
S1 Organization of the Supplementary Material

We provide the pseudocode for the WSGM algorithm in Appendix S2. Appendix S3 contains an
introduction to wavelet transforms, and their whitening properties are presented in Appendix S4. The
proofs of Section 2 and Section 3 are gathered Appendix S5 and Appendix S6 respectively. Details
about the Gaussian model and the φ4 model are given in Appendix S7 and Appendix S8 respectively.
Finally, experimental details and additional experiments are described in Appendix S9.

S2 WSGM Algorithm

In Algorithm 1, we provide the pseudocode for WSGM. Notice that the training of score models at
each scale can be done in parallel, while the sampling is done sequentially one scale after the next.

Algorithm 1 Wavelet Score-based Generative Model

Require: J , Niter, N , T ,{θ̄j,0, θJ,0}
J
j=0, {xm

0 }Mm=1

1: /// WAVELET TRANSFORM ///
2: for j ∈ {1, . . . , J} do
3: for m ∈ {1, . . . ,M} do
4: x

m
j = γ

−1
j Gx

m
j−1, x̄m

j = γ
−1
j Ḡx

m
j−1 ▷ Wavelet transform of the dataset

5: end for
6: end for
7: /// TRAINING ///
8: Train score network sθ⋆J at scale J with dataset {xm

J }Mm=0 ▷ Unconditional SGM training
9: for j ∈ {J, . . . , 1} do ▷ Can be run in parallel

10: for n ∈ {0, . . . , Niter − 1} do
11: Sample (x̄j,0, xj) from {x̄m

j , x
m
j }Mm=1

12: Sample t in [0, T ] and Z̄ ∼ N(0, Id)

13: x̄j,t = e
−t

x̄j,0 + (1− e
−2t

)
1/2

Z̄

14: ℓ(θ̄j,n) = ∥(e−t
x̄j,0 − x̄j,t)− (1− e

−2t
)
1/2

s̄θ̄j,n(t, x̄j,t|xj)∥
2

15: θ̄j,n+1 = optimizer_update(θ̄j,n, ℓ(θ̄j,n)) ▷ ADAM optimizer step
16: end for
17: θ̄

⋆
j = θ̄j,Niter

18: end for
19: /// SAMPLING ///
20: xJ = EulerMaruyama(T,N, sθ⋆J ) ▷ Euler-Maruyama recursion following (16)
21: for j ∈ {J, . . . , 1} do
22: x̄j = EulerMaruyama(T,N, s̄θ̄⋆j (·, ·|xj)) ▷ Euler-Maruyama recursion following (17)

23: xj−1 = γjG
⊤
xj + γjḠ

⊤
x̄j ▷ Wavelet reconstruction

24: end for
25: return {θ̄⋆j , θ

⋆
J}

J
j=1, x0 ▷ Returns learned parameters and generated samples

S3 Introduction to the Fast Orthogonal Wavelet Transform

This section introduces the fast orthogonal wavelet transform introduced in [30]. It is computed with
convolutional operators G and Ḡ. In this section, we deal with the non-normalized wavelet transform,
which is obtained by setting γj = 1. To avoid confusion with normalized wavelet coefficients
(xj , x̄j), we denote the non-normalized wavelet coefficients with a w exponent: (xwj , x̄

w
j ).

Let xw0 be a signal. The index u in xw0 (u) belongs to an n-dimensional grid of linear size L and hence
with Ln sites, with n = 2 for images. Let us denote xwj the coarse-grained version of xw0 at a scale
2j defined over a coarser grid with intervals 2j and hence (2−jL)n sites. The coarser signal xwj is
iteratively computed from xwj−1 by applying a coarse-graining operator, which acts as a scaling filter
G which eliminates high frequencies and subsamples the grid:

(Gxwj−1)(u) =
∑
u
′

xwj−1(u
′)G(2u− u′) . (S1)

1



The index u on the left-hand side runs on the coarser grid, whereas u′ runs on the finer one.

The degrees of freedom of xwj−1 that are not in xwj are encoded in orthogonal wavelet coefficients
x̄wj . The representation (xwj , x̄

w
j ) is an orthogonal change of basis calculated from xwj−1. The coarse

signal xwj is calculated in (S1) with a low-pass scaling filter G and a subsampling. In dimension n,
the wavelet coefficients x̄wj have 2n − 1 channels computed with a convolution and subsampling
operator Ḡ. We thus have:

xwj = Gxwj−1 and x̄wj = Ḡ xwj−1. (S2)

The wavelet filter Ḡ computes 2n − 1 wavelet coefficients x̄wj (u, k) indexed by 1 ≤ k ≤ 2n − 1,
with separable high-pass filters Ḡk(u):

x̄wj (u, k) =
∑
u
′

xwj−1(u
′) Ḡk(2u− u′).

As an example, the Haar wavelet leads to a block averaging filter G. In dimension n = 1

xwj (u) =
xwj−1(2u) + xwj−1(2u+ 1)√

2
,

and there is a single wavelet channel in x̄wj . The corresponding wavelet filter Ḡ computes the wavelet
coefficients with increments divided by

√
2:

x̄wj (u) =
xwj−1(2u)− xwj−1(2u+ 1)√

2
.

If n = 2, then there are 2n − 1 = 3 wavelet channels as shown in Figure 1.

The fast wavelet transform cascades (S2) for 1 ≤ j ≤ J to compute the decomposition of the
high-resolution signal xw0 into its orthogonal wavelet representation over J scales:{

xwJ , x̄
w
j

}
1≤j≤J

. (S3)

The wavelet orthonormal filters G and Ḡ define a unitary transformation, which satisfies:

ḠG⊤ = GḠ⊤ = 0 and G⊤G+ ḠT Ḡ = Id ,

where Id is the identity. Conjugate mirror conditions are given in [30] on the Fourier transforms of G
and Ḡ to build such unitary filters. The filtering equations (S2) can then be inverted with the adjoint
operators:

xwj−1 = G⊤xwj + Ḡ⊤x̄wj . (S4)

The adjoint G⊤ enlarge the grid size of xwj by inserting a zero between each coefficients, and then
filters the output:

(G⊤xwj )(u) =
∑
u
′

xwj (u
′)G(2u′ − u).

The adjoint of Ḡ performs the same operations over the 2n − 1 channels and adds them:

(Ḡ⊤x̄wj )(u) =

2
n−1∑
k=1

∑
u
′

x̄wj (u
′, k) Ḡk(2u

′ − u).

The fast inverse wavelet transform [30] recovers xw0 from its wavelet representation (S3) by progres-
sively recovering xwj−1 from xwj and x̄wj with (S4), for j going from J to 1.

S4 Orthogonal Wavelet Bases and Preconditioning of Operators

This appendix relates the fast discrete wavelet transform to decomposition of finite energy functions
in orthonormal bases of L2([0, 1]n). Although the covariance of normalized wavelet coefficients of
multiscale processes are badly conditioned, after normalisation these covariance matrices become
well conditioned because the normalisation acts as a preconditioning operator [15]. This is a central
result to prove Theorem 3. The results of this appendix are based on the multiresolution theory
[30, 31] and the representation of elliptic singular operators in wavelet orthonormal bases [34].
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Orthonormal wavelet bases From an input discrete signal x0(u) = x(u) defined over an n-
dimensional grid of width L, we introduced in (14) a normalized wavelet transform which computes
wavelet coefficients x̄j(u, k) having 2n−1 channels 1 ≤ k < 2n. The orthonormal wavelet transform
without renormalization is obtained by setting γj = 1 and has been introduced in appendix S3. We
write x̄w = (x̄wj , x

w
J )j≤J the vector of non-normalized wavelet coefficients.

The multiresolution wavelet theory [31, 34] proves that the coefficients of x̄w can also be written as
the decomposition coefficients of a finite energy function, in a wavelet orthonormal basis of the space
L2(Rn) of finite energy functions. These wavelets arise from the cascade of the convolutional filters
G and Ḡ in (??) when we iterate on j [31]. This wavelet orthonormal basis is thus entirely specified
by the choice of the filters G and Ḡ. A wavelet orthonormal basis is defined by a scaling function
ψ0(v) for v ∈ Rn which has a unit integral

∫
ψ0(v) dv = 1, and 2n − 1 wavelets which have a

zero integral
∫
ψk(v) dv = 0 for 1 ≤ k < 2n. Each of these functions are dilated and translated by

u ∈ Zn, for 1 ≤ k < 2n and j ∈ Z:

ψk
j,u(v) = 2−nj/2 ψk(2−jv − u).

The main result proved in [31, 34], is that for appropriate filters G and Ḡ such that (G, Ḡ) is unitary,
the family of translated and dilated wavelets up to the scale 2J :

{ψ0
J,u , ψ

k
j,u}1≤k<2

n
, j≤J , u∈Zn

is an orthonormal basis of L2(Rn). A periodic wavelet basis of L2([0, 1]n) is defined by replacing
each wavelet ψk

j,u by the periodic function
∑

r∈Zn ψk
j,u(v − r) which we shall still write ψk

j,u.

The properties of the wavelets ψk
j,u depend upon the choice of the filters G and Ḡ. If these filters

have a compact support then one can verify [31] that all wavelets ψk
j,u have a compact support of

size proportional to 2j . With an appropriate choice of filters, one can also define wavelets having q
vanishing moments, which means that they are orthogonal to any polynomial Q(v) of degree strictly
smaller than q: ∫

[0,1]
n Q(v)ψk

j,u(v) dv = 0.

One can also ensure that wavelet are q times continuously differentiable. Daubechies wavelets [31]
are examples of orthonormal wavelets which can have q vanishing moments and be Cq for any q.

The relation between the fast wavelet transform and these wavelet orthonormal bases proves [31] that
any discrete signal x0(u) of width L can be written as a discrete approximation at a scale 2ℓ = L−1

(ℓ < 0) of a (non-unique) function f ∈ L2([0, 1]n). The support of f is normalized whereas the
approximation scale 2ℓ decreases as the number of samples L increases. The coefficients x0(u) are
inner products of f with the orthogonal family of scaling functions at the scale 2ℓ for all u ∈ Zn and
2ℓu ∈ [0, 1]n:

x0(u) =
∫
[0,1]

n f(v)ψ0
ℓ,u(v) dv = ⟨f, ψ0

ℓ,u⟩.
Let Vℓ be the space generated by the orthonormal family of scaling functions {ψ0

ℓ,u}2ℓu∈[0,1]
n , and

PVℓ
f be the orthogonal projection of f in Vℓ. The signal x0 gives the orthogonal decomposition

coefficients of PVℓ
f in this family of scaling functions. One can prove [31] that the non-normalized

wavelet coefficients x̄wj of x0 computed with a fast wavelet transform are equal to the orthogonal
wavelet coefficients of f at the scale 2j+ℓ, for all u ∈ Zn and 2j+ℓu ∈ [0, 1]n:

x̄wj (u, k) =
∫
[0,1]

n f(v)ψk
j+ℓ,u(v) dv = ⟨f, ψk

j+ℓ,u⟩.
and at the largest scale 2J

xwJ (u, k) =
∫
[0,1]

n f(v)ψ0
J+ℓ,u(v) dv = ⟨f, ψk

j+J,u⟩.

Normalized covariances We now consider a periodic stationary multiscale random process x(u)
of width L. It covariance is diagonalised in a Fourier basis and its power spectrum (eigenvalues) has a
power-law decay P (ω) = c(ξη + |ω|η)−1, for frequencies ω = 2πm/L with m ∈ {0, . . . , L− 1}n.
The following lemma proves that the covariance matrix Σ̄ of the normalized wavelet coefficients x̄
of x is well conditioned, with a condition number which does not depend upon L. It relies on an
equivalence between Sobolev norms and weighted norms in a wavelet orthonormal basis.
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Lemma S4. For a wavelet transform corresponding to wavelets having q > η vanishing moments,
which have a compact support and are q times continuously differentiable, there exists C2 ≥ C1 > 0
such that for any L the covariance Σ̄ of x̄ = (x̄j , xJ)j≤J satisfies:

C1 Id ≤ Σ̄ ≤ C2 Id . (S5)

The remaining of the appendix is a proof of this lemma. Without loss of generality, we shall suppose
that E[x] = 0. Let σ2

j,k be the variance of x̄wj (u, k), and D be the diagonal matrix whose diagonal
values are σ−1

j,k . The vector of normalized wavelet coefficients x̄ = (x̄j , xJ)j≤J are related to the
non-normalized wavelet coefficients x̄w by a multiplication by D:

x̄ = D x̄w.

Let Σ̄w be the covariance of x̄w. It results from this equation that the covariance Σ̄ of x̄ and the
covariance Σ̄w of x̄w satisfy:

Σ̄ = DΣ̄wD.

The diagonal normalization D is adjusted so that the variance of each coefficient of x̄ is equal to 1,
which implies that the diagonal of Σ̄ is the identity. We must now prove that Σ̄ satisfies (S5), which
is equivalent to prove that there exists C1 and C2 such that:

C1 Id ≤ DΣ̄wD ≤ C2 Id . (S6)

To prove (S6), we relate it to Sobolev norm equivalences that have been proved in harmonic analysis.
We begin by stating the result on Sobolev inequalities and then prove that it implies (S6) for
appropriate constants C1 and C2.

