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ABSTRACT

This paper examines the properties of dynamic system reconstruction using time
delay embedding and multilinear (tensor) algebra. The tensor dynamical system
model for time series prevents the loss of higher-order information. The key idea
is to use the tensor as a multilinear map from set phase spaces to one subspace.
Due to the simplicity of the linear approach and linear dependencies between
components, the results show that the method in several cases allows for a bet-
ter reconstruction of the original attractor from an incomplete set of variables. A
computational experiment was carried out on Lorenz attractor and measurements
of the accelerometer of a mobile device with three classes of human movements.

1 INTRODUCTION

The role of multilinear algebra has been explored for the reconstruction of linear and nonlinear
dynamics. For example, the segmentation problem for human activity recognition of a quasiperiodic
time series with the study of the dynamic is solved in (Motrenko & Strijov, 2015; Ignatov & Strijov,
2016; Grabovoy & Strijov, 2020). This paper studies the dimensionality reduction method for time
series with multilinear (tensor) algebra approaches (Kruppa, 2017; Chen et al., 2019; Chen, 2022).
The resulting tensor dynamic system helps in various applications. The key idea is to use the tensor
as a multilinear map from set phase spaces to one subspace. Usual separated methods and graph
models cause a loss of higher-order information (Wolf et al., 2016) due to separate use of each
multivariate time series.

In this (Kliková & Raidl, 2011) paper, the delay method is used to construct a phase space. The
dimension of the phase space is the length of a vector with previous values in time. The resulting
vector is a point in the phase space. As the dimension of the phase space increases, the distances
between the points of the trajectory tend to the constant value. The proper dimension is significantly
less than the dimension of the original phase space shown in (Motrenko & Strijov, 2015; Grabovoy
& Strijov, 2020; Usmanova et al., 2020). That makes distances uninformative and unstable due to
the curse of dimensionality (Powell, 2007). Also, it assumes that a more stable and robust model is
possible in the subspace than in the original one. To prevents the curse of dimensionality various
method is used. The most common method for such analysis is the principal component method
(PCA). This is a linear method. To extend it, it is proposed to use the tensor method for characteriz-
ing the state of the multidimensional data.

The key contributions of the paper: the application of the previously proposed dynamic system
model has been expanded in addition to the time delay embedding, and the computational exper-
iment explores walking and squats (Ignatov & Strijov, 2016). The experiment was performed on
data obtained from a mobile device’s accelerometer (Malekzadeh et al., 2019). The main conclu-
sions about the convergence and theoretical validity of the approach are the same as the conclusions
in (Chen, 2022).

The paper is organized into three sections. In section 2, multilinear dynamical systems with time
delay embedding are introduced. If the dependencies between variables are linear, the multilinear
map method can effectively reconstruct an attractor of the dynamical system. In section 2.2, a tensor
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preliminaries review includes notations and various tensor products. In section 3 conclusion results
with numerical examples are presented. Section 4 draws some conclusions and plans for future
work.

2 MULTILINEAR DYNAMICAL SYSTEM

2.1 TIME DELAY EMBEDDING

First described in (Packard et al., 1980), time delay embedding allows the augmentation of a
scalar time series st into a higher dimension through the construction of delay vector st given as
st = [st, st−τ , ..., st−(n−1)τ ], where the embedding parameters τ is delay lag and n is embedding
dimension. For this article let τ is always equal to 1. According to Taken’s theorem, only one vari-
able with time delays reconstructs a dynamical system. This augmentation with previous measures
is also called the trajectory matrix. Thus trajectory matrix S of a time series s is defined as

S =


s1 . . . sn
s2 . . . sn+1

...
. . .

...
sk . . . sN


T

= [s1, s2, . . . , sk] , k = N − n+ 1, (1)

where n is the width of the window, N is the lengths of the time seriess.

The original phase space from time delay embedding has a high dimension. Thus the principal
component analysis (PCA) is often used to reduce the dimensionality of the original phase space, by
transforming an initial set of variables into a smaller one that is also called a subspace.

X = W TS = [x1,x2, . . . ,xk] , xi ∈ Rp,

where W is the transformation matrix of the PCA algorithm. The number of selected components
is p, corresponding to the largest eigenvalues.

Figure 1: Segment of time series and phase trajectory with PCA in 3D.

