their design choices are motivated toward the goal of efficient mechanisms for capturing
long term dependency for a target task (such as trajectory classification). In contrast, this work aims
at exploring the abilities of the HiPPO operator for representation learning of irregular time series,
when the downstream task is not known in advance.

Despite attempts to improve the computational performance of learning from long-term sequences
(Morrill et al., 2021), to our knowledge, PolyODE is the first work that investigates the advantages
of the HiPPO operator in the context of memory retention for continuous time architectures.

3 BACKGROUND

Orthogonal Polynomial Projections: Orthogonal polynomials are defined with respect to a mea-
sure µ as a sequence of polynomials {P0(s), P1(s), ...} such that deg(Pi) = i and

⟨Pn, Pm⟩ =
∫
Pn(s)Pm(s)dµ(s) = δn=mαn, (1)

where αn are normalizing scalars and δ is the Kronecker delta. For simplicity, we consider only
absolutely continuous measures with respect to the Lebesgue measure, such that there exists a weight
function ω(·) such that dµ(s) = ω(s)ds. The measure µ determines the class of polynomials
obtained from the conditions above (Eq. 1). Examples include Legendre, Hermite or Laguerre
classes of orthogonal polynomials. The measure µ also defines an inner product ⟨·, ·⟩µ such that
the orthogonal projection of a 1-dimensional continuous process f(·) : R → R on the space of
polynomials of degree N , PN , is given as

fN (t) =

N∑
n=0

cnPn(t)
1

αn
with cn = ⟨f, Pn⟩µ =

∫
f(s)Pn(s)dµ(s). (2)

This projection minimizes the distance ∥f−p∥µ for all p ∈ PN and is thus optimal with respect to the
measure µ. One can thus encode a process f by storing its projection coefficients {c0, ..., cN}. We
write the vector of coefficients up to degreeN as c (the degreeN is omitted) and ci = ci. Intuitively,
the measure assigns different weights at times of the process and thus allows for modulating the
importance of different parts of the input signal for the reconstruction.

Continuous update of approximation coefficients: The projection of a process f onto a basis
of orthogonal polynomials provides an optimal representation for reconstruction. However, there
is often a need to update this representation continuously as new observations of the process f
become available. Let f<t be the temporal process observed up until time t. We wish to compute
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the coefficients of this process at different times t. We can define for this purpose a time-varying
measure µt and corresponding weight function ωt that can incorporate our requirements in terms
of reconstruction abilities over time. For instance, if one cares about reconstruction of a process ∆
temporal units in the past, one could use a time-varying weight function ωt(s) = I[s ∈ (t−∆, t)].
This time-varying weight function induces a time-varying basis of orthogonal polynomials P t

n for
n = 0, ..., N . We can define the time-varying orthogonal projection and its coefficients cn(t) as

f<t ≈ f<t,N =

N∑
n=0

cn(t)P
t
n

1

αt
n

with cn(t) = ⟨f<t, P
t
n⟩µt =

∫
f<t(s)P

t
n(s)dµ

t(s). (3)

Dynamics of the projection coefficients: Computing the coefficients of the projection at each
time step would be both computationally wasteful and would require storing the whole time series
in memory, going against the principle of sequential updates to the model. Instead, we can leverage
the fact that the coefficients evolve according to known linear dynamics over time. Remarkably, for
a wide range of time-varying measures µt, Gu et al. (2020) show that the coefficients cN (t) follow:

dcn(t)

dt
=

d

dt

∫
f<t(s)P

t
n(s)dµ

t(s), ∀n ∈ N

dc(t)

dt
= Aµc(t) +Bµf(t) (4)

where Aµ and Bµ are fixed matrices (for completeness, we provide a derivation of the relation for
the translated Legendre measure in Appendix A). We use the translated Legendre measure in all our
experiments. Using the dynamics of Eq. 4, it is possible to update the coefficients of the projection
sequentially by only using the new incoming sample f(t), while retaining the desired reconstruc-
tion abilities. Gu et al. (2020) use a discretization of the above dynamics to model discrete time-
sequential data via a recurrent neural network architecture. Specifically, their architecture projects
the hidden representation of an RNN onto a single time series that is projected onto an polynomial
basis. Our approach differs in two ways. First, we work with a continuous time model. Second, we
jointly model the evolution of d-dimensional time-varying process as a overparameterized hidden
representation that uses orthogonal projections to serve as memory banks. The resulting model is a
new neural ODE architecture as we detail below.

4 METHODOLOGY

Problem Setup. We consider a collection of sequences of temporal observations x = {(xi,mi, ti) :
i ∈ {1, ..., T}} that consist of a set of time-stamped observations and masks (xi ∈ Rd,mi ∈
Rd, ti ∈ R). We write xi,j and mi,j for the value of the jth dimension of xi and mi respectively.
The mask mi encodes the presence of each dimension at a specific time point. We set mi,j = 1
if xi,j is observed and mi,j = 0 otherwise. The number of observations for each sequence x, T ,
can vary across sequences. We define the set of sequences as S and the distance between two time
series observed at the same times as d(x,x′) = 1

T

∑T
i ∥xi−x′

i∥2. Our goal is to be able to embed a
sequence x into a vector h ∈ Rdh such that (1) h retains a maximal amount of information contained
in x and (2) h is informative for downstream prediction tasks. We formalize both objectives below.
Definition (Reverse reconstruction). Given an embedding ht of a time series x at time t, we define
the reverse reconstruction x̂<t as the predicted values of the time series at times prior to t. We write
the observed time series prior to t as x<t.
Objective 1 (Long memory representation). Let ht and h′

t be two embeddings of the same time
series x. Let x̂<t and x̂′

<t be their reverse reconstruction. We say that ht enjoys more memory than
h′
t if d(x̂<t,x<t) < d(x̂′

<t,x<t).
Objective 2 (Downstream task performance). Let y ∈ Rdy be an auxiliary vector drawn from
a unknown distribution depending on x. Let ŷ(x) and ŷ(x)′ be the predictions obtained from
embeddings ht and h′

t. For a performance metric α : S × Rdy → R, we say that ht is more
informative than h′

t if Ex,y[α(ŷ(x),y)] > Ex,y[α(ŷ(x)
′,y)].

4.1 POLYODE: ANAMNESIC NEURAL ODES

We make the assumption that the observed time series x comes from an unknown but continuous
temporal process x(t). Given h(t) ∈ Rdh and a read-out function g : Rdh → Rd we posit the
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following generative process for the data:

x(t) = g(h(t)),
dh(t)

dt
= ϕ(h(t)) (5)

where part of ϕ(·) is parametrized via a neural network ϕθ(·).
The augmentation of the state space is a known technique to improve the expressivity of Neural
ODEs (Dupont et al., 2019). Here, to ensure that the hidden representation in our model has the
capacity to retain long-term memory, we augment the state space of our model by including the
dynamics of coefficients of orthogonal polynomials as described in Equation 4.

Similarly as classical filtering architectures (e.g. Kalman filters and ODE-RNN (Rubanova et al.,
2019)), PolyODE alternates between two regimes : an integration step (that takes place in between
observations) and an update step (that takes place at the times of observations), described below.