Let Σ∞ be the singular self-adjoint convolutional operator over L2(Rn) defined in the Fourier domain
for all ω ∈ Rn:

Σ̂∞f(ω) = f̂(ω) (ξη + |ω|η).
Observe that:

⟨Σ∞f, f⟩ = 1
(2π)

n

∫
Rn |f̂(ω)|2 (ξη + |ω|η) dω

is a Sobolev norm of exponent η. Such Sobolev norms are equivalent to weighted norms in wavelet
bases, as proved in Theorem 4, Chapter 3 in [34]. To take into account the constant ξ, we introduce a
maximum scale 2J

′

= ξ−1. For all f ∈ L2(Rn), there exists B ≥ A > 0 such that:

A ⟨Σ∞f, f⟩ ≤
∑

u∈Zn 2−Jη|⟨f, ψ0
J

′
,u⟩|

2 (S7)

+
∑J

′

j=−∞
∑

u∈Zn

∑2
n−1

k=1 2−jη |⟨f, ψk
j,u⟩|2 ≤ B ⟨Σ∞f, f⟩.

The remaining of the proof shows that these inequalities imply similar inequalities over the covariance
of discrete wavelet coefficients. This is done by first restricting it to a finite support and then using
the correspondence between the orthonormal wavelet coefficients of f and the discrete wavelet
coefficients x̄w of x0.

One can verify that the equivalence (S7) remains valid for functions f ∈ L2([0, 1]n) decomposed
over periodic wavelet bases, because functions in L2([0, 1]n) can be written f(v) =

∑
r∈Zn f̃(v− r)

with f̃ ∈ L2(Rn):

A ⟨Σ∞f, f⟩ ≤
∑

2
j
u∈[0,1]

n 2−J
′
η|⟨f, ψ0

J
′
,u⟩|

2

+
∑J

′

j=−∞
∑

2
j
u∈[0,1]

n

∑2
n−1

k=1 2−jη |⟨f, ψk
j,u⟩|2 ≤ B ⟨Σ∞f, f⟩.

Applying this result to f ∈ Vℓ is equivalent to restricting Σ∞ to Vℓ, which proves that Σℓ =
PVℓ

Σ∞PVℓ
satisfies:

A ⟨Σℓf, f⟩ ≤
∑

2
J
′
u∈[0,1]

n 2−J
′
η|⟨f, ψ0

J
′
,u⟩|

2 (S8)

+
∑J

′

j=ℓ+1

∑
2
j
u∈[0,1]

n

∑2
n−1

k=1 2−jη |⟨f, ψk
j,u⟩|2 ≤ B ⟨Σℓf, f⟩.

The operator Σℓ = PVℓ
Σ∞ PVℓ

is covariant with respect to shifts by any m2ℓ for m ∈ Zn be-
cause PVℓ

and Σ∞ are covariant to such shifts. Its representation in the basis of scaling functions

4



{ψ0
ℓ,u}2ℓu∈[0,1]

n is thus a Toeplitz matrix which is diagonalized by a Fourier transform. There exists

0 < A1 ≤ B1 such that for all ℓ < 0 and all ω ∈ [−2−ℓπ, 2−ℓπ]n,

A1 (ξ
η + |ω|η) ≤ Pℓ(ω) ≤ B1 (ξ

η + |ω|η). (S9)

Indeed, the spectrum of Σ∞ is c (ξη + |ω|η) for ω ∈ Rn and PVℓ
performs a filtering with the scaling

function ψ0
ℓ whose support is essentially restricted to the frequency interval [−π2−ℓ, π2−ℓ] so that

the spectrum of PVℓ
Σ∞ PVℓ

is equivalent to the spectrum of Σ∞ restricted to this interval.

The lemma hypothesis supposes that the covariance Σ̃ of x0 has a spectrum equal to c (ξη + |ω|η)−1

and hence that the spectrum of Σ̃−1 is c−1 (ξη + |ω|η). Since x0 are decomposition coefficients of
f ∈ Vℓ in the basis of scaling functions, equation (S9) can be rewritten for any f ∈ Vℓ:

A1 c ⟨Σ̃−1x0, x0⟩ ≤ ⟨Σℓf, f⟩ ≤ B1 c ⟨Σ̃−1x0, x0⟩. (S10)

Since the orthogonal wavelet coefficients x̄w defines an orthonormal representation of x0, the
covariance Σ̄w of x̄w satisfies ⟨Σ̄−1

w x̄w, x̄w⟩ = ⟨Σ̃−1x0, x0⟩. Moreover, we saw that that the wavelet
coefficients x̄w of x0 satisfy x̄wj (u, k) = ⟨f, ψk

j+ℓ,u⟩ and at the largest scale x̄wJ (u, k) = ⟨f, ψ0
J+ℓ,u⟩.

Hence for J + ℓ = J ′, we derive from (S8) and (S10) that:

AA1 c ⟨Σ̄−1
w x̄w, x̄w⟩ ≤ ∑

2
J
u∈[0,1]

n 2−(J+ℓ)η |xwJ (u)|2

+
∑J

j=1

∑
2
j
u∈[0,1]

n

∑2
n−1

k=1 2−(j+ℓ)η |x̄wj (u, k)|2 ≤ BB1 c ⟨Σ̄−1
w x̄w, x̄w⟩.

It results that for A2 = AA1 c and B2 = BB1 c we have:

A2 ⟨Σ̄−1
w x̄w, x̄w⟩ ≤ 2−(J+ℓ)η ∥xwJ ∥2 +

J∑
j=1

2−(j+ℓ)η ∥x̄wj ∥2 ≤ B2 ⟨Σ̄−1
w x̄w, x̄w⟩.

Let D̃ be the diagonal operator over the wavelet coefficients x̄w, whose diagonal values are 2−η(j+ℓ)/2

at all scales 2j . These inequalities can be rewritten as operator inequalities:

A2 Σ̄
−1
w ≤ D̃2 ≤ B2 Σ̄

−1
w ,

and hence:
A2 Id ≤ D̃Σ̄wD̃ ≤ B2 Id . (S11)

Since D−2 is the diagonal of Σ̄w, we derive from (S11) that:

A2 D̃
−2 ≤ D−2 ≤ B2 D̃

−2.

Inserting this equation in (S11) proves that:

A2B
−1
2 Id ≤ D Σ̄wD ≤ B2A

−1
2 Id,

and since Σ̄ = D Σ̄wD it proves the lemma result (S6), with C1 = A2B
−1
2 and C2 = B2A

−1
2 .

S5 Proof of Theorems 1 and 2

In this section, we first present the continuous-time framework in a Gaussian setting in Appendix S5.1.
The general outline of the proof of Theorem 1 is presented in Appendix S5.2. Technical lemmas are
gathered in Appendix S5.3. The proof of Theorem 2 is presented in Appendix S5.4.

S5.1 Gaussian setting

In what follows we present the Gaussian setting used in the proof of Theorem 1. We assume that
p0 = N(0,Σ) with Σ ∈ Sd(R)+. Let D ∈ Md(R)+ a diagonal positive matrix such that Σ = P⊤DP
with P an orthonormal matrix. We consider the following forward dynamics

dxt = −xtdt+
√
2dwt,
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with L(x0) = p0. We also consider the backward dynamics given by

dyt = {yt + 2∇ log pT−t(yt)}dt+
√
2dwt,

with L(y0) = p∞ = N(0, Id). Note that since for any t ∈ [0, T ] and x ∈ Rd, ∇ log pt(x) = −Σ−1
t x

with Σt = exp[−2t]Σ + (1 − exp[−2t]) Id, we have that (yt)t∈[0,T ] is a Gaussian process. In
particular, we can compute the mean and the covariance matrix of yt in a closed form for any
t ∈ [0, T ]. The results of Proposition S5 will not be used to prove Theorem 1. However, they provide
some insights regarding the evolution of the mean and covariance of the backward process.
Proposition S5. For any t ∈ [0, T ], we have that L(yt) = N(0, Σ̄t) with

Σ̄t = P⊤((1− exp[−2t])D̄t + exp[−2t]D̄2
t )P,

and
D̄t = (Id+(D− Id) exp[−2(T − t)])⊘ (Id+(D− Id) exp[−2T ]) .

Note that D̄0 = Id and D̄T = D ⊘ (Id+(D − Id) exp[−2T ]) ≈ D. Hence, we have Σ̄T ≈ Σ and
therefore L(yT ) ≈ p0.

Proof. First, note that for any t ∈ [0, T ] we have that

yt = y0 +
∫ t

0
(Id−2Σ−1

T−t)yt +
√
2wt = y0 +

∫ t

0
(Id−2P⊤D−1

T−tP)yt +
√
2wt,

with DT−t = exp[−2(T − t)]D + (1 − exp[−2(T − t)]) Id. Denote {yPt }t∈[0,T ] = {Pyt}t∈[0,T ].
Using that P⊤P = Id, we have that for any t ∈ [0, T ]

yPt = yP0 +
∫ t

0
(Id−2D−1

T−t)y
P
t +

√
2wP

t ,

where {wP
t }t∈[0,T ] = {Pwt}t∈[0,T ]. Note that since P is orthonormal, {wP

t }t∈[0,T ] is also
a d-dimensional Brownian motion. We also have that L(yP0 ) = N(0, Id). Hence for any
{{yP,i

t }t∈[0,T ]}di=1 is a collection of d independent Gaussian processes, where for any i ∈ {1, . . . , d}
and t ∈ [0, T ], yP,i

t = ⟨yPt , ei⟩ and {ei}di=1 is the canonical basis of Rd. Let i ∈ {1, . . . , d} and
for any t ∈ [0, T ] denote uit = E[yP,i

t ] and vit = E[(yP,i
t )2]. We have that for any t ∈ [0, T ],

∂tu
i
t = (1 − 1/Di

t)u
i
t with u0 = 0 and Di

t = exp[−2t]Di + 1 − exp[−2t]. Hence, we get that for
any t ∈ [0, T ], uit = 0. Using Itô’s lemma we have that

∂vit = {2− 4/Di
T−t}vit + 2, (S12)

with vi0 = 1. Denote αi
T = (Di − 1) exp[−2T ], we have that for any t ∈ [0, T ], Di

T−t =

1 + αi
T exp[2t]. Therefore, we get that for any t ∈ [0, T ]

2− 4/Di
T−t = −2 + 2× (2αi

T ) exp[2t]/(1 + αi
T exp[2t]) = −2 + 2∂t log(1 + αi

T exp[2t]).

Hence, we have that for any t ∈ [0, T ]∫ t

0
2− 4/Di

T−sds = −2t+ log((1 + αi
T exp[2t])2/(1 + αi

T )
2).

Hence, there exists Ci
t ∈ C1([0, T ],R) such that for any t ∈ [0, T ], vit = Ci

t exp[−2t](1 +

αi
T exp[2t])2/(1 + αi

T )
2. Using (S12), we have that for any t ∈ [0, T ]

∂tC
i
t = 2 exp[2t]((1 + αi

T exp[2t])/(1 + αi
T ))

−2 = −(1/αi
T )(1 + αi

T )
2∂t(1 + αi

T exp[2t])−1.

Hence, we have that for any t ∈ [0, T ]

Ci
t = (1/αi

T )(1 + αi
T )

2[(1 + αi
T )

−1 − (1 + αi
T exp[2t])−1] +A,

with A ≥ 0. Hence, we get that for any t ∈ [0, T ]

vit = (1/αi
T ) exp[−2t](1 + αi

T exp[2t])[(1 + αi
T exp[2t])/(1 + αi

T )− 1]

+A exp[−2t](1 + αi
T exp[2t])2/(1 + αi

T )
2.

In addition, we have that vi0 = 1 and therefore A = 1. Therefore, for any t ∈ [0, T ] we have

vit = (1/αi
T ) exp[−2t](1 + αi

T exp[2t])[(1 + αi
T exp[2t])/(1 + αi

T )− 1]

+ exp[−2t](1 + αi
T exp[2t])2/(1 + αi

T )
2

= (1− exp[−2t])(1 + αi
T exp[2t])/(1 + αi

T ) + exp[−2t](1 + αi
T exp[2t])2/(1 + αi

T )
2,

which concludes the proof.
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S5.2 Convergence results for the discretization

In what follows, we denote (Yk)k∈{0,...,N−1} = (x̄tk)k∈{0,...,N−1}, the sequence given by (6). The
following result gives an expansion of the covariance matrix and the mean of YN , i.e. the output of
SGM, in the case where p = N(µ,Σ).

Theorem S6. Let N ∈ N, δ > 0 and T = Nδ. Then, we have that x̄tN ∼ N(µ̂N , Σ̂N ) with

Σ̂N = Σ+ exp[−4T ]Σ̂T + δÊT + δ2RT,δ , µ̂N = µ+ exp[−2T ]µ̂T + δêT + δ2rT,δ ,

where Σ̂T , ÊT ,RT,δ ∈ Rd×d, µ̂T , êT , rT,δ ∈ Rd and ∥RT,δ∥+∥rT,δ∥ ≤ R not dependent on T ≥ 0
and δ > 0. We have that

Σ̂T = −(Σ− Id)(ΣΣ−1
T )2 ,

ÊT = Id−(1/2)Σ2(Σ− Id)−1 log(Σ) + exp[−2T ]ẼT . (S13)

In addition, we have

µ̂T = −Σ−1
T Σµ ,

êT = {−2Σ−1 − (1/4)Σ(Σ− Id)−1 log(Σ)}µ+ exp[−2T ]µ̃T ,

with ẼT , µ̃T bounded and not dependent on T .

Before turning to the proof of Theorem S6, we state a few consequences of this result.