Low-dimensional representation in phase space allows to use of more robust and simpler models
and applications.

2.2 TENSOR PRELIMINARIES

Tensors are multidimensional generalizations of matrices (a multidimensional array). The number
of dimensions is the order of a tensor, and each dimension is called a mode. For example, a vector
v ∈ Rn has one mode, row, a matrix M ∈ Rn×n has two modes, rows and columns, a N -th order
tensor A ∈ Rn×n×···×n has N modes.
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There are two tensors given in the form A ∈ RI1×...×Id B ∈ RJ1×...×JD , then A ◦ B ∈
RI1×...×Id×J1×...×JD is called the outer product with elements:

(A ◦ B)i1,...,id,j1,...,jD = ai1,...,idbj1,...,jD .

The n-mode multiplication of tensor A ∈ RI1×···×IN and matrix M ∈ RJ×In is defined by C ∈
RI1×···×In−1×J×In+1×···×IN with the elements:

C = A ×2
n M = A ×n M , ci1,...,in−1,j,in+1,...,iN =

In∑
in=1

ai1,...,in,...,iNmj,in . (2)

This n-mode multiplication G and matrices M (n) can be extended to Tucker multiplication as

C =
[
G;M (1), . . . ,M (N)

]
= G ×1 M

(1) ×2 M
(2) ×3 · · · ×N M (N).

In case of tensor A ∈ RI1×···×IN and vector v ∈ RIn n-mode multiplication gives C ∈
RI1×···×In−1×In+1×···×IN :

C = A ×1
n v = A×̄nv, ci1,...,in−1,in+1,...,iN =

In∑
in=1

ai1,...,in,...,iN vin (3)

Formally, mode products for a matrix (2) and a vector (3) are the same operations, but in this paper,
for simplicity, only one notation (2) is used for both operations. It is implied that in the case of a
matrix the second mode is used, in the case of a vector only one first mode of the vector is used.

2.3 MULTILINEAR DYNAMICAL SYSTEM FOR MULTIVARIATE TIME SERIES

This paper discusses the topic of a dynamic system, which is given by

vt+1 = A ×1 vt ×2 vt ×3 ...×k−1 vt, (4)

where A ∈ Rn×n×...×n is a dynamic tensor (multilinear map), and v ∈ Rn is the state variable.
It is assumed that the tensor A has multilinear properties in the sense of the definition of algebraic
multilinearity.

Vectors of the state variables are the values of some measured quantities at time t. It is assumed that
these quantities completely describe the state of the dynamic system. For example, in the case of a
mathematical pendulum, these quantities are velocity and acceleration. With certain restrictions, it
is possible to completely reconstruct dynamically using only these variables.

This paper proposes to construct a map into a low dimensional subspace, i.e. dimensionality reduc-
tion, instead of reconstructing the dynamics itself, as some evolution rule of a system. The evolution
rule is a function that describes what future states follow from the current state of the dynamical
system.

This map is used in further models for anomaly detection, classification, and signal phase extraction
(in the case of periodic time series). Thus, the equation is modified as follows:

xt = A ×1 st ×2 st ×3 ...×k−1 st, (5)

where st = [st, st−1, ..., st−n] is a vector from time series s with n delays, xt ∈ Rp is a vector with
p ≪ n that represent system in its phase space.

In the case of (5) only univariate time series is used. It can be extended to the case of multivariate
time series. In general, finding any solution to this problem for multivariate time series is challenging
due to the nonlinear nature of the signal. However, in the case of linear dependencies between
measurements it can be simply use in the model simultaneously.

Without loss of generality, let multivariate time series come from a triaxial accelerometer. Thus,
there are three axes. Let sx, sy, sz be the time series of acceleration along each of the axes. A signal
from each axis separately restores the attractor of the dynamic system according to Taken’s theorem
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using time delay embedding as (1). Also, there are linear maps between each variable using rotation
and stretching (i.e. affine transformations)

Sx = ITSx, Sx = W T
y Sy, Sx = W T

z Sz, (6)

where Sx,Sy,Sz are trajectory matrices in initial phase space, W T
y ,W T

z are the transformation
matrices, I is an identity matrix. Thus, the multilinear model is modified as follows:

xt = A ×1 (I
Tsx t)×2 (W

T
y sy t)×3 (W

T
z sz t) = Â ×1 sx t ×2 sy t ×3 sz t, (7)

where Â = A ×1 I
T ×2 W

T
y ×3 W

T
z is modified dynamic tensor, sx t, sy t, sz t are state variable

vectors from each axis at time t.