We structure the hidden state as h(t) = [h0(t),h1(t), . . . ,hd(t)] where h0(t) ∈ Rd has the same
dimension as the input process x, hi(t) ∈ RN ,∀i ∈ 1, . . . , d, has the same dimension as the vector
of projection coefficients ci(t) and [·, ·] is the concatenation operator. We define the readout function
gi(·) : R(N+1)d → R such that gi(h(t)) = h0(t)i. That is, gi is fixed and returns the ith value of the
input vector. This leads to the following system of ODEs that characterize the evolution of h(t):

Integration Step. 
dc1(t)

dt = Aµc
1(t) +Bµg1(h(t))

...
dcd(t)

dt = Aµc
d(t) +Bµgd(h(t))

dh(t)
dt = ϕθ(h(t))

(6)

This parametrization allows learning arbitrarily complex dynamics for the temporal process x. We
define a sub-system of equations of projection coefficients update for each dimension of the input
temporal process x(t) ∈ Rd. This sub-system is equivalent to Equation 4, where we have substituted
the input process by the prediction from the hidden process h(t) through a mapping gi(·). The
hidden process h0(t) acts similarly as in a classical Neural ODEs and the processes c(t) captures
long-range information about the observed time series. During the integration step, we integrate
both the hidden process h(t) and the coefficients c(t) forward in time, using the system of Equation
6. At each time step, we can provide an estimate of the time series x̂(t) conditioned on the hidden
process h(t), with x̂(t) = g(h(t)).

The coefficients c(t) are influenced by the values of h(t) through h0(t) only. The process h0(t)
provides the signal that will be memorized by projecting onto the orthogonal polynomial basis. The
c(t) serve as memory banks and do not influence the dynamics of h(t) during the integration step.

Downstream Prediction

Reverse reconstruction

Forward prediction

Figure 2: PolyODE time series embedding process. The model processes the time series sequentially by
alternating between integration steps (between observations) and update steps when observations are collected.
Informative embeddings should allow for (1) reconstructing the past of the time series (reverse reconstruction
- in red), (2) forecasting the future of the sequence (forward prediction - in blue) and (3) being informative for
downstream predictions (in green).
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The system of equations in Eq. 6 characterises the dynamics in between observations. When a new
observation becomes available, we update the system as follows.

Update Step. At time t = ti, after observing xi and mask mi, we set{
hj(ti) := cj(ti), ∀j s.t. mi,j = 1

h0(ti)j := xi,j , ∀j s.t. mi,j = 1
(7)

The update step serves the role of incorporating new observations in the hidden representation of
the system. It proceeds by (1) reinitializing the hidden states of the system with the orthogonal
polynomial projection coefficients c(t): hj(ti) := cj(ti); and (2) resetting h0(t) to the newly
collected observation: h0(ti)j := xi,j(t).

Remarks: Our model blends orthogonal polynomials with the flexibility offered in modelling the
observations with NeuralODEs. The consequence of this is that while the coefficients serve as
memory banks for each dimension of the time series, the Neural ODE over h0(t) can be used to
forecast from the model. That said, we acknowledge that a significant limitation of our current
design is the need for the hidden dimension to track N coefficients for each time-series dimension.
Given that many adjacent time series might be correlated, we anticipate that methods to reduce the
space footprint of the coefficients within our model is fertile ground for future work.

4.2 TRAINING

We train this architecture by minimizing the reconstruction error between the predictions and the
observations: L =

∑T
i=1∥x̂(ti) − xi∥22. We first initialize the hidden processes c(0) = 0 and

h(0) = 0 though they can be initialized with static information b, if available (e.g. h(0) = ψθ(b)).
We subsequently alternate between integration steps between observations and update steps at ob-
servation times. The loss is updated at each observation time ti. A pseudo-code description of the
overall procedure is given in Algorithm 1.

Numerical integration. We integrate the system of differential equations of Equation 6 using dif-
ferentiable numerical solvers as introduced in Chen et al. (2018). However, one of the technical
challenges that arise with learning PolyODE is that the dynamical system in Equation 6 is relatively
stiff and integrating this process with acceptable precision would lead to prohibitive computation
times with explicit solvers. To deal with this instability we used an implicit solver such as Backward
Euler or Adams-Moulton for the numerical integration (Sauer, 2011). A comparison of numerical
integration schemes and an analysis of the stability of the ODE are available in Appendix I.

Algorithm 1: PolyODE Training
Data: x, matrices Aµ, Bµ, number of dimensions d, number of observations T ,
number of polynomial coefficients N
Result: Training loss L over a whole sequence x
t∗ ← 0
Initialize hj(0) = cj(0) = 0N ,∀j ∈ 1, ..., d,
Loss L = 0
for i← 1 to T do

Integrate c1,...,d(t) and h0,..,d(t) from t = t∗ until t = ti
x̂i ← h0(t

∗)
Update c1,...,d(ti) and h0,...,d(ti) with xi,mi.
L = L+ ∥(x̂i − xi)⊙mi∥22
t∗ ← ti

end

Forecasting: From time t, we forecast the time series at an arbitrary time t∗ as:

x̂>t(t
∗) = g(h(t) +

∫ t∗

t

ϕθ(h(s))ds), (8)

where ϕθ(·) is the learned model that we use in the integration step and introduced in Eq. 5.
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Reverse Reconstruction: Using Equation 3, we can compute the reverse reconstruction of the time
series at any time t using the projection coefficients part of the hidden process:

x̂<t,j =

N∑
n=0

cjn(t) · P t
n ·

1

αt
n

. (9)

More details about this reconstruction process and its difference with respect to classical NODEs
are available in Appendix E. The error between the prediction obtained during the integration step,
x̂(t), and the above reconstruction estimator is bounded above, as Result 4.1 shows.
Result 4.1. For a shifted rectangular weighting function with width ∆, ωt(x) = 1

∆ I[t−∆,t] (which
generate Legendre polynomials), the mean square error between the forward (x̂) and reverse pre-
diction (x̂<t) at each time t is bounded by:

∥x̂− x̂<t∥2µt ≤ C0
∆2L2(K + 1)2

N(2N − 1)
+ C1∆L(K + 1)SKξ

(
3

2
, N

)
+ C2S

2
Kξ

(
3

2
, N

)
,

where K is the number of observations in the interval [t −∆, t], L is the Lipschitz constant of the
forward process, N is the degree of the polynomial approximation and ξ(·, ·) is the Hurwitz zeta
function. SK =

∑K
i=1|x̂ − xi| is the sum of absolute errors between the forward process and

observations incurred at the update steps. C0, C1 and C2 are constants.

Expectedly, the bound goes to 0 as the degree of the approximation increases. The lower cumulative
absolute error SK also leads to a reduction of this bound. As the cumulative absolute error SK and
our loss function L share the same optimum, for fixed ∆, L, K and N , our training objective there-
fore implicitly enforces a minimization of the reconstruction error. This corresponds to optimizing
Objective 1, where we set d(x,x′) = ∥x − x′∥2µt . Our architecture thus jointly minimizes both
global reconstruction and forecasting error. Notably, when SK = 0, this result boils down to the
well-known projection error for orthogonal polynomials projection of continuous processes (Canuto
and Quarteroni, 1982). What is more, increasing the width of the weighting function (increasing ∆)
predictably results in higher reconstruction error. However, this can be compensated by increasing
the dimension of the polynomial basis accordingly. We also note a quadratic dependency on the
Lipschitz constant of the temporal process, which can limit the reverse reconstruction abilities for
high-frequency components. The full proof can be found in Appendix B.