Corollary S7. Let {x̄tk}
N
k=0 the sequence defined by (6). We have that x̄tN ∼ N(µN ,ΣN ) with

ΣN = Σ+ δΣδ + exp[−4T ]ΣT +Σδ,T ,

µN = µ+ δµδ + exp[−2T ]µT + µδ,T ,

with

ΣT = −(Σ− Id)Σ2 ,

Σδ = Id−(1/2)Σ2(Σ− Id)−1 log(Σ) ,

µT = Σµ,

µδ = {−2Σ−1 − (1/4)Σ(Σ− Id)−1 log(Σ)}µ .
In addition, we have limδ→0,T→+∞ ∥Σδ,T ∥/(δ + exp[−4T ]) = 0 and limδ→0,T→+∞ ∥µδ,T ∥/(δ +
exp[−2T ]) = 0.

At first sight, it might appear surprising that Σ−1 does not appear in ΣT and µT . Note that in the
extreme case where Σ = 0 and δ → 0, i.e. we only consider the error associated with the fact that
T ̸= +∞, then we have no error. This is because in this case the associated continuous-time process
is an Ornstein-Uhlenbeck bridge which has distribution N(µ, 0) at time T .

We will use the following result.

Lemma S8. Let πi = N(µi,Σi) for i ∈ {0, 1}, with µ0, µ1 ∈ Rd and Σ0,Σ1 ∈ Sd(R)+. Then, we
have that

KL(π0∥π1) = (1/2){log(det(Σ1)/det(Σ0))− d+Tr(Σ−1
1 Σ0) + (µ1 − µ0)

⊤Σ−1
1 (µ1 − µ0)}.

In particular, applying Lemma S8 we have that for any Σ ∈ Sd(R)+
KL(N(0,Σ)∥N(0, Id)) = (1/2){− log(det(Σ)) + Tr(Σ)− d}. (S14)

Proposition S9. Let {x̄tk}
N
k=0 the sequence defined by (6). We have that x̄tN ∼ N(µN ,ΣN ), with

µN ,ΣN given by Corollary S7. We have that

KL(N(µ,Σ)∥N(µN ,ΣN )) ≤ δ|Tr(Σ−1Σδ)|+ exp[−4T ]|Tr(Σ−1ΣT )|+ exp[−4T ]µ⊤Σµ+ ET,δ ,

with ET,δ a higher order term such that limT→+∞,δ→0ET,δ/(δ + exp[−4T ]) = 0.

We now prove Theorem S6.
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Proof. For any k, denote Yk = x̄tN−k
. First, we recall that for any k ∈ {0, . . . , N − 1} and x ∈ Rd,

∇ log pT−kγ(x) = −Σ−1
T−kγx where for any t ∈ [0, T ]

Σt = (1− exp[−2t]) Id+ exp[−2t]Σ .

Hence, we get that for any k ∈ {0, . . . , N − 1}
Yk+1 = ((1 + γ) Id−2γΣ−1

T−kγ)Yk + 2γΣ−1
T−kγMT−kγ +

√
2γZk+1 , (S15)

where for any t ∈ [0, T ], Mt = exp[−t]µ. Therefore, we get that for any k ∈ {0, . . . , N}, Yk is a
Gaussian random variable. Using (S23), we have that for any k ∈ {0, . . . , N − 1}

E[Ŷk+1Ŷ
⊤
k+1] = ((1 + γ) Id−2γΣ−1

T−kγ)E[ŶkŶ
⊤
k ]((1 + γ) Id−2γΣ−1

T−kγ) + 2γ Id , (S16)

where for any k ∈ {0, . . . , N}, Ŷk = Yk − E[Yk]. There exists P ∈ Rd×d orthogonal such that
D = PΣP⊤ is diagonal. Note that for any k ∈ {0, . . . , N − 1}, we have that Λk = P((1 +

γ) Id−2γΣ−1
T−kγ)P

⊤ is diagonal. For any k ∈ {0, . . . , N}, define Hk = PE[ŶkŶ
⊤
k ]P⊤. Note that

H0 = Id. Using (S16), we have that for any k ∈ {0, . . . , N − 1}
Hk+1 = Λ2

kHk + 2γ Id . (S17)

Hence, for any k ∈ {0, . . . , N}, Hk is diagonal. For any diagonal matrix C ∈ Rd×d denote
{c1, . . . , cd} its diagonal elements. Let i ∈ {1, . . . , d}. Using (S17), we have that for any k ∈
{0, . . . , N − 1}

hik+1 = (λik)
2hik + 2γ .

Using this result we have that for any k ∈ {0, . . . , N}
hik = (

∏k−1
ℓ=0 λ

i
ℓ)

2 + 2γ
∑k−1

ℓ=0 (
∏ℓ−1

j=0 λ
i
k−1−j)

2 = (
∏k−1

ℓ=0 λ
i
ℓ)

2 + 2γ
∑k−1

ℓ=0 (
∏k−1

j=k−ℓ λ
i
j)

2 .

Let k1, k2 ∈ {0, . . . , N} with k1 < k2. In what follows, we derive an expansion of Ik1,k2
=∏k2

k=k1
λik w.r.t. γ > 0. We have that

Ik1,k2
=

∏k2

k=k1
λik = exp[

∑k2

k=k1
log(λik)] = exp[

∑k2

k=k1
log(1 + γaik)] , (S18)

where for any k ∈ {0, . . . , N}, aik = 1−2/di(N−k)γ , with di(N−k)γ = 1+exp[−2(N−k)γ](di−1).
Hence, there exist (bik,γ)k∈{0,...,N} bounded such that for any k ∈ {0, . . . , N} we have

log(1 + γaik) = γaik − (γ2/2)(aik)
2 + γ3bik,γ .

In addition, using Proposition S10, there exists Cγ
k1,k2

≥ 0 such that γCγ
k1,k2

≤ C with C ≥ 0 not
dependent on k2, k2 ∈ {0, . . . , N}, γ > 0 and∑k2

k=k1
log(1 + γaik) =

∫ t
+
2

t1
ai(t)dt− (γ/2)[

∫ t
+
2

t1
ai(t)2dt+ ai(t+2 )− ai(t1)] + Cγ

k1,k2
γ3 ,

with t1 = k1γ, t+2 = (k2 + 1)γ and for any t ∈ [0, T ], at = 1 − 2/diT−t with diT−t = 1 +

exp[−2(T − t)](di − 1). Hence, using this result and (S18), we get that there exists Dγ
k1,k2

≥ 0 such
that γDγ

k1,k2
≤ D with D ≥ 0 not dependent on k2, k2 ∈ {0, . . . , N}, γ > 0 and

Ik1,k2
= exp[

∫ t
+
2

t1
ai(t)dt]− exp[

∫ t
+
2

t1
ai(t)](γ/2)[

∫ t
+
2

t1
ai(t)2dt+ ai(t+2 )− ai(t1)] + γ3Dγ

k1,k2
.

(S19)
Using this result, we get that there exists Eγ

1 ≥ 0 such that γEγ
1 ≤ E with E ≥ 0 not dependent on

γ such that

(
∏N−1

ℓ=0 λiℓ)
2 = exp[2

∫ T

0
ai(t)dt]− γ exp[2

∫ T

0
ai(t)dt][

∫ T

0
ai(t)2dt+ ai(T )− ai(0)] + γ3Eγ

1 .
(S20)

Similarly, using (S19), there exist E ≥ 0 and (Eγ
2,ℓ)ℓ∈{0,...,N} such that for any ℓ ∈ {0, . . . , N},

Eγ
2,ℓ ≥ 0 and γEγ

2,ℓ ≤ E with E ≥ 0 not dependent on γ and ℓ such that

2γ
∑N−1

ℓ=0 (
∏N−1

j=N−ℓ λ
i
j)

2 = (2γ)
∑N−1

ℓ=0 exp[2
∫ T

T−ℓγ
ai(t)dt]}

−2γ2
∑N−1

ℓ=0 {exp[2
∫ T

T−ℓγ
ai(t)dt][

∫ T

T−ℓγ
ai(t)2dt+ ai(T )− ai(T − ℓγ)]}

+ γ4
∑N−1

ℓ=0 Eγ
2,ℓ .
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Therefore, using Proposition S10, there exists Eγ
3 such that γEγ

3 ≤ E with E ≥ 0 not dependent on
γ and

2γ
∑N−1

ℓ=0 (
∏N−1

j=N−ℓ λ
i
j)

2 = 2
∫ T

0
exp[2

∫ T

T−t
ai(s)ds]dt+ γ(1− exp[2

∫ T

0
ai(t)dt])

−2γ
∫ T

0
{exp[2

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(s)2dt+ ai(T )− ai(T − t)]}dt

+ γ3Eγ
3 . (S21)

Hence, combining (S20) and (S21) we get that

hiN = ciT − γeiT + γ3Eγ ,

with
ciT = exp[2

∫ T

0
ai(t)dt] + 2

∫ T

0
exp[2

∫ T

T−t
ai(s)ds]dt . (S22)

and

eiT = − exp[2
∫ T

0
ai(t)dt][

∫ T

0
ai(t)2dt+ ai(T )− ai(0)]+1− exp[2

∫ T

0
ai(t)dt]

−2
∫ T

0
exp[2

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(s)2ds+ ai(T )− ai(T − t)]dt .

In what follows, we compute ciT and eiT .

(i) Using Lemma S11 we have

exp[2
∫ T

0
ai(t)dt] = d2 exp[−2T ]/(1 + exp[−2T ](d− 1))2 .

In addition, using Lemma S12 we have∫ T

0
exp[2

∫ T

T−t
ai(s)ds] = (d/2)(1− exp[−2T ])/(1 + exp[−2T ](d− 1)) .

Combining these results and (S22), we get that

ciT = d+ d2 exp[−2T ](1− (1 + exp[−2T ](d− 1))−1)/(1 + exp[−2T ](d− 1))

= d+ d2(d− 1) exp[−4T ]/(1 + exp[−2T ](d− 1))2 .

(ii) We conclude for eiT using Proposition S20 with λ = di − 1.

This concludes the proof of (S13). Next, we compute the evolution of the mean. Using (S23), we
have

E[Yk+1] = ((1 + γ) Id−2γΣ−1
T−kγ)E[Yk] + 2γE[Σ−1

T−kγMT−kγ ] , (S23)

Note that for any k ∈ {0, . . . , N − 1}, we have that Λk = P((1 + γ) Id−2γΣ−1
T−kγ)P

⊤ is diagonal.
For any k ∈ {0, . . . , N}, define Hk = PE[Yk]P

⊤. Note that H0 = 0. For any k ∈ {0, . . . , N − 1}
we have that

Hk+1 = ΛkHk + 2γD−1
T−kγVT−kγ , (S24)

where for any t ∈ [0, T ], Dt = PΣtP
⊤ and Vt = PMt. Let i ∈ {1, . . . , d}. Using (S24), we have

for any k ∈ {0, . . . , N − 1}

hik+1 = λikh
i
k + 2γviT−kγ/d

i
T−kγ . (S25)

In what follows, we define for any t ∈ [0, T ], r(t)i = viT−t/d
i
T−t and note that for any t ∈ [0, T ]

r(t)i = exp[−(T − t)]/(1 + exp[−2(T − t)](di − 1))(Pµ)i . (S26)

Using (S25) and that hi0 = 0, we have that for any k ∈ {0, . . . , N}

hik = 2γ
∑k−1

ℓ=0 r((k − ℓ− 1)γ)
∏ℓ−1

j=0 λ
i
k−1−j = 2γ

∑k−1
ℓ=0 r((k − ℓ− 1)γ)

∏k−1
j=k−ℓ λ

i
j .
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Using (S19), we get that there exists Dγ ≥ 0 such that γDγ ≤ D not dependent on γ and

hiN = 2γ
∑N−1

k=0 r(T − (k + 1)γ) exp[
∫ T

T−kγ
ai(t)dt]

−γ2 ∑N−1
k=0 r(T − (k + 1)γ) exp[

∫ T

T−kγ
ai(t)dt][

∫ T

T−kγ
ai(t)2dt+ ai(T )− ai(T − kγ)]

+
∑N−1

k=0 γ
4Dγ

k,N

= 2γ
∑N−1

k=0 r(T − (k + 1)γ) exp[
∫ T

T−kγ
ai(t)dt]

−γ2 ∑N−1
k=0 r(T − (k + 1)γ) exp[

∫ T

T−kγ
ai(t)dt][

∫ T

T−kγ
ai(t)2dt+ ai(T )− ai(T − kγ)]

+γ3Dγ .

Using Proposition S10, we get that there exists Eγ ≥ 0 such that γEγ ≤ E not dependent on γ and

hiN = 2γ
∑N−1

k=0 r(T − (k + 1)γ) exp[
∫ T

T−kγ
ai(t)dt]

−γ
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(t)2dt+ ai(T )− ai(T − t)]dt

+γ3Eγ .

In addition, for any k ∈ {0, . . . , N}, there exists uk ≥ 0 with uk ≤ u and u ≥ 0 not dependent on k
and

r(T − (k + 1)γ) = r(T − kγ)− r′(T − kγ)γ + ukγ
2 .

Using this result, we get that exists F γ ≥ 0 such that γF γ ≤ F not dependent on γ and

hiN = 2γ
∑N−1

k=0 r(T − kγ) exp[
∫ T

T−kγ
ai(t)dt]

−2γ2
∑N−1

k=0 r
′(T − kγ) exp[

∫ T

T−kγ
ai(t)dt]

−γ
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(t)2dt+ ai(T )− ai(T − t)]dt

+γ3F γ .

Using Proposition S10, we get that there exists Gγ ≥ 0 such that γGγ ≤ G not dependent on γ and

hiN = 2γ
∑N−1

k=0 r(T − kγ) exp[
∫ T

T−kγ
ai(t)dt]

−2γ
∫ T

0
r′(T − t) exp[

∫ T

T−t
ai(t)ds]dt

−γ
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(t)2dt+ ai(T )− ai(T − t)]dt

+γ3Gγ .