The tensor Â allows to select not only the main components, as in case of PCA for univariate time
series, but filter them according to multilinear dependencies with other time series.

3 EXPERIMENT

3.1 THE LORENZ SYSTEM

This example uses the Lorenz attractor to analyse reconstructed phase spaces. It is defined by a
system of differential equations of the form

dx

dt
= σ(y − x),

dy

dt
= x(r − z) + y,

dz

dt
= xy − bz

(8)

with the following parameter: σ = 10, r = 28, b = 8/3. Then the phase trajectory has the form
shown in Figure 2. It is also shown reconstruction scheme and various state spaces. For comparison,
an attractor is shown, that is obtained by the time delay embedding method.

Figure 2: Schematic of the embedding process and the relationship between its reconstruction
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Figure 3: Phase trajectory of Lorenz linear system reconstructed with PCA (left) and tensor dynam-
ical system (TDS) approach (right)

As shown in Figure(3), additional information in the multilinear model reconstructs the shape of the
phase trajectory similar to PCA. Both methods qualitatively restore the petals, maintaining repeating
dynamics in two different modes of the original attractor. This result is obtained due to the noise-free
time series and a sufficient length of history in each of the methods.

3.2 HUMAN MOVEMENT DATASET

The purpose of the computational experiment is to analyze the quality of attractor reconstruction
and compare it with the PCA as a basic linear approach to real data. The experiment was performed
on data obtained from the accelerometer of a mobile device (Malekzadeh et al., 2019).

This dataset includes time-series data generated by accelerometer and gyroscope sensors. It is col-
lected with an iPhone 6s kept in the participant’s front pocket using SensingKit. All data collected
in 50Hz sample rate. A total of 24 participants in a various of gender, age, weight, and height per-
formed six activities in the same environment and conditions: downstairs, upstairs, walking, jogging,
sitting, and standing.

Figure 4: Time series sample (left), reconstruct phase space with PCA (center), TDS (right) of
activity jogging

As shown in Figure(4), a complex phase trajectory is reconstruct with PCA. In particular, there
are several intersections. Thus, different states of the system correspond to the same region of the
phase space. Using a multilinear model allows to partially solve the intersection problem from one
intersection to nearly zero. In comparison with Figure(5), it is clear that instead of two intersections,
more complex attractor is reconstruct. This behavior occurs due to non-linear dependencies in the
data between x, y, z axis of accelerometer.

In another case, in Figure(6) it is shown that the application of the tensor method allows for a better
reconstruction of the structure. Thus, the appearance of a periodic component with similar behavior
is clearly visible. It also allows to reduce the number of intersections to one.
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Figure 5: Time series sample (left), reconstruct phase space with PCA (center), TDS (right) of
activity walk

Figure 6: Time series sample (left), reconstruct phase space with PCA (center), TDS (right) of
activity upstairs

Thus, on several real time series it was shown that in the case of a linear dependence, the proposed
method allows to obtain more interpretable results and reduces the number of intersections. In the
case of clearly nonlinear dependences, the result becomes complex.

4 CONCLUSION

This paper solves the problem of dimensionality reduction for the phase reconstruction of multivari-
ate time series. The result of the work is a generalization tensor dynamical system in the case of
multivariate time series. This article develops the work which investigates a tensor dynamic system
with a univariate time series. Proposed method retains the required properties and reproduces the
type of the original attractor with a high accuracy in linear case.

A computational experiment was performed on the Lorenz attractor and accelerometer data of hu-
man motion. Classical linear approaches and the proposed method were compared.

There are three main directions for future work. The first is to take into account nonlinear rela-
tionships through, for example, autoencoders and nonlinear activation functions. The second is to
increase computational efficiency with a more complex approach which will use not all available
components, but those with the highest correlation in the multivariate time series. The third is to
optimize the construction of the tensor representation due to the exponential growth of the number
of parameters in the case of a larger number of time series. This optimization will be important in
analyzing such higher-order dynamical systems for various applications.
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