5 EXPERIMENTS

We evaluate our approach on two objectives : (1) the ability of the learned embedding to encode
global information about the time series, through the reverse reconstruction performance (or mem-
orization) and (2) the ability of embedding to provide an informative input for a downstream task.
We study our methods on the following datasets:

Synthetic Univariate. We validate our approach using a univariate synthetic time series. We sim-
ulate 1000 realizations from this process and sample it at irregularly spaced time points using a
Poisson point process. For each generated irregularly sampled time series x, we create a binary
label y = I[x(5) > 0.5]. Further details about datasets are to be found in Appendix G.

Chaotic Attractors. Chaotic dynamical systems exhibit a large dependence of the dynamics on
the initial conditions. This means that a noisy or incomplete evaluation of the state space may not
contain much information about the past of the time series. We consider two widely used chaotic
dynamical systems: Lorenz63 and a 5-dimensional Lorenz96. We generate 1000 irregularly sampled
time series from different initial conditions. We completely remove one dimension of the time
series such that the state space is never fully observed. This forces the model to remember the past
trajectories to create an accurate estimate of the state space at each time t.

MIMIC-IIII dataset. We use a pre-processed version of the MIMIC-III dataset (Johnson et al.,
2016; Wang et al., 2020). This consists of the first 24 hours of follow-up for ICU patients. For each
time series, the label y is the in-hospital mortality.

Baselines: We compare our approach against two sets of baselines: Neural ODEs architecture and
variants of recurrent neural networks architectures designed for long-term memory. To ensure a fair
comparison, we use the same dimensionality of the hidden state for all models.
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Neural ODE baselines. We use a filtering implementation of Neural ODEs, GRU-ODE-Bayes
(De Brouwer et al., 2019) and ODE-RNN (Rubanova et al., 2019), an auto-encoder relying on a
Neural ODE for both the encoder and the decoder part. For theses baselines, we compute the reverse
reconstruction by integrating the system of learnt ODEs backward in time. In case of ODE-RNN,
we use the ODE of the decoder. Additionally, we compare against Neural RDE neural controlled
differential equations for long time series (Neural RDE) (Morrill et al., 2021).

Long-term memory RNN baselines. We compare against HiPPO-RNN (Gu et al., 2020), a recur-
rent neural network architecture that uses orthogonal polynomial projections of the hidden process.
We also use a variant of this approach where we directly use the HiPPO operator on the observed
time series, rather than on the hidden process. We call this variant HiPPO-obs. We also compare
against S4, an efficient state space model relying on the HiPPO matrix (Gu et al., 2021).

Long-range representation learning: For each dataset, we evaluate our method and the various
baselines on different tasks. Implementation details are available in Appendix H.

Downstream Classification. We train the models on the available time series. After training, we
extract time series embedding from each model and use them as input to a multi-layer perceptron
trained to predict the time series label y. We report the area under the operator-characteristic curve
evaluated on a left-out test set with 5 repetitions.

Time Series Reconstruction. Similarly as for the downstream classification, we extract the time se-
ries embeddings from models trained on the time series. We then compute the reverse reconstruction
x̂<t and evaluate the MSE with respect to the true time series.

Forecasting. We compare the ability of all models to forecast the future of the time series. We
compute the embedding of the time series observed until some time tcond and predict over a horizon
thorizon. We then report the MSE between the prediction and true trajectories.

Table 1: Downstream task and reverse reconstruction results for synthetic and Lorenz datasets.

Model Downstream Classification↑ Reconstruction↓
Synthetic Lorenz63 Lorenz96 Synthetic Lorenz63 Lorenz96

Irregular Rate λ 0.7 0.3 0.3 0.7 0.3 0.3

GRU-ODE 0.968± 0.004 0.825± 0.031 0.925± 0.004 0.057± 0.010 0.752± 0.057 0.346± 0.072
ODE-RNN 0.870± 0.032 0.813± 0.013 0.954± 0.012 0.080± 0.036 0.674± 0.049 0.214± 0.030
Neural-RDE 0.773± 0.111 0.604± 0.046 0.606± 0.112 0.167± 0.031 0.989± 0.074 1.747± 0.472
HiPPO-obs 0.758± 0.023 0.837± 0.034 0.949± 0.007 0.197± 0.010 0.511± 0.043 0.247± 0.005
HiPPO-RNN 0.742± 0.008 0.804± 0.023 0.944± 0.008 0.209± 0.018 0.784± 0.122 0.198± 0.014
S4 0.994± 0.003 0.911± 0.005 0.948± 0.016 0.032± 0.006 0.428± 0.040 0.171± 0.008

PolyODE 0.994± 0.003 0.992± 0.000 0.984± 0.002 0.012± 0.002 0.034± 0.008 0.038± 0.008

Results for these tasks are presented in Table 1 for Synthetic and Lorenz datasets and in Table 2 for
MIMIC. We report additional results in Appendix C, with a larger array of irregular sampling rates.
We observe that the reconstruction abilities of PolyODE clearly outperforms the other baselines,
for all datasets under consideration. A similar trend is to be noted for the downstream classification
for the synthetic and Lorenz datasets. For these datasets, accurate prediction of the label y requires
a global representation of the time series, which results in better performance for our approach.

Table 2: Performance on MIMIC-III dataset.

Method Classification ↑ Forecasting ↓ Reconstruction ↓
HiPPO-obs 0.793± 0.002 / 0.775± 0.000

HiPPO-RNN 0.764± 0.006 1.104± 0.009 0.969± 0.026
GRU-ODE 0.793± 0.005 1.413± 0.074 2025.6± 2365.1
ODE-RNN 0.800± 0.004 1.104± 0.026 6.343± 4.844
PolyODE 0.778± 0.005 1.085± 0.022 0.187± 0.005

For the MIMIC dataset, our approach
compares favourably with the other meth-
ods for the downstream classification ob-
jective and outperforms other methods for
trajectory forecasting. What is more,
the reconstruction ability of PolyODE
is significantly better than compared ap-
proaches. In Figure 3, we plot the reverse
reconstructions of PolyODE for several vitals of a random patient over the first 24 hours in the ICU.
This reconstruction is obtained by first sequentially processing the time series until t = 24 hours and
subsequently using the hidden process to reconstruct the time series as in Equation 9. We observe
that PolyODE can indeed capture the overall trend of the time series over the whole history.

Ablation study - the importance of the auxiliary dynamical system: Is there utility in leveraging the
neural network ϕθ(·) to learn the dynamics of the time series? How well would various interpolation
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heart rate
mean blood pressure
oxygen saturation

Figure 3: PolyODE: Reverse predic-
tion of vitals over the 24 hours of ICU of
a randomly selected test patient. We plot
the true value (dots) and reconstructions
(solid line) for different vitals. Reverse
reconstruction is done from the last time
observation. Other vitals are provided in
Appendix D.

schemes for irregularly sampled observations perform in the context of reverse reconstruction and
classification? In response to these questions, we first note that they do not support extrapolation and
are thus incapable of forecasting the future of the time series. However, we compare the performance
in terms of reverse reconstruction and classification in Table 3. We consider constant interpolation
(last observation carried forward), linear interpolation and Hermite spline interpolation. Our results
indicate a significant gap in performance between PolyODE and the linear and constant interpolation
schemes. The Hermite spline interpolation allows us to capture most of the signal needed for the
downstream classification task but results in significantly lower performance in terms of the reverse
reconstruction error. These results therefore strongly support the importance of ϕθ(·) for producing
informative time series embeddings. Complementary results are available in Appendix C.