In addition, using Proposition S10, we get that there exists Hγ ≥ 0 such that γHγ ≤ H not
dependent on γ and

hiN = 2
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds]dt

−γ{r(0) exp[
∫ T

0
ai(t)dt]− r(T )}−2γ

∫ T

0
r′(T − t) exp[

∫ T

T−t
ai(s)ds]dt

−γ
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(t)2dt+ ai(T )− ai(T − t)]dt

+γ3Hγ . (S27)

In addition, we have by integration by part∫ T

0
r′(T − t) exp[

∫ T

T−t
ai(s)ds]dt

= −{r(0) exp[
∫ T

0
ai(t)dt]− r(T )} −

∫ T

0
r(T − t)ai(T − t) exp[

∫ T

T−t
ai(s)ds]dt .

Combining this result and (S27) we get that

hiN = 2
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds]dt

+γ{r(0) exp[
∫ T

0
ai(t)dt]− r(T )}

−γ
∫ T

0
r(T − t) exp[

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(t)2dt+ ai(T )− 3ai(T − t)]dt

+γ3Hγ . (S28)
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In what follows, we assume that di ̸= 0. The case where di = 0 is left to the reader. Finally using
(S26) and Lemma S11 we have that for any t ∈ [0, T ]

exp[
∫ T

T−t
ai(s)ds]r(T − t)i = exp[−2t]/(1 + exp[−2t](di − 1))2(Pµ)idi

= exp[2
∫ T

T−t
ai(s)ds](Pµ)i/di .

Therefore, combining this result and (S28), we get that

hiN = (Pµ)i/di[2
∫ T

0
exp[2

∫ T

T−t
ai(s)ds]dt

+γ{exp[2
∫ T

0
ai(t)dt]− 1}

−γ
∫ T

0
exp[2

∫ T

T−t
ai(s)ds][

∫ T

T−t
ai(t)2dt+ ai(T )− 3ai(T − t)]dt]

+γ3Hγ ,

which concludes the proof upon using Lemma S12 and Proposition S21.

S5.3 Technical lemmas

We are going to make use of the following lemma which is a direct consequence of the Euler-
MacLaurin formula.
Proposition S10. Let f ∈ C∞([0, T ]), and (uγk)k∈{0,...,N−1} with N ∈ N and γ = T/N > 0 such
that for any k ∈ {0, . . . , N − 1}, uγk = f(kγ). Then, there exists C ≥ 0 such that∫ T

0
f(t)dt− γ

∑N−1
k=0 u

γ
k − (γ/2){f(T )− f(0)} = Cγ2 .

Proof. Apply the classical Euler-MacLaurin formula to t 7→ f(tγ).

We will also use the following lemmas.
Lemma S11. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, we have that for any t ∈ [0, T ],∫ T

T−t
a(s)ds = t+ log((1 + λ)/(exp[2t] + λ)) .

In particular, we have that for any t ∈ [0, T ]

exp[2
∫ T

T−t
a(s)ds] = exp[−2t](1 + λ)2/(1 + λ exp[−2t])2 .

Proof. Let t ∈ [0, T ]. We have that
∫ T

T−t
a(s)ds =

∫ t

0
a(T − s)ds. Define b such that for any

t ∈ [0, T ], b(t) = a(T − t). In particular, we have that for any t ∈ [0, T ]

b(t) = 1− 2/(1 + λ exp[−2t]) .

Hence, we have ∫ t

0
b(s)ds = t− 2

∫ t

0
(1 + λ exp[−2s])−1ds

= t−
∫ t

0
2 exp[2s]/(exp[2s] + λ)ds

= t+ log((1 + λ)/(exp[2t] + λ)) ,

which concludes the proof.

Lemma S12. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, we have that for any t ∈ [0, T ],∫ t

0
exp[2

∫ T

T−s
a(u)du]ds = (1/2)(1 + λ)2[(1 + λ exp[−2t])−1 − 1/(1 + λ)]/λ

= (1/2)(1 + λ)(1− exp[−2t])/(1 + λ exp[−2t]) .
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Proof. Let t ∈ [0, T ]. Using Lemma S11 we have that for any s ∈ [0, T ]

exp[2
∫ T

T−s
a(u)du] = (1 + λ)2 exp[2s]/(λ+ exp[2s])2 = (1 + λ)2 exp[−2s]/(1 + λ exp[−2s])2 .

Assume that λ ̸= 0. Then, we have that∫ t

0
exp[2

∫ T

T−s
a(u)du]ds = (1/2)(1 + λ)2/λ

∫ t

0
2λ exp[−2t]/(1 + λ exp[−2t])2ds

= (1/2)(1 + λ)2[(1 + λ exp[−2t])−1 − 1/(1 + λ)]/λ

= (1/2)(1 + λ)(1− exp[−2t])/(1 + λ exp[−2t]) .

We conclude the proof upon remarking that his result still holds in the case where λ = 0.

Lemma S13. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, if λ ̸= 0, we have that for any t ∈ [0, T ],∫ t

0
exp[2

∫ T

T−s
a(u)du]/(1 + λ exp[−2s])ds

= (1/4)(1 + λ)2[(1 + λ exp[−2t])−2 − 1/(1 + λ)2]/λ

= (1/4)(1− exp[−2t])(2 + λ(1 + exp[−2t]))/(1 + λ exp[−2t])2 .

If λ = 0 we have∫ t

0
exp[2

∫ T

T−s
a(u)du]/(1 + λ exp[−2s])ds = (1/2)(1− exp[−2t]) .

Proof. Let t ∈ [0, T ]. Using Lemma S11 we have that for any s ∈ [0, T ]

exp[
∫ T

T−s
a(u)du]/(1 + λ exp[−2s]) = (1 + λ)2 exp[−2s]/(1 + λ exp[−2s])3 .

Assume that λ ̸= 0. Then, we have that∫ t

0
exp[

∫ T

T−s
a(u)du]/(1 + λ exp[−2s])ds = (1/2)(1 + λ)2/λ

∫ t

0
2λ exp[−2t]/(1 + λ exp[−2t])3ds

= (1/4)(1 + λ)2[(1 + λ exp[−2t])−2 − 1/(1 + λ)2]/λ

= (1/4)(1− exp[−2t])(2 + λ(1 + exp[−2t]))/(1 + λ exp[−2t])2 .

We conclude the proof upon remarking that his result still holds in the case where λ = 0.

Lemma S14. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, we have that for any t ∈ [0, T ]∫ t

0
exp[2

∫ T

T−s
a(u)du]a(T − s)ds

= −(1/2)(1− exp[−2t])(1− λ2 exp[−2t])/(1 + λ exp[−2t])2 .

Proof. Let t ∈ [0, T ]. We have that∫ t

0
exp[2

∫ T

T−s
a(u)du]a(T − s)ds

=
∫ t

0
exp[2

∫ T

T−s
a(u)du]ds− 2

∫ t

0
exp[2

∫ T

T−s
a(u)du]/(1 + λ exp[−2s])ds . (S29)

Using Lemma S12, we have that∫ t

0
exp[2

∫ T

T−s
a(u)du]dt = (1/2)(1 + λ)(1− exp[−2t])/(1 + λ exp[−2t]) . (S30)

In addition, using Lemma S13, we have∫ t

0
exp[2

∫ T

T−s
a(u)du]/(1 + λ exp[−2s])ds

= (1/4)(1− exp[−2t])(2 + λ(1 + exp[−2t]))/(1 + λ exp[−2t])2 . (S31)
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Combining (S30) and (S31) in (S29) we have that∫ t

0
exp[2

∫ T

T−s
a(u)du]a(T − s)ds

= (1/2)(1− exp[−2t])[(1 + λ)(1 + λ exp[−2t])]/(1 + λ exp[−2t])2

− (1/2)(1− exp[−2t])(2 + λ(1 + exp[−2t]))/(1 + λ exp[−2t])2

= −(1/2)(1− exp[−2t])(1− λ2 exp[−2t])/(1 + λ exp[−2t])2 ,

which concludes the proof.

Lemma S15. Let λ ∈ (−1,+∞) we have that for any t ∈ [0, T ]∫ t

0
(1 + λ exp[−2s])−1ds = (1/2) log((λ+ exp[2t])/(λ+ 1)) .

In addition, we have for any t ∈ [0, T ]∫ t

0
(1 + λ exp[−2s])−2ds = (1/2) log((λ+exp[2t])/(λ+1))+(λ/2)[(exp[2t]+λ)−1−(λ+1)−1] .

Finally, we have that for any t ∈ [0, T ]∫ t

0
(1 + λ exp[−2s])−3ds = (1/2) log((λ+ exp[2t])/(λ+ 1)) + λ[(exp[2t] + λ)−1 − (λ+ 1)−1]

− (λ2/4)[(exp[2t] + λ)−2 − (λ+ 1)−2] .

Proof. Let k ∈ {1, 2, 3}. Using the change of variable u 7→ exp[2u] we have that∫ t

0
(1 + λ exp[−2s])−kds = (1/2)

∫ exp[2t]

1
uk−1/(u+ λ)du .

Therefore, we have that∫ t

0
(1 + λ exp[−2s])−1ds = (1/2)

∫ exp[2t]

1
(u+ λ)−1du = (1/2) log((λ+ exp[2t])/(λ+ 1)) .

In addition, using that for any u ∈ [0, T ], u = (u+ λ)− λ we have that∫ t

0
(1 + λ exp[−2s])−2ds = (1/2)

∫ exp[2t]

1
u(u+ λ)−2du

= (1/2)
∫ exp[2t]

1
(u+ λ)−1du− (λ/2)

∫ exp[2t]

1
(u+ λ)−2du

= (1/2) log((λ+ exp[2t])/(λ+ 1)) + (λ/2)[(exp[2t] + λ)−1 − (λ+ 1)−1] .

Finally, using that for any u ∈ [0, T ], u ∈ [0, T ], u2 = (u+ λ)2 − 2λ(u+ λ) + λ2 we have that∫ t

0
(1 + λ exp[−2s])−3ds = (1/2)

∫ exp[2t]

1
u2(u+ λ)−2du

= (1/2)
∫ exp[2t]

1
(u+ λ)−1du− λ

∫ exp[2t]

1
(u+ λ)−2du+ (λ2/2)

∫ exp[2t]

1
(u+ λ)−3du

= (1/2) log((λ+ exp[2t])/(λ+ 1)) + λ[(exp[2t] + λ)−1 − (λ+ 1)−1]

− (λ2/4)[(exp[2t] + λ)−2 − (λ+ 1)−2] ,

which concludes the proof.

Lemma S16. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, we have that for any t ∈ [0, T ],∫ T

T−t
a(s)2ds = t− 2λ(1− exp[−2t])/[(1 + λ)(1 + λ exp[−2t])] .

Proof. Let t ∈ [0, T ]. Similarly to the proof of Lemma S11, we have that
∫ T

T−t
a(s)ds =

∫ t

0
a(T −

s)ds. Define b such that for any t ∈ [0, T ], b(t) = a(T − t). In particular, we have that for any
t ∈ [0, T ]

b(t) = 1− 2/(1 + λ exp[−2t]) .
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We have that∫ T

T−t
a(s)2ds =

∫ t

0
b(s)2ds =

∫ t

0
(1− 4/(1 + λ exp[−2s]) + 4/(1 + λ exp[−2s])2)ds .

Combining this result and Lemma S15, we have∫ T

T−t
a(s)2ds = t+ 2λ[(λ+ exp[2t])−1 − (λ+ 1)−1]

= t− 2λ(1− exp[−2t])/[(1 + λ)(1 + λ exp[−2t])] .

Lemma S17. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, if λ ̸= 0, we have that∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = −(T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ])

+ (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

− (λ/2)(1− exp[−2T ])2/(1 + λ exp[−2T ])2 . (S32)

If λ = 0, we have that∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = −(T/2) exp[−2T ] + (1/4)(1− exp[−2T ]) . (S33)

Note that taking λ→ 0 in (S32) we recover (S33), using that for any u > 0, limλ→0 log(1+λu)/λ =
u.

Proof. We first start with the case λ ̸= 0. Similarly to the proof of Lemma S11, we have that∫ T

T−t
a(s)ds =

∫ t

0
a(T − s)ds. Define b such that for any t ∈ [0, T ], b(t) = a(T − t). We have that∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt =

∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ t

0
b(s)2ds)dt .

Let A : [0, T ] → R such that for any t ∈ [0, T ],

A(t) =
∫ t

0
exp[2

∫ T

T−s
a(u)du]ds .

Note that A(0) = 0. Hence, by integration by parts, we have∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ t

0
b(s)2ds)dt = A(T )

∫ T

0
b(t)2dt−

∫ T

0
A(t)b(t)2dt .

In what follows, we compute
∫ T

0
A(t)b(t)2dt. First, we recall that for any t ∈ [0, T ]

b(t)2 = (1− 2/(1 + λ exp[−2t]))2 = 1− 4/(1 + λ exp[−2t]) + 4/(1 + λ exp[−2t])2 . (S34)

In addition, using Lemma S12, we have that for any t ∈ [0, T ]

A(t) = (1/2){(1 + λ)2/(λ(1 + λ exp[−2t]))− (1 + λ)/λ} . (S35)

Using (S34) and (S35) we have that for any t ∈ [0, T ]

2A(t)b(t)2 = −(1 + λ)/λ+ [4(1 + λ)/λ+ (1 + λ)2/λ]u1(t)

− [4(1 + λ)2/λ+ 4(1 + λ)/λ]u2(t) + [4(1 + λ)2/λ]u3(t)

= −(1 + λ)/λ+ [(1 + λ)(5 + λ)/λ]u1(t)

− [4(1 + λ)(2 + λ)/λ]u2(t) + [4(1 + λ)2/λ]u3(t) , (S36)

where for any k ∈ {1, 2, 3} and t ∈ [0, T ] we have

uk(t) = (1 + λ exp[−2t])−k .

For any k ∈ {0, 1, 2} denote vk : [0, T ] → R such that for any t ∈ [0, T ] and k ∈ {1, 2}

v0(t) = log((λ+ exp[2t])/(λ+ 1)) , vk(t) = (exp[2t] + λ)−k − (1 + λ)−k .
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Combining (S36) and Lemma S15, we get that for any t ∈ [0, T ]

2
∫ t

0
A(s)b(s)2ds = −[(1 + λ)/λ]t

+ (1/2){[(1 + λ)(5 + λ)/λ]− [4(1 + λ)(2 + λ)/λ] + [4(1 + λ)2/λ]}v0(t)
+ {−(λ/2)[4(1 + λ)(2 + λ)/λ] + λ[4(1 + λ)2/λ]}v1(t)
− (λ2/4)[4(1 + λ)2/λ]v2(t)

= −[(1 + λ)/λ]t+ (1 + λ)2/(2λ)v0(t) + 2(1 + λ)λv1(t)− λ(1 + λ)2v2(t) .

In addition, we have that

− [(1 + λ)/λ]t+ (1 + λ)2/(2λ)v0(t) = −[(1 + λ)/λ]t+ [(1 + λ)2/λ]t

+ (1 + λ)2/(2λ) log((1 + λ exp[−2t])/(1 + λ))

= (1 + λ)t+ (1 + λ)2/(2λ) log((1 + λ exp[−2t])/(1 + λ)) .

Therefore, we get that

2
∫ t

0
A(s)b(s)2ds = (1 + λ)t+ (1 + λ)2/(2λ) log((1 + λ exp[−2t])/(1 + λ))

+ 2(1 + λ)λv1(t) + λ(1 + λ)2v2(t) . (S37)

In addition, we have that

(1 + λ)λv1(t) = −λ(1− exp[−2T ])/(1 + λ exp[−2T ]) . (S38)

We also have that

λ(1 + λ)2v2(t) = λ(2λ+ 1− 2λ exp[2T ]− exp[4T ])/(exp[2T ] + λ)2

= λ(1− exp[2T ])(1 + 2λ+ exp[2T ])/(exp[2T ] + λ)2

= −λ(1− exp[−2T ])(1 + (1 + 2λ) exp[−2T ])/(1 + λ exp[−2T ])2 . (S39)

Finally, using Lemma S12 and Lemma S16 we have

A(T )
∫ T

0
b(t)2dt = (1/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

× (T − 2λ(1− exp[−2T ])/[(1 + λ)(1 + λ exp[−2T ])])

= (T/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

− λ(1− exp[−2T ])2/(1 + λ exp[−2T ])2 . (S40)

Combining (S37), (S38), (S39) and (S40) we get∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = (T/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

− λ(1− exp[−2T ])2/(1 + λ exp[−2T ])2

− (1 + λ)(T/2) + (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

+ λ(1− exp[−2T ])/(1 + λ exp[−2T ])

− (λ/2)(1− exp[−2T ])((1 + 2λ) exp[−2T ] + 1)/(1 + λ exp[−2T ])2 . (S41)

In addition, we have that

− (λ/2)(1− exp[−2T ])2/(1 + λ exp[−2T ])2

= −λ(1− exp[−2T ])2/(1 + λ exp[−2T ])2

+ λ(1− exp[−2T ])/(1 + λ exp[−2T ])

− (λ/2)(1− exp[−2T ])((1 + 2λ) exp[−2T ] + 1)/(1 + λ exp[−2T ])2 .

Combining this result and (S41), we get∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = (T/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

− (1 + λ)(T/2) + (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

− (1/2)(1− exp[−2T ])2/(1 + λ exp[−2T ])2 . (S42)
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Finally, we have

(T/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])− (T/2)(1 + λ)

= −(T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ]) ,

which concludes the proof in the case λ ̸= 0 upon combining this result and (S42). In the case λ = 0,
we have that for any t ∈ [0, T ], a(t) = −1 and therefore by integration by part we have∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = −(T/2) exp[−2T ] + (1/4)(1− exp[−2T ]) ,

which concludes the proof.

We are now ready to prove the following results.
Proposition S18. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, we have that for any t ∈ [0, T ],

exp[2
∫ T

0
a(t)dt]{

∫ T

0
a(t)2dt+ a(T )− a(0) + 1}

= (T + 1) exp[−2T ](λ+ 1)2/(1 + λ exp[−2T ])2 .

Proof. First, we have that

a(T )− a(0) = 1− 2/(1 + λ)− 1 + 2/(1 + λ exp[−2T ])

= 2λ(1− exp[−2T ])/[(1 + λ)(1 + λ exp[−2T ])] . (S43)

In addition, using Lemma S16 we have∫ T

0
a(s)2ds = T − 2λ(1− exp[−2T ])/[(1 + λ)(1 + λ exp[−2T ])] . (S44)

Finally, using Lemma S11 we have that

exp[2
∫ T

0
a(s)ds] = exp[−2T ](λ+ 1)2/(1 + λ exp[−2T ])2 . (S45)

We conclude the proof upon combining (S43), (S44) and (S45).

Finally, we have the following proposition.
Proposition S19. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, if λ ̸= 0, we have that for any t ∈ [0, T ],∫ T

0
exp[2

∫ T

T−t
a(s)ds][

∫ T

T−t
a(s)2ds+ a(T )− a(T − t)]dt

= −(T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ])

+ (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

+ (λ/2) exp[−2T ]/(1 + λ exp[−2T ])2 .

If λ = 0, we have that∫ T

0
exp[2

∫ T

T−t
a(s)ds][

∫ T

T−t
a(s)2ds+ a(T )− a(T − t)]dt

= −(T/2) exp[−2T ] + (1/4)(1− exp[−2T ]) .

Proof. We assume that λ ̸= 0. The case where λ = 0 is left to the reader. First, using Lemma S17,
we have that∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = −(T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ])

+ (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

+ (3λ/2) exp[−2T ](1− exp[−2T ])(1 + λ)/(1 + λ exp[−2T ])2 . (S46)
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Second, using Lemma S14, we have that∫ T

0
exp[2

∫ T

T−t
a(u)du]a(T − t)dt

= −(1/2)(1− exp[−2T ])(1− λ2 exp[−2T ])/(1 + λ exp[−2T ])2 . (S47)

Third, using Lemma S12 and that a(T ) = 1− 2/(1 + λ), we have that

a(T )
∫ T

0
exp[2

∫ T

T−t
a(s)ds]dt = a(T )(1/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

= (1/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

− (1− exp[−2T ])/(1 + λ exp[−2T ]) . (S48)

Combining (S46), (S47) and (S48) we get∫ T

0
exp[2

∫ T

T−t
a(s)ds][

∫ T

T−t
a(s)2ds+ a(T )− a(T − t)]dt

= −(T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ])

+ (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

+ (3λ/2) exp[−2T ](1− exp[−2T ])(1 + λ)/(1 + λ exp[−2T ])2

+ (1/2)(1− exp[−2T ])(1− λ2 exp[−2T ])/(1 + λ exp[−2T ])2

+ (1/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

− (1− exp[−2T ])/(1 + λ exp[−2T ])

In addition, we have

(λ/2)(1− exp[−2T ])/(1 + λ exp[−2T ])2

= (1/2)(1− exp[−2T ])(1− λ2 exp[−2T ])/(1 + λ exp[−2T ])2

+ (1/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])

− (1− exp[−2T ])/(1 + λ exp[−2T ]) ,

Finally, we have

(λ/2) exp[−2T ]/(1 + λ exp[−2T ])2

= −(λ/2)(1− exp[−2T ])2/(1 + λ exp[−2T ])2

+ (λ/2)(1− exp[−2T ])/(1 + λ exp[−2T ])2 .

which concludes the proof.

Finally, we have the following result.
Proposition S20. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, if λ ̸= 0, we have that for any t ∈ [0, T ],

− exp[2
∫ T

0
a(t)dt]{

∫ T

0
a(t)2dt+ a(T )− a(0)}+ 1− exp[2

∫ T

0
a(t)dt]

− 2
∫ T

0
exp[2

∫ T

T−t
a(s)ds][

∫ T

T−t
a(s)2ds+ a(T )− a(T − t)]dt

= 1− exp[−2T ](1− λT exp[−2T ])(λ+ 1)2/(1 + λ exp[−2T ])2

− (1 + λ)2/(2λ) log((1 + λ)/(1 + λ exp[−2T ]))

− λ exp[−2T ]/(1 + λ exp[−2T ])2 .

In particular, we have that

− exp[2
∫ T

0
a(t)dt]{

∫ T

0
a(t)2dt+ a(T )− a(0)}+ 1− exp[2

∫ T

0
a(t)dt]

− 2
∫ T

0
exp[2

∫ T

T−t
a(s)ds][

∫ T

T−t
a(s)2ds+ a(T )− a(T − t)]dt

= 1− (1/2)(1 + λ)2 log(1 + λ)/λ+O(exp[−2T ]) .
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If λ = 0, we have that for any t ∈ [0, T ]

− exp[2
∫ T

0
a(t)dt]{

∫ T

0
a(t)2dt+ a(T )− a(0)}+ 1− exp[2

∫ T

0
a(t)dt]

− 2
∫ T

0
exp[2

∫ T

T−t
a(s)ds][

∫ T

T−t
a(s)2ds+ a(T )− a(T − t)]dt

= (1/2)(1− exp[−2T ]) .

Proof. The proof is a direct consequence of Proposition S18, Proposition S19 and the fact that

− exp[−2T ](1− λT exp[−2T ])(λ+ 1)2/(1 + λ exp[−2T ])2

= −(T + 1) exp[−2T ](1 + λ2)/(1 + λ exp[−2T ])2

+ T (1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ]) .

Proposition S21. Let λ ∈ (−1,+∞) and a : [0, T ] → R such that for any t ∈ [0, T ],

a(t) = 1− 2/(1 + exp[−2(T − t)]λ) .

Then, we have that

exp[2
∫ T

0
a(t)dt]− 1−

∫ T

0
exp[2

∫ T

T−t
a(s)ds]{

∫ T

T−t
a(s)2ds+ a(T )− 3a(T − t)}dt

= exp[−2T ](1 + λ)2/(1 + λ exp[−2T ])2 − 1

− (1/2)(1 + λ)(1− exp[−2T ])/(1 + λ exp[−2T ])(1− 2/(1 + λ))

− (3/2)(1− exp[−2T ])(1− λ2 exp[−2T ])/(1 + λ exp[−2T ])2

+ (T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ])

− (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

+ (λ/2)(1− exp[−2T ])2/(1 + λ exp[−2T ])2 .

In particular, we have

exp[2
∫ T

0
a(t)dt]− 1−

∫ T

0
exp[2

∫ T

T−t
a(s)ds]{

∫ T

T−t
a(s)2ds+ a(T )− 3a(T − t)}dt

= −2− (1 + λ)2/(4λ) log(1 + λ) +O(exp[−2T ]) .

Proof. Using Lemma S11, we have that

exp[2
∫ T

0
a(t)dt] = exp[−2T ](1 + λ)2/(1 + λ exp[−2T ])2 . (S49)

Using Lemma S12, we have∫ T

0
exp[2

∫ T

T−t
a(s)ds]dt = (1/2)(1 + λ)(1− exp[−2t])/(1 + λ exp[−2t]) . (S50)

Using Lemma S14, we have∫ T

0
exp[2

∫ T

T−t
a(s)ds]a(T − t)dt

= −(1/2)(1− exp[−2T ])(1− λ2 exp[−2T ])/(1 + λ exp[−2T ])2 . (S51)

Finally, using Lemma S17, we have∫ T

0
exp[2

∫ T

T−t
a(s)ds](

∫ T

T−t
a(s)2ds)dt = −(T/2)(1 + λ)2 exp[−2T ]/(1 + λ exp[−2T ])

+ (1 + λ)2/(4λ) log((1 + λ)/(1 + λ exp[−2T ]))

− (λ/2)(1− exp[−2T ])2/(1 + λ exp[−2T ])2 . (S52)

We conclude upon combining (S49), (S50), (S51), (S52) and that a(T ) = 1− 2/(1 + λ).

18



S5.4 General setting

In this section, we prove Theorem 2. In order to compare our results with [5, Theorem 1], we redefine
a few processes. Let p ∈ P(Rd) be the target distribution. Consider the Ornstein-Ulhenbeck forward
dynamics (xt)t∈[0,T ] such that dxt = −xtdt+

√
2dwt and x0 has distribution p0. We consider the

backward chain (Xk)k∈{0,...,N} such that for any k ∈ {0, . . . , N − 1},

Xk = Xk+1 + γk+1{Xk+1 + 2∇ log ptk+1
(Xk+1)}+

√
2γk+1Zk+1, (S53)

with {Zk}k∈N a family of i.i.d. Gaussian random variables with zero mean and identity covariance
matrix, tk =

∑k
ℓ=1 γℓ,

∑N
ℓ=1 γℓ = T and XN has distribution p0 = N(0, Id) (independent from

{Zk}k∈N). Notice that here we do not consider a score approximation in the recursion in order to
clarify our approximation results. We recall the following result from [5, Theorem 1].
Theorem S22. Assume that p0 admits a bounded density (w.r.t. the Lebesgue measure) p0 ∈
C3(Rd, (0,+∞)) and that there exist d1, A1, A2, A3 ≥ 0, β1, β2, β3 ∈ N and m1 > 0 such that for
any x ∈ Rd and i ∈ {1, 2, 3}

∥∇i log p0(x)∥ ≤ Ai(1 + ∥x∥βi), ⟨∇ log p0(x), x⟩ ≤ −m1∥x∥2 + d1∥x∥,
with β1 = 1. Then there exist B,C,D ≥ 0 such that for any N ∈ N and {γk}Nk=1 with γk > 0 for
any k ∈ {1, . . . , N} we have

∥L(X0)− p0∥TV ≤ C exp[DT ]
√
γ⋆ +B exp[−T ]. (S54)

where γ⋆ = supk∈{1,...,N} γk and L(X0) is the distribution of X0 given in (S53).