Table 3: Impact of the interpolation scheme on performance.

Downstream Classification↑ Reconstruction↓
SimpleTraj Lorenz Lorenz96 SimpleTraj Lorenz Lorenz96

Irregular Rate λ 0.7 0.3 0.3 0.7 0.3 0.3

Constant 0.969± 0.005 0.664± 0.033 0.862± 0.017 0.027± 0.003 0.785± 0.074 0.393± 0.017
Linear 0.969± 0.008 0.744± 0.016 0.857± 0.026 0.028± 0.005 0.787± 0.066 0.388± 0.032
Hermite Spline 0.971± 0.012 0.976± 0.000 0.983± 0.004 0.055± 0.016 0.135± 0.007 0.093± 0.011

PolyODE 0.994± 0.003 0.992± 0.000 0.984± 0.002 0.012± 0.002 0.034± 0.008 0.038± 0.008

Figure 4: Association between uncertain-
ties and reverse reconstruction errors for
PolyODE (top) and classical Neural ODEs
(bottom).

Incorporating global time series uncertainty: Previous
experiments demonstrate the ability of PolyODE to re-
tain memory of the past trajectory. A similar capability
can be obtained for capturing global model uncertainties
over the time series history. In Figure 4, we evaluate the
association between the recovered uncertainties of Poly-
ODE and the reverse reconstruction errors. We plot the
predicted uncertainties against the root mean square er-
ror (RMSE) on a logarithmic scale. We compare our ap-
proach with using the uncertainty of the model at the last
time step only. We observe that the uncertainties recov-
ered by PolyODE are significantly more correlated with
the errors (Pearson-ρ = 0.56) compared to using the
uncertainties obtained from the last time step (Pearson-
ρ = 0.11). More details are available in Appendix F.

6 CONCLUSION

Producing time series representations that are easy to ma-
nipulate, representative of global dynamics, practically
useful for downstream tasks and robust to irregular sam-
pling remains an ongoing challenge. In this work, we
took a step in that direction by proposing a simple but
novel architecture that satisfies those requirements by de-
sign. As a Neural ODE, PolyODE inherits the ability to
handle irregular time series elegantly but at the same time,
PolyODE also incurs computational cost associated with numerical integration. Currently, our ap-
proach also requires a large hidden space dimension and finding methods to address this that exploit
the correlation between dimensions of the time series is a fruitful direction for future work.
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K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

E. De Brouwer, J. Simm, A. Arany, and Y. Moreau. Gru-ode-bayes: Continuous modeling of
sporadically-observed time series. Advances in neural information processing systems, 32, 2019.

E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. Advances in Neural Information
Processing Systems, 32, 2019.

J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation learning for
multivariate time series. Advances in neural information processing systems, 32, 2019.

A. Graves, S. Fernández, and J. Schmidhuber. Multi-dimensional recurrent neural networks. In
International conference on artificial neural networks, pages 549–558. Springer, 2007.

A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré. Hippo: Recurrent memory with optimal polynomial
projections. Advances in Neural Information Processing Systems, 33:1474–1487, 2020.
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A DERIVATION OF THE DYNAMICS FOR LEGENDRE POLYNOMIALS(GU
ET AL., 2020)

For convenience, we repeat here the outline of the derivation in (Gu et al., 2020). We first recall the
equations for the dynamics of the coefficients of the projection.

cn(t) =

∫
f(x)pn(x, t)ωt(x)dx

dcn(t)

dt
=

∫
f(x)

∂

∂t
pn(x, t)ωt(x)dx (10)

+

∫
f(x)pn(x, t)

∂

∂t
ωt(x)dx (11)

where pn(x, t) corresponds to the orthonormal scaling of Pn(x, t).

We consider a constant measure over a bounded interval of length ∆. Our time-varying weight
function thus writes : ω(x, t) = I[t−∆,t]. Intuitively, it enforces accurate reconstruction of the
process f(t) on the time interval [t−∆, t] and disregards the more ancient history.

A constant measure over a bounded interval is reminiscent of the Legendre polynomials. Legendre
polynomials satisfy

12
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∫
Ln(x)Lm(x)

1

∆
I[−1,1]dx =

2

2n+ 1
δn=m

Using a straightforward change of variable, one can thus show that

∫
ln(x)lm(x)I[t−∆,t]dx = δn=m with ln(x, t) = (2n+ 1)

1
2Ln

(
2(x− t)

∆
+ 1

)
Furthermore, Legendre polynomials satisfy the following relation:

dLn(x)

dx
= (2n− 1)Ln−1(x) + (2n− 5)Ln−3(x) + ...

=

n∑
i=1,odd

(2(n− i) + 1)Ln−i(x)

We also have Ln(1) = 1 and Ln(−1) = (−1)n.

We can use these properties to compute the integrals in Equations 10 and 11.

∫
f(x)

∂

∂t
ln(x, t)ω(x, t)dx =

n∑
i=1,odd

(2(n− i) + 1)
1
2 (2n+ 1)

1
2 · −2

∆

∫
f(x)ln−i(x, t)ω(x, t)dx

=

n∑
i=1,odd

(2(n− i) + 1)
1
2 (2n+ 1)

1
2 · −2

∆
· cn−i(t)

∫
f(x)ln(x, t)

∂

∂t

1

∆
I[t−∆,t](x)dx =

1

∆
(f(t)ln(t, t)− f(t−∆)ln(t−∆, t))

=
1

∆
(f(t)(2n+ 1)

1
2 − f(t−∆)(2n+ 1)

1
2 (−1)n)

Remarkably, if we approximate f(t−∆) by its projection, f(t−∆) ≈
∑N

n=0 cn(t)ln(t−∆, t), the
equations above only depend linearly on cn(t) and the value of the process f(t). After simplification,
and writing c(t) ∈ RN the vector of all coefficients cn(t), this leads to the following ordinary
differential equation.

dc(t)

dt
= − 1

∆
Ac(t) +

1

∆
Bf(t) (12)

An,m = (2n+ 1)
1
2 (2m+ 1)

1
2

{
1 if m ≤ n
(−1)n−m if m ≤ n

Bn = (2n+ 1)
1
2

B RECONSTRUCTION ERROR OF PIECE-WISE CONTINUOUS FUNCTIONS

Again, we use the following weight function: ωt(x) = 1
∆ I[t−∆,t], corresponding to the measure

dµt(x) = ωt(x)dx that generates the Legendre sequence of polynomials P t
n. We define ptn as the

normalized version of the Legendre polynomials.

We want to bound || x<t − x̂<t ||2µt
.

13
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The legendre polynomials form a complete orthogonal basis for the space of integrable functions
with weight ω, L2

ω . This means that x<t(t) ∈ L2
ω can be written as:

x<t =

∞∑
k=1

⟨x<t, p
t
k⟩µt

ptk (13)

The reverse reconstruction is

x̂<t =

N∑
k=1

⟨x<t, p
t
k⟩µt

ptk (14)

We then have

|| x<t − x̂<t ||2µt
=||

∞∑
k=1

⟨x<t, p
t
k⟩µtp

t
k −

N∑
k=1

⟨x<t, p
t
k⟩µt

ptk ||2µt
(15)

=||
∞∑

k=N+1

⟨x<t, p
t
k⟩µt

ptk ||2µt
(16)

= ⟨
∞∑

k=N+1

⟨x<t, p
t
k⟩µt

ptk,

∞∑
k=N+1

⟨x<t, p
t
k⟩µt

ptk⟩µt
(17)

= ⟨
∞∑

k=N+1

ctkp
t
k,

∞∑
k=N+1

ctkp
t
k⟩µt (18)

=

∞∑
i=N+1

( ∞∑
j=N+1

⟨ctipti, ctjptj⟩
)

(19)

=

∞∑
i=N+1

⟨ctipti, ctipti⟩ (20)

=

∞∑
i=N+1

(cti)
2⟨pti, pti⟩ (21)

=

∞∑
i=N+1

(cti)
2 (22)

(23)

Our goal is thus to bound the series of the square of the projection coefficients. We first proceed by
evaluating the expression for the coefficients.
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cn(t) = ⟨x≤t, pn(t)⟩ (24)

=

∫ t

−∞
x(s)pn(t, s)ωt(s)ds (25)

=
1

∆

∫ t

t−∆

x(s)pn(t, s)ds (26)

=
1

∆

∫ t

t−∆

x(s)(2n+ 1)
1
2Pn

(
2(s− t)

∆
+ 1

)
ds (27)

=
(2n+ 1)

1
2

∆

∫ t

t−∆

x(s)Pn

(
2(s− t)

∆
+ 1

)
ds (28)

=
(2n+ 1)

1
2

2

∫ 1

−1

x

(
∆(y − 1)

2
+ t

)
Pn(y)dy (change of variable y =

2(s− t)
∆

+ 1)

(29)

Where we use the definition of the normalized Legendre polynomials : pn(x) = Pn(x)(2n+ 1)
1
2 .

Now, we let Σ = ∪K+1
i=1 {ai, bi} be the boundaries of the continuous intervals delimited by the irreg-

ular observations in y. That is, b0 is the first discontinuity (the time of the first irregular observation
in the rescaled time y, but occuring at ∆(b0−1)

2 + t in original time).

Because Legendre polynomials satisfy

Pn(s) =
1

2n+ 1

d

ds
(Pn+1(s)− Pn−1(s)) (30)

We can integrate by parts:

cn(t) =
(2n+ 1)

1
2

2

∫ 1

−1

x(
∆(y − 1)

2
+ t)Pn(y)dy (31)

=
(2n+ 1)

1
2

2

∫ 1

−1

x(
∆(y − 1)

2
+ t)(

1

2n+ 1

d

dy
(Pn+1(y)− Pn−1(y)))dy (32)

= − (2n+ 1)−
1
2

2

K+1∑
i=1

∫ bi

ai

x′(
∆(y − 1)

2
+ t)

∆

2
((Pn+1(y)− Pn−1(y)))dy (33)

+ (
(2n+ 1)−

1
2

2
x(

∆(y − 1)

2
+ t)((Pn+1(y)− Pn−1(y))))

∣∣∣1
−1

(34)

+

K∑
i=1

(
(2n+ 1)−

1
2

2
x(

∆(y − 1)

2
+ t)((Pn+1(y)− Pn−1(y))))

∣∣∣b+i
b−i

(35)

The second term above (Eq. 35) is trivially 0 since Legendre polynomials satisfy Pn+1(1) =
Pn−1(1) = 1 and Pn+1(−1) = Pn−1(−1) = (−1)n, so we have:

cn(t) = −
(2n+ 1)−

1
2

2

K+1∑
i=1

∫ bi

ai

x′(
∆(y − 1)

2
+ t)

∆

2
((Pn+1(y)− Pn−1(y)))dy (36)

+

K∑
i=1

(2n+ 1)−
1
2

2
x(

∆(y − 1)

2
+ t)(Pn+1(y)− Pn−1(y))

∣∣∣b+i
b−i

(37)
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We decompose the above expression and let

cn(t) = An(t) +Bn(t) (38)

with

An(t) = −
(2n+ 1)−

1
2

2

K+1∑
i=1

∫ bi

ai

x′(
∆(y − 1)

2
+ t)

∆

2
((Pn+1(y)− Pn−1(y)))dy (39)

Bn(t) =

K∑
i=1

(2n+ 1)−
1
2

2
x(

∆(y − 1)

2
+ t)(Pn+1(y)− Pn−1(y))

∣∣∣b+i
b−i

(40)

We then have,

c2n(t) ≤| An(t) |2 +2 | An(t) || Bn(t) | + | Bn(t) |2 (41)

We first bound | An(t) |2. Because we assume x(t) is L-lispchitz, we have

| An(t) | ≤
1

2(2n+ 1)
1
2

K+1∑
i=1

|
∫ bi

ai

∆

2
x′(

∆(y − 1)

2
+ t)((Pn+1(y)− Pn−1(y)))dy | (42)

=
L∆

4(2n+ 1)
1
2

K+1∑
i=1

|
∫ bi

ai

((Pn+1(y)− Pn−1(y)))dy | (43)

≤ ∆

4(2n+ 1)
1
2

K+1∑
i=1

√
2L2

√∫ bi

ai

(Pn+1(y)− Pn−1(y))2dy (Cauchy-Schwarz) (44)

≤ ∆

4(2n+ 1)
1
2

√
2L2

K+1∑
i=1

√∫ bi

ai

(Pn+1(y)− Pn−1(y))2dy (45)

≤ ∆

4(2n+ 1)
1
2

√
2L2

K+1∑
i=1

√∫ 1

−1

(Pn+1(y)− Pn−1(y))2dy (46)

=
∆

4(2n+ 1)
1
2

√
2L2(K + 1)

√∫ 1

−1

P 2
n+1(y) + P 2

n−1(y)dy (47)

=
∆

4(2n+ 1)
1
2

√
2L2(K + 1)

√
2

2n+ 3
+

2

2n− 1
(48)

=
∆

2(2n+ 1)
1
2

L(K + 1)

√
1

2n+ 3
+

1

2n− 1
(49)

We then bound | Bn(t) |.
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| Bn(t) | =
K∑
i=1

(2n+ 1)−
1
2

2
| x(∆(y − 1)

2
+ t)(Pn+1(y)− Pn−1(y))

∣∣∣b+i
b−i

|

=

K∑
i=1

(2n+ 1)−
1
2

2
| x(∆(y − 1)

2
+ t)

∣∣∣b+i
b−i

| · | (Pn+1(bi)− Pn−1(bi)) |

≤
K∑
i=1

2 · (2n+ 1)−
1
2

2
| x(∆(y − 1)

2
+ t)

∣∣∣b+i
b−i

| · (| Pn | is bounded by 1)

=
1

(2n+ 1)
1
2

K∑
i=1

∆i

where we set ∆i as the absolute value of the gaps at the observation points.