In the rest of this note we improve the theorem in the following way:

(a) We remove the exponential dependency w.r.t. the time in the first term of the RHS of (S54).
(b) We provide explicit bounds B,C,D ≥ 0 depending on the parameters of p0.

Lemma S23. Assume

supx,t ∥∇2 log pt(x)∥ ≤ K and ∥∂t∇ log pt(x)∥ ≤M e−αt ∥x∥.

Then there exists D ≥ 0 such that for any x ∈ Rd and t ∈ [0, T ], ∥∇ log pt(x)∥ ≤ D(1 + ∥x∥) with
D = ∥∇ log p0(0)∥+K + CT .

Proof. Let x ∈ Rd and t ∈ [0, T ]. Since (t, x) 7→ log pt(x) ∈ C2([0, T ]× Rd, (0,+∞)), we have
that

∇ log pt(x) = ∇ log p0(x) +
∫ t

0
∂s∇ log ps(x)ds

= ∇ log p0(0) +
∫ 1

0
∇2 log p0(ux)(x)du+

∫ t

0
∂s∇ log ps(x)ds.

Therefore, we have that

∥∇ log pt(x)∥ ≤ ∥∇ log p0(0)∥+K∥x∥+
∫ t

0
∥∂s∇ log ps(x)∥ds

≤ ∥∇ log p0(0)∥+K∥x∥+M
∑N−1

k=0 (tk − tk−1) exp[−αtk]∥x∥
≤ ∥∇ log p0(0)∥+K∥x∥+MT∥x∥,

which concludes the proof.

Note that in the previous proposition we can derive a tighter bound for D which does not depend
on the limiting time T > 0. However, we do not use the bound D > 0 in our quantitative result and
therefore our simple bound suffices.

We also have the following useful lemma.

Lemma S24. Let T ≥ log(2E[∥X0∥2]) + log(2)/2 and assume that there exists η > 0 such that
aaa Then, we have ∫

Rd p∞(xT )
2/pT (xT )dxT ≤ exp[4] + ET ,

with ET ∼ C exp[−T ] when T → +∞ and C ≥ 0.
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If p∞ satisfies the following Φ-entropy inequality for any f : Rd → (0,∞) measurable∫
Rd ∥∇f(x)∥2/f(x)3p∞(x)dx ≤ C[

∫
Rd(1/f(x))p∞(x)dx− 1/(

∫
Rd f(x)p∞(x)dx)] , (S55)

with C ≥ 0. Then, we have as in [1, Proposition 7.6.1]

χ2(p∞||pt) =
∫
Rd p2∞(x)/pT (x)dx− 1 ≤ e−Ct ,

which immediately concludes the proof of Lemma S24. However, to the best of our knowledge,
establishing (S55) remains an open problem. Note that controlling χ2(pt||p∞) is much easier as the
exponential decay of this divergence is linked with the Poincaré inequality which is satisfied in our
Gaussian setting. In what follows, we consider another approach which relies on the structure of the
Ornstein-Ulhenbeck transition kernel and provide non-tight upper bounds.

Proof. Let T ≥ 0, ε > 0 and xT ∈ Rd

∥xT − e−Tx0∥2 ≤ (1 + ε)∥xT ∥2 + (1 + 1/ε)e−2T ∥x0∥2 .

Let ε > 0 and xT ∈ Rd, we have

pT (xT )
−2 ≤ exp[(1 + ε)/σ2

T ∥xT ∥2]
× (

∫
Rd p(x0) exp[−e−2T (1 + 1/ε)/(2σ2

T )∥x0∥2]dx0)−2(2πσ2
T )

d .

For any xT ∈ Rd, we have

p∞(xT )
2/pT (xT ) ≤ exp[{−1 + (1 + ε)/(2σ2

T )}∥xT ∥2](2π/σ2
T )

−d/2

(
∫
Rd p(x0) exp[−e−2T (1 + 1/ε)/(2σ2

T )∥x0∥2]dx0)−1 .

In what follows, we set ε = e−T . We have that

−1+(1+ε)/(2σ2
T ) = (2σ2

T )
−1(−2σ2

T +1+ε) = −(1−2e−T +ε)/(2σ2
T ) = −(1−e−T )/(2σ2

T ) .

Therefore, we get that∫
Rd exp[{−1 + (1 + ε)/(2σ2

T )}∥xT ∥2](2π/σ2
T )

−d/2dxT = (1− e−T )−d/2 . (S56)

In addition, we have that for any R ≥ 0 using that σ2
T ≥ 1/2 since T ≥ log(2)/2∫

Rd p(x0) exp[−e−2T (1 + 1/ε)/σ2
T ∥x0∥2]dx0

≥ P(X0 ∈ B̄(0, R)) exp[−e−2T (1 + 1/ε)/σ2
TR

2]

≥ P(X0 ∈ B̄(0, R)) exp[−4e−TR2] (S57)

Now let R2 = eT . We obtain∫
Rd p(x0) exp[−e−2T (1 + 1/ε)/σ2

T ∥x0∥2]dx0 ≥ P(X0 ∈ B̄(0, eT/2)) exp[−4] .

In addition, using Markov inequality, we have

P(X0 ∈ B̄(0, eT/2)) = 1− P(∥X0∥2 ≥ eT ) ≥ 1− E[∥X0∥2]e−T ≥ 0 .

Therefore, combining this result and (S57), we have∫
Rd p(x0) exp[−e−2T (1 + 1/ε)/σ2

T ∥x0∥2]dx0 ≥ exp[−4](1− E[∥X0∥2]e−T ) > 0 . (S58)

We conclude upon combining (S56) and (S58).

We are now ready to state the following lemma.

Lemma S25. There exists a unique strong solution to the SDE dyt = {yt + 2∇ log pT−t(yt)}dt+√
2dwt with initial condition L(y0) = p∞. In addition, we have that E[supt∈[0,T ] ∥yt∥α] < +∞ for

any α > 0.
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Proof. Let b : [0, T ] × Rd given for any t ∈ [0, T ] and x ∈ Rd by b(t, x) = x + 2∇ log pt(x).
We have that b ∈ C1([0, T ] × Rd,Rd) and in particular is locally Lipschitz. In addition, using
Lemma S23 we have that for any t ∈ [0, T ] and x ∈ Rd, ∥b(t, x)∥ ≤ (1 + D)∥x∥. Hence using
[14, Theorem 2.3, Theorem 3.1] and [35, Theorem 2.1] (with V (x) = (1/2)∥x∥2) there exists a
unique strong solution to the SDE dyt = {yt + 2∇ log pT−t(yt)}dt+

√
2dwt with initial condition

L(y0) = p∞. Let α > 1, then we have for any t ∈ [0, T ]

sups∈[0,t] ∥yt∥α ≤ 3α−1[∥y0∥α + tα−1(1 +D)α
∫ t

0
supu∈[0,s] ∥yu∥αdu+ 2α/2 sups∈[0,t] ∥wu∥α].

Using that E[sups∈[0,T ] ∥wu∥α] and Grönwall’s lemma, we get that E[supt∈[0,T ] ∥yt∥α] < +∞ for
any α > 1. The result is extended to any α > 0 since for any α ∈ (0, 1] we have that

E[supt∈[0,T ] ∥yt∥α] ≤ E[supt∈[0,T ] ∥yt∥]α < +∞.

We are now ready to prove Theorem 2.

Proof. The beginning of the proof is similar to the one of [5, Theorem 1]. For any k ∈ {1, . . . , N},
denote Rk the Markov kernel such that for any x ∈ Rd, A ∈ B(Rd) and k ∈ {0, . . . , N − 1} we
have

Rk+1(x,A) = (4πγk+1)
−d/2 ∫

A
exp[−∥x̃− Tk+1(x)∥2/(4γk+1)]dx̃,

where for any x ∈ Rd, Tk+1(x) = x + γk+1{x + 2∇ log ptk+1
(x)}. Define for any k0, k1 ∈

{1, . . . , N} with k1 ≥ k0 Qk0,k1
=

∏k1

ℓ=k0
Rk1+k0−ℓ. Finally, for ease of notation, we also define

for any k ∈ {1, . . . , N}, Qk = Qk+1,N . Note that for any k ∈ {1, . . . , N}, Xk has distribution
p∞Qk, where p∞ ∈ P(Rd) with density w.r.t. the Lebesgue measure p∞. Let P ∈ P(C) be the
probability measure associated with the diffusion

dxt = −xtdt+
√
2dwt, x0 ∼ p0,

First, we have for any A ∈ B(Rd)

p0PT |0(P
R)T |0(A) = PT (P

R)T |0(A) = (PR)0(P
R)T |0(A) = (PR)T (A) = p0(A).

Hence p0 = p0PT |0(P
R)T |0. Using this result we have

∥p0 − p∞Q0∥TV = ∥p0PT |0(P
R)T |0 − p∞Q0∥TV

≤ ∥p0PT |0(P
R)T |0 − p∞(PR)T |0∥TV + ∥p∞(PR)T |0 − p∞Q0∥TV

≤ ∥p0PT |0 − p∞∥TV + ∥p∞(PR)T |0 − p∞Q0∥TV.

Note that L(X0) = p∞Q0 and therefore

∥L(X0)− p0∥TV ≤ ∥p0PT |0 − p∞∥TV + ∥p∞(PR)T |0 − p∞Q0∥TV.

We now bound each one of these terms.

(a) First, we bound ∥p0PT |0 − p∞∥TV. Using the Pinsker inequality [1, Equation 5.2.2] we have
that

∥p0PT |0 − p∞∥TV ≤
√
2KL(p0PT |0∥p∞)1/2. (S59)

In addition, p∞ satisfies the log-Sobolev inequality with constant C = 1, [8]. Namely, for any
f ∈ C1(Rd, (0,+∞)) such that f ∈ L1(p∞) and

∫
Rd ∥∇ log f(x)∥2f(x)dp∞(x) < +∞ we have∫

Rd f(x) log f(x)dp∞(x)− (
∫
Rd f(x)dp∞(x))(log

∫
Rd f(x)dp∞(x))

≤ (C/2)
∫
Rd ∥∇ log f(x)∥2f(x)dp∞(x),

with C = 1. Therefore, using [1, Theorem 5.2.1] we have that for any f ∈ L1(p∞) with∫
Rd |f(x)||log f(x)|dp∞(x) < +∞

Entp∞

(
PT |0[f ]

)
≤ exp[−2T ]Entp∞

(f), (S60)
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where for any g ∈ L1(p∞) with
∫
Rd |g(x)||log g(x)|dp∞(x) < +∞ we define

Entp∞
(g) =

∫
Rd g(x) log g(x)dp∞(x)− (

∫
Rd g(x)dp∞(x))(log

∫
Rd g(x)dp∞(x)).

Note that (dpT /dp∞) = PT |0[dp0/dp∞] and that for any µ ∈ P(Rd) with KL(µ∥p∞) < +∞ we
have Entp∞

(dµ/dp∞) = KL(µ∥p∞). Using these results, (S59) and (S60) we get that

∥p0PT |0 − p∞∥TV ≤
√
2 exp[−T ] KL(p0∥p∞)1/2. (S61)

In addition, we have that

KL(p0∥p∞) = (d/2) log(2π) +
∫
Rd ∥x∥2dp0(x)−H(p0),

where H(p0) = −
∫
Rd log(p0(x))p0(x)dx. Combining this result and (S61) we get that

∥p0PT |0 − p∞∥TV ≤
√
2 exp[−T ]((d/2) log(2π) +

∫
Rd ∥x∥2dp0(x)−H(p0))

1/2,

which concludes the first part of the proof.

(b) First, let Q ∈ P(C) such that Q = p∞PR
|0, where PR

|0 is the disintegration of PR w.r.t. ϕ : C →
Rd given for any ω ∈ C by ϕ(ω) = ωT , see [25] for instance. Note that for any f ∈ C(C) with f
bounded we have

Q[f ] =
∫
Rd

∫
C f(ω)P

R
|0(ω0,dω)dp∞(ω0) =

∫
Rd

∫
C f(ω)P

R
|0(ω0,dω)(dp∞/dpT )(ω0)dpT (ω0)

=
∫
C f(ω)(dp∞/dpT )(ω0)dP

R(ω).

Therefore, we get that for any ω ∈ C, (dQ/dPR)(ω) = (dp∞/dpT )(ω0). Let R = p∞P|0. Note that
for any t ∈ [0, T ], Rt = p∞ and that R is associated with the process dxt = −xtdt+

√
2dwt with

L(x0) = p∞. In particular, R satisfies [2, Hypothesis 1.8]. Using [25, Theorem 2.4] we have that

KL(P∥R) = KL(p0∥p∞) +
∫
Rd KL(P|0(x0)∥P|0(x0))dp0(x0) = KL(p0∥p∞) < +∞.