A tighter bound can be achieved by assuming that observations are confined in the [t − 0.95∆, t −
0.05∆] region (Lohöfer, 1998). In this case, ∀y ∈ [−0.9, 0.9], we have

| Pn(y) | <
√

2

π(n+ 1
2 )

1

(1− x2) 1
4

<=

√
2

π(n+ 1
2 )

1

(0.99)
1
4

So we have in this case,

| Bn(t) | ≤
1

(2n+ 1)
1
2

√
2

π(n+ 1
2 )

1

(0.99)
1
4

K∑
i=1

∆i

<
1

2(2n+ 1)
1
2

1√
π(n+ 1

2 )

K∑
i=1

∆i

Together, we have

∞∑
n=N

c2n(t) ≤
∞∑

n=N

| An(t) |2 +2 | An(t) | · | Bn(t) | + | Bn(t) |2

=

∞∑
n=N

| An(t) |2 +

∞∑
n=N

2 | An(t) | · | Bn(t) | +
∞∑

n=N

| Bn(t) |2

The first series gives

∞∑
n=N

| An(t) |2 ≤
∞∑

n=N

∆2

(2n+ 1)
L2(K + 1)2(

1

2n+ 3
+

1

2n− 1
)

= ∆2L2(K + 1)2
∞∑

n=N

1

(2n+ 1)
(

1

2n+ 3
+

1

2n− 1
)

= ∆2L2(K + 1)2
1

2(1 + 2N)

1

4N − 2
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The second series gives

∞∑
n=N

2 | An(t) | · | Bn(t) | ≤ 2

∞∑
n=N

∆

(2n+ 1)
1
2

L(K + 1)

√
1

2n+ 3
+

1

2n− 1
· 1

(2n+ 1)
1
2

K∑
i=1

∆i

= 2∆ · L(K + 1)

K∑
i=1

∆i

∞∑
n=N

1

(2n+ 1)

√
1

2n+ 3
+

1

2n− 1

≤ 2∆ · L(K + 1)

K∑
i=1

∆i

∞∑
n=N

1

(2n− 1)

√
2

2n− 1

= 2
√
2∆ · L(K + 1)

K∑
i=1

∆i

∞∑
n=N

1

(2n− 1)
3
2

= 2
√
2∆ · L(K + 1)(

K∑
i=1

∆i)ξ(
3

2
, N − 1)

Where ξ(s, a) is the Hurwitz-Zeta function.

The third series gives

∞∑
n=N

| Bn(t) |2 ≤
∞∑

n=N

1

4(2n+ 1)

1

π(n+ 1
2 )

(

K∑
i=1

∆i)
2

=
1

4π
(

K∑
i=1

∆i)
2

∞∑
n=N

1

(2n+ 1)(n+ 1
2 )

<
1

4π
(

K∑
i=1
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2

∞∑
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1

(2n)(n)

=
1

4π
(

K∑
i=1

∆i)
2 1

2
ξ(2, N)

Plugging everything together, we then have

∞∑
n=N

c2n(t) ≤ ∆2L2(K + 1)2
1

2(1 + 2N)

1

4N − 2

+ 2
√
2∆L(K + 1)(

K∑
i=1

∆i)ξ(
3

2
, N − 1)

+
1

4π
(

K∑
i=1

∆i)
2 1

2
ξ(2, N)

≤ C0
∆2L2(K + 1)2

N(2N − 1)
+ C1∆L(K + 1)S∆ξ(

3

2
, N) + C2S

2
∆ξ(

3

2
, N)

as stated in Result 4.1.

C EXPERIMENTS WITH MORE IRREGULAR RATES

In Table 4, we present additional results for the Lorenz63 dataset. In Table 5, for the Lorenz96
dataset and in Table 6 for the Synthetic dataset. We compare against the same baselines and also
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provide the comparison against different interpolation schemes (as described in Section ??). We
observe a similar trend for all irregular rates. Namely, PolyODEprovides better downstream classi-
fication performance as well as better reconstruction.

Table 4: Performance on Lorenz Attractor

Model Downstream Classification↑ Reconstruction↓
Irregular Rate 0.3 0.4 0.5 0.3 0.4 0.5

GRU-ODE 0.825± 0.031 0.834± 0.025 0.818± 0.032 0.752± 0.057 0.690± 0.097 0.683± 0.035
ODE-RNN 0.813± 0.013 0.860± 0.019 0.885± 0.011 0.674± 0.049 0.566± 0.077 0.633± 0.050
Neural-RDE 0.604± 0.046 0.681± 0.095 0.815± 0.019 0.989± 0.074 1.437± 0.933 1.030± 0.065

HiPPO-obs 0.837± 0.034 0.886± 0.025 0.903± 0.025 0.511± 0.043 0.368± 0.011 0.284± 0.052
HiPPO-RNN 0.804± 0.023 0.822± 0.025 0.888± 0.035 0.784± 0.122 0.656± 0.277 0.356± 0.018
S4 0.911± 0.005 0.921± 0.009 0.936± 0.009 0.428± 0.040 0.371± 0.025 0.321± 0.040
Extended-S4 0.909± 0.015 0.921± 0.009 0.933± 0.010 0.439± 0.026 0.374± 0.015 0.329± 0.033

Hermite Interpolation 0.976± 0.000 0.984± 0.000 0.9874± 0.000 0.135± 0.007 0.083± 0.008 0.036± 0.004
Linear Interpolation 0.744± 0.016 0.750± 0.019 0.774± 0.031 0.787± 0.066 0.787± 0.038 0.777± 0.036
Constant Interpolation 0.664± 0.033 0.630± 0.019 0.724± 0.122 0.785± 0.074 0.923± 0.128 0.612± 0.154

PolyODE 0.992± 0.000 0.990± 0.000 0.994± 0.000 0.034± 0.008 0.023± 0.006 0.011± 0.002

Table 5: Performance on Lorenz96 Attractor

Model Classification↑ Regression↓
Irregular Rate 0.3 0.4 0.5 0.3 0.4 0.5

GRU-ODE 0.925± 0.004 0.907± 0.030 0.925± 0.008 0.346± 0.072 0.270± 0.031 0.261± 0.018
ODE-RNN 0.954± 0.012 0.947± 0.007 0.927± 0.015 0.214± 0.030 0.225± 0.016 0.192± 0.022
Neural-RDE 0.606± 0.112 0.799± 0.031 0.865± 0.042 1.747± 0.472 1.853± 1.642 1.483± 0.904

HiPPO-obs 0.949± 0.007 0.954± 0.006 0.960± 0.006 0.247± 0.005 0.149± 0.037 0.112± 0.002
HiPPO-RNN 0.944± 0.008 0.958± 0.007 0.976± 0.010 0.198± 0.014 0.160± 0.022 0.107± 0.008
S4 0.948± 0.016 0.956± 0.015 0.963± 0.006 0.171± 0.008 0.174± 0.019 0.161± 0.014
ExtendedS4 0.937± 0.018 0.945± 0.014 0.948± 0.013 0.208± 0.066 0.166± 0.047 0.140± 0.002

Hermite Interpolation 0.983± 0.004 0.988± 0.001 0.992± 0.005 0.093± 0.011 0.036± 0.008 0.020± 0.002
Linear Interpolation 0.857± 0.026 0.886± 0.032 0.886± 0.020 0.388± 0.032 0.369± 0.008 0.351± 0.051
Constant Interpolation 0.862± 0.017 0.905± 0.015 0.880± 0.030 0.393± 0.017 0.371± 0.068 0.266± 0.040

PolyODE 0.984± 0.002 0.994± 0.002 0.992± 0.002 0.038± 0.008 0.021± 0.003 0.011± 0.002

Table 6: Performance on SimpleTraj

Model Classification↑ Regression↓
Irregular Rate 0.7 0.8 0.9 0.7 0.8 0.9

GRU-ODE 0.968± 0.004 0.964± 0.008 0.976± 0.013 0.057± 0.010 0.044± 0.007 0.029± 0.011
ODE-RNN 0.938± 0.034 0.950± 0.003 0.967± 0.015 0.080± 0.036 0.049± 0.007 0.031± 0.001
Neural-RDE 0.773± 0.111 0.896± 0.016 0.949± 0.041 0.167± 0.031 0.132± 0.024 0.097± 0.035