Therefore, we can apply [2, Theorem 4.9]. Let u ∈ C∞
c (Rd,R), we have that (Mu

t (y))t∈[0,T ] is a
local martingale, where we have for any t ∈ [0, T ]

Mu
t (y) = u(yt)− u(y0)−

∫ t

0
{⟨∇u(ys), ys + 2∇ log pT−s(ys)⟩+∆u(ys)}ds,

where L(y) = PR. Since u is compactly supported we have that supω∈C supt∈[0,T ] |Mu
t (ω)| < +∞

and therefore (Mu
t (y))t∈[0,T ] is a martingale. We now show that (Mu

t (y))t∈[0,T ] is a martingale,
with L(y) = Q. Since supω∈C supt∈[0,T ] |Mu

t (ω)| < +∞, we have that for any t ∈ [0, T ],
E[|Mu

t |] < +∞. Let t, s ∈ [0, T ] with t > s and g : C → Rd bounded. We have that
E[|g({xT−s}s∈[0,t])|2(dp∞/dpT )(xT )2] < +∞. Hence, we have that

E[(Mu
t (xT−·)−Mu

s (xT−·))g({xT−s}s∈[0,t])(dp∞/dpT )(xT )] = 0.

Using this result and that for any ω ∈ C, (dQ/dPR)(ω) = (dp∞/dpT )(ω0) we get

E[(Mu
t (y)−Mu

s (y))g({ys}s∈[0,t])] = 0.

Hence, for any u ∈ C2
c(R

d,R), (Mu
t (y))t∈[0,T ] is a martingale. In addition, (Mu

t (Z))t∈[0,T ] is a
martingale using Lemma S25 and Itô’s lemma, where Z is the solution to the SDE in Lemma S25.
In addition, we have that L(Z0) = L(y0) = p∞. Using Lemma S23 and the remark following
[2, Hypothesis 1.8], we get that L(Z) = L(y) = Q. We have just shown that the time-reversed
process with initialisation p∞ can be obtained as a strong solution of an SDE. Using Lemma S23 and
Lemma S25, we have that for any t ∈ [0, T ]

E[
∫ t

0
∥xs + 2∇ log ps(xs)∥2ds+

∫ t

0
∥ws + 2∇ log ps(ws)∥2ds] < +∞.

Combining this result and [5, Lemma S13] we have that

∥p∞PR
T |0 − p∞Q0∥2TV ≤ (1/2)

∫ T

0
E[∥b1(t, (ys)s∈[0,T ])− b2(t, (ys)s∈[0,T ])∥2]dt, (S62)
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where for any t ∈ [0, T ] and ω ∈ C we have that

b1(t, ω) = ωt + 2∇ log pT−t(ωt), b2(t, ω) = ωtγ
+ 2∇ log pT−tγ

(ωtγ
),

where tγ =
∑N−1

k=0 1[T−tk+1,T−tk)(t)(T − tk+1). Noting that (yt)t∈[0,T ] is distributed according to

Q and using that (dQ/dPR)(ω) = (dp∞/dpT )(ω0), (S62) and the Cauchy-Schwarz inequality we
have

∥p∞PR
T |0 − p∞Q0∥2TV (S63)

≤ (1/2)E[(dp∞/dpT )(xT )
2]1/2

∫ T

0
E1/2[∥b1(t, (xT−s)s∈[0,T ])− b2(t, (xT−s)s∈[0,T ])∥4]dt

≤ (1/2)E[(dp∞/dpT )(xT )
2]1/2

×
∫ T

0
E1/2[∥b1(T − t, (xT−s)s∈[0,T ])− b2(T − t, (xT−s)s∈[0,T ])∥4]dt.

In addition, we have that for any t ∈ [0, T ] and ω ∈ C we have

∥b1(t, ω)− b2(t, ω)∥
≤ ∥ωt − ωtγ

∥+ 2∥∇ log pT−t(ωt)−∇ log pT−tγ
(ωt)∥

+ 2∥∇ log pT−tγ
(ωt)−∇ log pT−tγ

(ωtγ
)∥

≤ (1 + 2 sups∈[0,T ] supx∈Rd ∥∇2 log ps(x)∥)∥ωt − ωtγ
∥

+2 sups∈[T−t,T−tγ ] ∥∂t∇ log pt(ωt)∥(t− tγ)

≤ (1 + 2K)∥ωt − ωtγ
∥+ 2 sups∈[T−t,T−tγ ] ∥∂s∇ log ps(ωt)∥(t− tγ).

Note that

T − (T − t)γ = T −∑N−1
k=0 1[T−tk+1,T−tk)(T − t)(T − tk+1) =

∑N−1
k=0 1(tk,tk+1](t)tk+1.

For any t ∈ [0, T ], denote tγ = T − (T − t)γ =
∑N−1

k=0 1(tk,tk+1](t)tk+1. Therefore, we get that
for any t ∈ (tk, tk+1]

∥b1(T − t, ω)− b2(T − t, ω)∥
≤ (1 + 2K)∥ωT−t − ω(T−t)γ

∥+ 2 sups∈[t,tγ ] ∥∂s∇ log ps(ωT−t)∥(tγ − t)

≤ (1 + 2K)∥ωT−t − ω(T−t)γ
∥+ 2 sups∈[tk,tk+1] ∥∂s∇ log ps(ωT−t)∥γk+1

≤ (1 + 2K)∥ωT−t − ω(T−t)γ
∥+ 2Stk(ωT−t)γk+1.

Combining this result and that for any a, b ≥ 0, (a+b)4 ≤ 8a4+8b4 we get that for any t ∈ (tk, tk+1]

E[∥b1(T − t, (xT−s)s∈[0,T ])− b2(T − t, (xT−s)s∈[0,T ])∥4] (S64)

≤ 8(1 + 2K)4E[∥xt − xtk∥
4] + 16E[Stk(xt)

4]γ4k+1.

In addition, we have that for any t ∈ [0, T ], xt = exp[−t]x0 + w
(1−exp[−2t])

1/2 . Hence, for any
s, t ∈ [0, T ] with t > s we have

∥xt − xs∥ ≤ exp[−s](exp[t− s]− 1)∥x0∥+ ∥w(1−exp[−2t]) − w(1−exp[−2s])∥.
Therefore, we have that for any s, t ∈ [0, T ] with t > s

E[∥xt − xs∥4] ≤ 8 exp[−4s](1− exp[−t+ s])4E[∥x0∥4] + 8E[∥w(1−exp[−2t]) − w(1−exp[−2s])∥4]
≤ 8 exp[−4s](1− exp[−t+ s])4E[∥x0∥4] + 24(exp[−t]− exp[−s])2

≤ 8 exp[−4s](1− exp[−t+ s])4E[∥x0∥4] + 24 exp[−2s](1− exp[−t+ s])2

≤ 8E[∥x0∥4] exp[−4s](t− s)4 + 24 exp[−2s](t− s)2. (S65)

In addition, using that that for any k ∈ {0, . . . , N − 1} and x ∈ Rd, Stk(x) ≤M exp[−αtk]∥x∥ we
get that

E[Stk(xt)
4] ≤ 24M4 exp[−4αtk]{1 + E[∥x0∥4]}.
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Combining this result, (S64) and (S65) we get that for any t ∈ (tk, tk+1]

E[∥b1(T − t, (xT−s)s∈[0,T ])− b2(T − t, (xT−s)s∈[0,T ])∥4]
≤ 64(1 + 2K)4E[∥x0∥4] exp[−4tk]γ

4
k+1

+ 192(1 + 2K)4 exp[−2tk]γ
2
k+1 + 384M4 exp[−4αtk]{1 + E[∥x0∥4]}γ4k+1.

Using this result and that for any a, b ≥ 0, (a+ b)1/2 ≤ a1/2 + b1/2, we have for any t ∈ (tk, tk+1]

E1/2[∥b1(T − t, (xT−s)s∈[0,T ])− b2(T − t, (xT−s)s∈[0,T ])∥4]
≤ 8(1 + 2K)2E1/2[∥x0∥4] exp[−2tk]γ

2
k+1

+ 14(1 + 2K)2 exp[−tk]γk+1 + 20M2 exp[−2αtk]{1 + E1/2[∥x0∥4]}γ2k+1.
(S66)

We have that for any β > 0,∑N−1
k=0 exp[−βtk] ≤

∑
k∈N exp[−βγ⋆k] ≤ (1− exp[−βγ⋆])−1 ≤ 1 + β/γ⋆.

Then using this result, (S66) and (S63) we get that

∥p∞PR
T |0 − p∞Q0∥2TV≤ E[(dp∞/dpT )(xT )

2]1/2[4(1 + 2K)2E1/2[∥x0∥4](1 + /(2γ⋆))(γ
⋆)3

+ 7(1 + 2K)2(1 + 1/γ⋆)(γ
⋆)2 + 10M2{1 + E1/2[∥x0∥4]}(1 + 1/(2αγ⋆))(γ

⋆)3].

Therefore, we get that

∥p∞PR
T |0 − p∞Q0∥TV≤ E[(dp∞/dpT )(xT )

2]1/4[2(1 + 2K)E1/4[∥x0∥4](1 + /(2γ⋆)
1/2)(γ⋆)3/2

+ 3(1 + 2K)(1 + 1/γ1/2⋆ )γ⋆ + 4M{1 + E1/4[∥x0∥4]}(1 + 1/(2αγ⋆)
1/2)(γ⋆)3/2]

≤ E[(dp∞/dpT )(xT )
2]1/4[6(1 + 2K)(1 + E1/4[∥x0∥4])

+ 4M{1 + E1/4[∥x0∥4]}(1 + 1/(2α)1/2)]((γ⋆)2/γ⋆)
1/2

≤ 6(1 + E1/4[∥x0∥4])E[(dp∞/dpT )(xT )2]1/4[1 +K +M(1 + 1/(2α)1/2)]((γ⋆)2/γ⋆)
1/2,

which concludes the proof upon using Lemma S24.

We now check that the assumption of Theorem 2 are satisfied in a Gaussian setting.

Proposition S26. Assume that p0 = N(0,Σ) and that T ≥ 1+ (1/2)[log+(∥Σ∥) + log(d+1)] then
we have that for any t ∈ [0, T ] and x ∈ Rd

∥∇2 log pt(x)∥ ≤ max(1, ∥Σ−1∥), ∥∂t∇ log pt(x)∥ ≤ 2 exp[−2t] max(1, ∥Σ−1∥)2∥Σ−Id ∥∥x∥.

In addition, we have that
∫
Rd p∞(x)2/pT (x)dx ≤

√
2.

Proof. Recall that for any t ∈ [0, T ], xt = exp[−t]x0 + w1−exp[−2t]. Therefore, we have that for
any t ∈ [0, T ], pt = N(0,Σt) with Σt = exp[−2t]Σ + (1 − exp[−2t]) Id. Hence, we get that for
any t ∈ [0, T ] and x ∈ Rd, ∇2 log pt(x) = (exp[−2t]Σ + (1 − exp[−2t] Id)−1. Using this result,
we have that for any t ∈ [0, T ] and x ∈ Rd, ∥∇2 log pt(x)∥ ≤ max(1, ∥Σ−1∥). Similarly, for any
t ∈ [0, T ] and x ∈ Rd we have

∂t∇ log pt(x) = ∂tΣ
−1
t x = −Σ−1

t (∂tΣt)Σ
−1
t x.

Hence, for any t ∈ [0, T ] and x ∈ Rd we have ∥∂t∇ log pt(x)∥ ≤ 2 exp[−2t] max(1, ∥Σ−1∥)2∥Σ−
Id ∥∥x∥. Finally, we have that for any t ∈ [0, T ] and x ∈ Rd

⟨x, [2 Id−(exp[−2t]Σ+(1−exp[−2t]) Id)−1]x⟩ ≥ (2−(exp[−2t]∥Σ−1∥−1+(1−exp[−2t]))−1)∥x∥2.
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Let ε ∈ (0, 1/2]. For any t ∈ [0, T ], we have that 2−(exp[−2t]∥Σ−1∥−1+(1−exp[−2t]))−1 ≥ 1−ε
if and only if exp[−2t](1−∥Σ−1∥−1) ≤ 1−(1+ε)−1. Using that − log(1−(1+ε)−1) = log(1+ε−1)

we have that for any t ≥ (1/2) log(1 + ε−1) and x ∈ Rd

p∞(x)2/pt(x) ≤ exp[−∥x∥2/4](2π)−d/2 det(Σt).

Combining this result and the fact that
∫
Rd exp[−∥x∥2/2(1− ε)]dx = (2(1− ε)π)d/2, we get that

for any t ≥ (1/2) log(1 + ε−1)∫
Rd p∞(x)2/pt(x)dx ≤

∫
Rd exp[−∥x∥2/2(1− ε)](2π)−d/2 det(Σt)

1/2dx ≤ (1− ε)d/2 det(Σt)
1/2.

Let ε = 1/(2d) ≤ 1/2. Note that T ≥ (1/2){− log(|∥Σ−1∥−1 − 1|) + log(1 + 2d)}. Hence, we
have that ∫

Rd p∞(x)2/pT (x)dx ≤ exp[− log(1− 1/(2d))(d/2)] det(ΣT )
1/2.

Since for any t ∈ [0, 1/2), − log(1− t) ≤ log(2)t we get that∫
Rd p∞(x)2/pT (x)dx ≤ 21/4 det(ΣT )

1/2. (S67)

Finally, using that ΣT = exp[−2T ]Σ + (1− exp[−2T ]) Id we have that

det(ΣT )
1/2 ≤ (exp[−2T ]∥Σ∥+ 1− exp[−2T ])d/2 ≤ (1 + exp[−2T ]∥Σ∥)d/2.