HiPPO-obs 0.758± 0.023 0.805± 0.010 0.889± 0.006 0.197± 0.010 0.161± 0.007 0.098± 0.006
HiPPO-RNN 0.742± 0.008 0.789± 0.016 0.902± 0.010 0.209± 0.018 0.165± 0.018 0.090± 0.024
S4 0.994± 0.003 0.998± 0.001 0.999± 0.001 0.032± 0.006 0.019± 0.003 0.015± 0.005
S4 extended 0.995± 0.002 0.993± 0.004 0.999± 0.001 0.017± 0.004 0.012± 0.001 0.008± 0.001

Hermite Interpolation 0.971± 0.012 0.972± 0.011 0.980± 0.011 0.055± 0.016 0.048± 0.009 0.024± 0.010
Linear Interpolation 0.969± 0.008 0.973± 0.010 0.986± 0.010 0.028± 0.005 0.013± 0.001 0.009± 0.002
Constant Interpolation 0.969± 0.005 0.980± 0.005 0.992± 0.004 0.027± 0.003 0.013± 0.002 0.006± 0.002

PolyODE 0.994± 0.003 0.998± 0.001 1.000± 0.000 0.012± 0.002 0.005± 0.003 0.002± 0.001

D OTHER ILLUSTRATIONS

We complement the analysis of the reconstruction performance of PolyODEon the MIMIC-III
dataset with the trajectories of other vitals. In Figure 5, we plot the true trajectories and recon-
struction of the heart rate, mean blood pressure and diastolic blood pressure. In Figure 6, we plot the
true trajectories and reconstruction of the oxygen saturation, respiratory rate and blood glucose. In
Figure 7, we plot the true trajectories and reconstruction of the blood urea nitrogen, the white blood
cells count and body temperature. In Figure 8, we plot the true trajectories and reconstruction of the
creatinine levels.
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heart rate
mean blood pressure
diastolic blood pressure

Figure 5: PolyODE: Reverse reconstruction of vitals over the 24 hours of ICU of a randomly se-
lected patient from the test. We plot the true value (dots) and reconstructions (solid line) for heart
rate, mean blood pressure and diastolic blood pressure. Reverse reconstruction is done from the last
time observation.

oxygen saturation
respiratory rate
glucose

Figure 6: PolyODE: Reverse prediction of vitals over the 24 hours of ICU of a randomly selected
patient from the test. We plot the true value (dots) and reconstructions (solid line) for oxygen
saturation, respiratory rate and blood glucose. Reverse reconstruction is done from the last time
observation.

blood urea nitrogen
white blood cell count
temperature

Figure 7: PolyODE: Reverse reconstructioon of vitals over the 24 hours of ICU of a randomly
selected patient from the test. We plot the true value (dots) and reconstructions (solid line) for blood
urea nitrogen, white blood cell count and body temperature. Reverse reconstruction is done from
the last time observation.
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creatinine

Figure 8: PolyODE: Reverse reconstruction of vitals over the 24 hours of ICU of a randomly se-
lected patient from the test. We plot the true value (dots) and reconstructions (solid line) for creati-
nine. Reverse reconstruction is done from the last time observation.

E DETAILS ON THE BACKWARD RECONSTRUCTION PROCESS

Reconstructions in PolyODE are fixed operators, as suggested by Equation 3. The reconstruction is
obtained by using the orthogonal polynomial coefficients at a particular step. This procedure ensures
accurate backward prediction performance, as supported by Result 4.1.

In contrast, classical NODE reconstructions (such as GRU-ODE or ODE-RNN, and depicted in
Figure 1) are computed using backward integration of the hidden process. That is, conditioned on
the hidden at time , one can reconstruct the time series at time using :

x̂(t′) = g(h(t′)) (50)

h(t′) = h(t) +

∫ t′

t

Φ(h(s))ds (51)

where ϕ is the neural network characterizing the NODE.

We note that this reconstruction exists and is unique if ϕ is continuous in t and Lipschitz continuous
in h, according to the Picard-Lindelöf theorem Nagle et al. (2011). As neural networks parametrized
with continuous activation functions (e.g. hyperbolic tangent or sigmoid) are Lipschitz continuous,
we have that the above reconstruction exists and is unique for these activation functions.

F UNCERTAINTY EXPERIMENT DETAILS

In this experiment, we use a similar system of ordinary differential equations but extend it with other
coefficient processes to model the uncertainties over time.



dc1(t)
dt = Aµc

1(t) +Bµg1(h(t))
...

dcd(t)
dt = Aµc

d(t) +Bµgd(h(t))
dc1,σ(t)

dt = Aµc
1,σ(t) +Bµg

σ
1 (h(t))

...
dcd,σ(t)

dt = Aµc
d,σ(t) +Bµg

σ
d (h(t))

dh(t)
dt = ϕθ(h(t))

(52)
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where ci,σ are the coefficients used for the uncertainty modeling. We also introduce another neural
network gσ(·) that produces the standard deviation of observations. We then model the output
distribution of the predictions as a normal distribution with mean µ̂x(t) = g(h(t)) and standard
deviation σ̂x(t) = gσ(h(t)). We can then reconstruct the past means and uncertainty estimates
using

µ̂x<t,j
=

N∑
n=0

cjn(t) · P t
n ·

1

αt
n

(53)

σ̂x<t,j =

N∑
n=0

cj,σn (t) · P t
n ·

1

αt
n

(54)

In the top panel of Figure 4, we plot the tuples (σ̂x<tT
, ∥x<tT − µ̂x<tT

∥2) for 128 time series in the
test set, for all observations before time t = tT and reconstructing from t = tT . In the bottom panel,
we plot the tuples (σ̂x(tT ), ∥x<t− µ̂x<t∥2) for the same time series and observations. σ̂x(tT ) is the
predicted uncertainty at the last time step while σ̂x<tT

is the reconstruction of the uncertainties over
the past trajectories.

G DATASETS DETAILS

G.1 SYNTHETIC UNIVARIATE

We validate our approach using a univariate synthetic time series generated by the equations:

x(t) = sin(x+ ϕ) ∗ cos(3 ∗ (x+ ϕ)) with ϕ ∼ N (0, 2π)

We simulate 1000 realizations from this process from t = 0 to t = 10 and sample from it at
irregularly spaced time points using a Poisson point process with rate λ[ 1s ]. For each generated
irregularly sampled time series x, we create a binary label y = I[x(5) > 0.5].

G.2 LORENZ63

We simulate 1000 realizations from the Lorenz system for 10000 time steps with a time interval of
0.01 seconds. We then rescale the time axis to [0, 10] seconds. We sample irregularly spaced time
points using a Poisson point process with rate λ[ 1s ]. For each generated irregularly sampled time
series x, we create a binary label y = I[x3(6) > 0.]. We select only the two first dimensions of the
system (x0, x1).

G.3 LORENZ96

We simulate 1000 realizations from the Lorenz96 system for 10000 time steps with a time interval
of 0.01 seconds. We then rescale the time axis to [0, 10] seconds. We sample irregularly spaced time
points using a Poisson point process with rate λ[ 1s ]. For each generated irregularly sampled time
series x, we create a binary label y = I[x5(6) > 0.].We select only the four first dimensions of the
system (x0, ..., x3).

G.4 MIMIC-III

We use a pre-processed version of the MIMIC-III dataset (Johnson et al., 2016; Wang et al., 2020).
This consists of the first 24 hours of follow-up for ICU patients. We use the following longitudinal
variables: heart rate, mean and diastolic blood pressure, oxygen saturation, respiratory rate, glucose,
blood urea nitrogen, white blood cell count, temperature and creatinine. For each time series, the
label y is the in-hospital mortality.
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H IMPLEMENTATION DETAILS

In table 7, we display the hyper-parameters used to train our model in the experiments. For the
downstream classification experiments, we use a two layers multi-layer perceptron with hidden di-
mension 32 and a binary cross entropy loss. We train our model using Adam optimizer and do not
use dropout or weight decay but use early stopping. We train our model on the train set and select
the model weights at epoch with lowest validation loss. We then evaluate this model on a held out
test set. For uncertainty estimation of the results, we use a 3-fold cross validation approach.

Hyperparameter Description Lorenz63 Lorenz96 Synthetic MIMIC-III

N Number of coefficients 32 32 32 18
dh Hidden dimension 32 32 32 18
B batch size 128 128 128 256
lr learning rate 0.001 0.001 0.001 0.001
δt Integration step size 0.05 0.05 0.5 0.05
Nobs Number of observations per time series if λ = 1.0 100 100 10 /
∆ Width of the weight function 5 5 5 10
tT Maximum time value 10 10 10 20

Table 7: Hyper-parameters used for training PolyODE in the experiments.

H.1 S4 HYPER-PARAMETERS SEARCH

For the results reported for the S4 baseline we performed an hyper-parameter search on the number
of state-dimensions and model-dimensions.

We used [64, 128, 256, 512] for the model dimension and [64, 128] for the state dimension. We
reported the results for the best performing set of hyper-parameters on the validation set.

I NUMERICAL INTEGRATION DETAILS

I.1 OVERVIEW OF NUMERICAL SOLVERS

Training and inference of PolyODE requires numerically integrating the underlying neural ODE.
Different choices of numerical integrators are possible. For completeness, we give a brief overview
of three numerical integration methods below: the Euler method, the Dormand-Prince method
(Dopri-5) and the Adams-Moulton method.

All methods aim at solving an initial value problem such as

dy(t)

dt
= f(t, y(t)) s.t. y(t0) = y0. (55)

That is, based on y0 and f , one wishes to compute values of y at an arbitrary times t∗.

Euler method The Euler method divides the interval between t0 and t∗ in smaller intervals of
fixed size h : [t0, th], [th, t2h], ..., [tt∗−h, tt∗ ]

One then uses the following recurrence equation to evaluate the value of y until t = t∗:

yn+1 = yn + hf(tn, yn).

Dormand-Prince method The Dormand-Prince (Dopri-5) method, also known as the adaptive
Runge-Kutta 4(5) method allows for automatically choosing the step size of the integration step by
effectively jointly running two numerical solvers.

Each of these solvers is a Runge-Kutta solver (one of order 4 and the other of order 5).

For a step size h, a Runge-Kutta integrator of order n uses the following recurrence equation:
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yn+1 = yn + hf(tn, yn).

with

k1 = f(tn, yn), (56)
k2 = f(tn + c2h, yn + h(a21k1)), (57)
ks = f(tn + csh, yn + h(as1k1 + as2k2 + ...+ as,s−1ks−1 (58)

The error of the integrator is then computed by comparing the results of both solvers. If the error is
larger than a pre-specified threshold, the integration step is reduced until an acceptable precision is
obtained.

Adams-Moulton Adams-Moulton methods are implicit methods. They differ from the Euler and
Dopri-5 methods which are explicit. Explicit methods can compute the value of y explicitly using a
recurrence equation (i.e. only using past value of y). In contrast implicit methods use future values
of the target function y in the integration step, which requires solving an equation involving the state
of the system.

Adams-Moulton methods exist for different orders, depending on the number of intermediate steps.
We list here orders 0,1,2 and 4.

yn = yn−1 + hf(tn, yn) (59)

yn+1 = yn +
1

2
h(f(tn+1, yn+1) + f(tn, yn)) (60)

yn+2 = yn+1 + h(
5

12
f(tn+2, yn+2) +

8

12
f(tn+1, yn+1)−

1

12
(ftn, yn)) (61)

yn+4 = yn+3 + h(
251

270
f(tn+4, yn+4) +

646

720
f(tn+3, yn+3)−

264

720
(ftn+2, yn+2) (62)

+
106

720
(ftn+1, yn+1)−

19

720
(ftn, yn)) (63)

In our experiments, we used the Adams-Moulton method of order 4.

I.2 COMPARISON OF THE DIFFERENT NUMERICAL INTEGRATORS

We compare the performance of each integrator in terms of the compute time and the forecasting
validation loss. In Table 8 we report the time duration required to train the PolyODE for 250
epochs on the Lorenz dataset as well as the lowest forecasting MSE achieved during training. We
used a step size of 0.05 for the Euler and the Adams-Moulton method. A graphical comparison
of the computation times is also provided in Figure 9. We observe that the Euler method achieves
very poor performance, suggesting divergence in the numerical integration. The Dopri-5 achieves
similar performance as the Adams-Moulton but requires much more time. This significantly higher
computation time is attributed to a poorly managed integration error, which requires a constant
adjustment of the integration step. In contrast, we see that the implicit Adams-Moulton method
provides both short training times and good forecasting performance. We attribute this phenomenon
to the stiffness ratio of the matrix Aµ, as detailed below.

I.3 STIFFNESS RATIO OF THE MATRIX Aµ

Part of the neural ODE system of PolyODE is linear homogeneous. In that system, the spectral
characterization of the matrix Aµ is crucial in understanding the stability properties of that ODE.
Indeed, the characteristics of the matrix Aµ point to a stiff behavior of the system, which hampers
the stability of the explicit numerical integrators (such as Dopri-5 or Euler).
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Solver Computation Time [s] Validation Loss [MSE]

Euler 816± 16 1519± 633
Dopri-5 23286± 2419 0.093± 0.012

Adams-Moulton 1911± 92 0.099± 0.016

Table 8: Numerical comparison of different solvers in terms of computation time and validation loss
achieved. The computation time corresponds to the time required to train PolyODE for 250 epochs
on the Lorenz dataset. The validation loss is the lowest mean-square error on forecasting achieved
during training.

Figure 9: Graphical comparison of the different numerical solvers with respect to computation time.
The computation time corresponds to the time required to train PolyODE for 250 epochs on the
Lorenz dataset.

In particular, all real parts of the eigenvalues of Aµ are negative. What is more, the stiffness ratio
grows with the number of projection coefficients N . The stiffness ratio is defined as the ratio be-
tween the magnitude of the eigenvalue with the largest real part and the magnitude of the eigenvalue
with the smallest real part. In Figure 10, we show the magnitude of the real parts of the eigenvalues
for 3 different N . In Figure 11, we show the stiffness ratio of Aµ in function of the number of
projection coefficients. We observe a larger stiffness ratio as the number of coefficients grows large,
therefore pointing to more numerical instability with explicit methods.
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Figure 10: Magnitude of the real parts of the eigenvalues of the matrix Aµ in ascending order for
different values of N .

Figure 11: Evolution of the stiffness ratio, defined as the ratio between the largest and smallest
magnitude of the real part of the eigenvalues of the matrix Aµ for different values of N .
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