Hence, using that result and that for any t ≥ 0, log(1 + t) ≤ t we have

det(ΣT )
1/2 ≤ exp[exp[−2T ]∥Σ∥(d/2)] .

Since, T ≥ (1/2){log(∥Σ∥) + log(d) + log(2) − log(log(21/4))}, we get that det(ΣT )
1/2 ≤ 2,

which concludes the proof upon combining this result and (S67).

Therefore, we get the following simplified result in the Gaussian setting.

Corollary S27. Assume that p = N(0,Σ), with ∥Σ−1∥ ≥ 1, γ⋆ = γ⋆ = γ > 0 and T ≥
1 + (1/2)[log+(∥Σ∥) + log(d+ 1)], then we have

∥L(X0)− p0∥TV ≤ exp[−T/2](log+(∥Σ−1∥) + ∥Σ− Id ∥)1/2

+48(1 + ∥Σ∥1/2d1/2)∥Σ−1∥2[1 + ∥Σ− Id ∥]√γ.

Proof. Using (S14) and Proposition S26 we have

∥L(X0)− p0∥TV ≤ exp[−T/2](− log(det(Σ)) + Tr(Σ)− d)1/2

+12(1 + (
∫
Rd ∥x∥4dp0(x))1/4)[1 +K + 2C]

√
(γ⋆)2/γ⋆

≤ exp[−T/2](− log(det(Σ)) + Tr(Σ)− d)1/2

+12(1 + (
∫
Rd ∥x∥4dp0(x))1/4)[1 + ∥Σ−1∥+ 2∥Σ−1∥2∥Σ− Id ∥]

√
(γ⋆)2/γ⋆

≤ exp[−T/2](− log(det(Σ)) + Tr(Σ)− d)1/2

+12(1 + 31/4∥Σ∥1/2d1/2)[1 + ∥Σ−1∥+ 2∥Σ−1∥2∥Σ− Id ∥]
√
(γ⋆)2/γ⋆

≤ exp[−T/2](− log(det(Σ)) + Tr(Σ)− d)1/2

+48(1 + ∥Σ∥1/2d1/2)∥Σ−1∥2[1 + ∥Σ− Id ∥]
√

(γ⋆)2/γ⋆

≤ exp[−T/2](log+(∥Σ−1∥) + ∥Σ− Id ∥)1/2

+48(1 + ∥Σ∥1/2d1/2)∥Σ−1∥2[1 + ∥Σ− Id ∥]
√

(γ⋆)2/γ⋆.
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S6 Proof of Theorem 3

Proof. For any x and j, denote p̄j,0(·|x) the distribution of x̄j,0 given xj = x and pj,0 the distribution
of x̃j,0. For any j we have

KL(pj∥pj,0) = KL(pj+1∥pj+1,0) + E[KL(p̄j+1(·|xj+1)∥p̄j+1,0(·|xj+1))].

By recursion, we have that

KL(p∥p0) = KL(pJ∥pj,0) +
∑J

j=1 E[KL(p̄j(·|xj)∥p̄j,0(·|xj))].
Combining Proposition S9 and Lemma S4, we get that

KL(p∥p0) ≤ (δ + exp[−4T ])(2−JL)n +
∑J

j=1(δ + exp[−4T ])(2−jL)n(2n − 1) + ET,δ.

Therefore, KL(p∥p0) ≤ (δ + exp[−4T ])Ln + ET,δ , which concludes the proof.

S7 Experimental Details on Gaussian Experiments

We now give some details on the experiments in Section 3.2 (Figure 2). We use the exact formulas for
the Stein score of pt in this case: if x0 ∼ N (M,Σ), then xt ∼ N(Mt,Σt) with Mt = e−tM and

Σt = e−2tΣ+ (1− e−2t) Id .

Under an ideal situation where there is no score error, the discretization of the (backward) generative
process is given by equation (S23):

xk+1 = ((1 + δ) Id−2δΣ−1
T−kδ)xk + 2δΣ−1

T−kδMT−kδ +
√
2δzk+1 ,

where δ is the uniform step size and zk are iid white Gaussian random variables. For the SGM case,
M = 0. The starting step of this discretization is itself x0 ∼ N (0, Id). From this formula, the
covariance matrix Σ̂k of xk satisfies the recursion (S16):

Σ̂k+1 = ((1 + δ) Id−2δΣ−1
T−kδ)Σ̂k((1 + δ) Id−2δΣ−1

T−kδ) + 2δ Id ,

from which we can exactly compute Σ̂k for very k, and especially for k = N = T/δ, as a function of
Σ, the final time T , and the step size δ. In all our experiments, we choose stationary processes: their
covariance Σ is diagonal in a Fourier basis, with eigenvalues (power spectrum) noted P̂k. All the xk
remain stationary so Σ̂k is still diagonal in a Fourier basis, with power spectrum noted P̂k. The error
displayed in the left panel of figure 2 is:

∥P̂N − P∥ = max
ω

|P̂N (ω)− P (ω)|/max
ω

|P (ω)|,

normalized by the operator norm of Σ.

The illustration in the middle panel of Figure 2, for WSGM, is done for simplicity only at one scale
(ie, at j = 1 in Algorithm 1): instead of stacking the full cascade of conditional distributions for all
j = J, . . . , 1, we use the true low-frequencies xj,0 = x1. Here, we use Daubechies-4 wavelets. We
sample x̄j,0 using the Euler-Maruyama recursion (S23)-(S16) for the conditional distribution. We
recall that in the Gaussian case, x̄1 and x1 are jointly Gaussian. The conditional distribution of x̄1
given x1 is known to be N (Ax1,Γ), where:

A = −Cov(x̄1, x1)Var(x1)
−1, Γ = Var(x̄1)− Cov(x̄1, x1)Var(x1)

−1Cov(x̄1, x1)
⊤.

We solve the recursion (S16) with a step size δ and N = T/δ steps; the sampled conditional wavelet
coefficients x̄j,0 have conditional distribution noted N (ÂNx, Γ̂N ). The full covariance of (x̃j,0, x̄j,0),
written in the basis given by the high/low frequencies, is now given by

Σ̂N =

[
Γ̂N Cov(x1, x̄1)Â

⊤
N

ÂNCov(x1, x̄1)
⊤ Cov(x1, x1)

]
.

Figure 2, middle panel compares the eigenvalues (power spectrum) of these covariances, as a function
of δ, with the ones of Σ.

The right panel of 2 gives the smallest N needed to reach ∥P̂N − P∥ = 0.1 in both cases (SGM and
WSGM), based on a power law extrapolation of the curves N 7→ P̂N .
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Figure S1: Example of a realization of a φ4 critical field (L = 256) with its wavelet decomposition
on the left (lower-frequencies are on bottom right panel).

S8 Experimental Details on the φ4 Model

In this section, we develop and and make more precise the results in Section 4.1.

S8.1 The Critical φ4 Process and its Stein Score Regularity

The macroscopic energy of non-Gaussian distributions can be specified as shown in (20), where K is
a coupling matrix and V is non-quadratic potential. The φ4-model over the L× L periodic grid is
the special case defined by C = −∆ (the negative two-dimensional discrete Laplacian) and V is a
quartic potential:

E(x) = β
2

∑
|u−v|=1(x(u)− x(v))2 +

∑
u(x(u)

2 − 1)2.

Here, β is a parameter proportional to an inverse temperature.

In physics, the φ4 model is a typical example of second-order phase transitions: the quadratic part
reduces spatial fluctuations, and V favors configurations whose entries remain close to ±1 (in physics,
this is often called a double-well potential). In the thermodynamic limit L→ ∞, both term compete
according to the value of β.

• For β ≪ 1, the quadratic term becomes negligible and the marginals of the field become
independent; this is the disordered state.

• For β ≫ 1, the quadratic term favors configuration which are spatially smooth and the
potential term drives the values towards ±1, resulting in an ordered state, where all values
of the field are simultaneously close to either +1 or to −1.

A phase transition occurs between these two regimes at a critical temperature βc ∼ 0.68 [36, 20].
At this point, the φ4 field display very long-range correlations and an ill-conditioned Hessian
∇2 log p. The sampling of φ4 at this critical point becomes very difficult. This “critical slowing
down” phenomenon is why, from a machine learning point of view, the critical φ4 field is an excellent
example of hard-to-learn and hard-to-sample distribution, yet still accessible for mathematical
analysis.

Our wavelet diffusion considers the sampling of the conditional probability p(x̄1|x1) instead of p(x0),
by inverting the noise diffusion projected on the wavelet coefficients. Theorem 2 indicates that the
loss obtained with any SGM-type method depends on the regularity parameters of ∇ log pt in (10).

Strictly speaking, to get a bound on K we should control the norm of ∇2 log pt over all x and t.
However, a look at the proof of the theorem indicates that this control does not have to be uniform in
x; for instance, there is no need to control this Hessian in domains which have an extremely small
probability under pt. Moreover, since pt is a convolution between p0 and a Gaussian, we expect that
a control over ∇2 log p0(x) will actually be sufficient to control ∇2 log pt(x) for all t > 0; these
facts are non-rigorous for the moment. The distribution of some spectral statistics of ∇2 log p0 over
samples drawn from the φ4-model are shown in Figure S2 (blue).

Considering conditional probabilities p̄ instead of p acts on the Hessian of the φ4-energy as a
projection over the wavelet field: in the general context of (20),
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Figure S2: Histograms of 105 realizations of λmin, λmax and κ = λmax/λmin of the Hessian matrices
in (S68) for the critical φ4 model in dimension L = 32. The mean values of κ are respectively
µ = 18.32 and µ̄ = 210.53; standard deviations are σ = 1.78 and σ̄ = 9451.37.

−∇2
x log p(x0) = K +∇2V (x0), −∇2

x̄1
log p(x̄1|x1) = γ2Ḡ(K +∇2V (x0))Ḡ

⊤. (S68)

The proof is in Appendix S8. The distribution of the conditioning number of ∇2
x log p and ∇2

x̄ log p

over samples drawn from the φ4 model is shown at Figure S2: the Hessian of the wavelet log-
probability is orders-of-magnitude better conditioned than its single-scale counterpart, with a very
concentrated distribution. The same phenomenon occurs at each scale j, and the same is true for
λmin, λmax. It turns out that considering wavelet coefficient not only concentrates these eigenvalues,
but also drives λmin away from 0. In the context of multiscale Gaussian processes, Theorem S4 gives
a rigorous proof of this phenomenon. In the general case, ∇2 log pt is not reduced to the inverse of a
covariance matrix, but we expect the same phenomenon to be true.

S8.2 Score Models and Details on our Numerical Experiments of φ4

In this section, we give some details on our numerical experiments from Section 4.1.

Training Data and Wavelets

We used samples from the φ4 model generated using a classical MCMC algorithm — the sampling
script will be publicly available in our repository.

The wavelet decompositions of our fields were performed using Python’s pywavelets package and
Pytorch Wavelets package. For synthetic experiments, we used the Daubechies wavelets with
p = 4 vanishing moments (see [31, Section 7.2.3]).

Score Model

At the first scale j = 0, the distribution of the φ4 model falls into the general form given in (20), and
it is assumed that at each scale j, the distribution of the field at scale j still assumes this shape —
with modified constants and coupling parameters. The score model we use at each scale is given by:

sK,θ(x) =
1
2x

⊤Kx+
∑

u(θ1v1(x(u)) + · · ·+ θmvm(x(u))),

where the parameters are K, θ1, . . . , θm and vi are a family of smooth functions. One can also
represent this score as sK,θ = K · xx⊤ + θ⊤U(x) where Ui(x) =

∑
u vi(x(u)).

Learning

We trained our various algorithms using SGM or WSGM up to a time T = 5 with ntrain = 2000
steps of forward diffusion. At each step t, the parameters were learned by minimizing the score loss:

ℓ(K, θ) = E[|∇sK,θ(xt)|2 + 2∆xsK,θ(xt)]

using the Adam optimiser with learning rate lr = 0.01 and default parameters α, β. At the start of
the diffusion (t = 0) we use 10000 steps of gradient descent. For t > 1, we use only 100 steps of
gradient descent, but initialized at (Kt−1, θt−1).
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Sampling

For the sampling, we used uniform steps of discretization.

For the error metric, we first measure the L2-norm between the power spectra P, P̂ of the true φ4

samples and our synthesized examples; more precisely, we set:

D1 = ∥P − P̂∥2.
This error on second-order statistics is perfectly suitable for Gaussian processes, but must be refined
for non-Gaussian processes. We also consider the total variation distance between the histograms of
the marginal distributions (in the case of two-dimensions, pixel-wise histograms). We note this error
D2; our final error measure is D1 +D2. This is the error used in Figure S2.

S8.3 Proofs of (S68)

In the sequel, ∇f is the gradient of a function f , and ∇2 is the Hessian matrix of f . The Laplacian
of f is the trace of the Hessian.

Lemma S28. Let U : Rn → R be smooth and M be a n×m matrix. We set F (x) = U(Mx) where
x ∈ Rm. Then, ∇2F (x) =M⊤∇2U(x)M .

Proof. Let U : Rn → R be smooth and M be a n×m matrix. Then,

∂kF (x) =

n∑
i=1

Mi,k(∂iU)(Mx).

Similarly,

∂k,ℓF (x) =

n∑
i=1

n∑
j=1

Mi,kMj,ℓ∂j(∂iU)(Mx). (S69)

This is equal to (M⊤∇2UM)k,ℓ.

Lemma S29. Under the setting of the preceding lemma, if U(x) =
∑n

i=1 f(xi), then (i) ∇2U(x) =

diag(u′′(x1), . . . , u
′′(xn)) and (ii) the Laplacian of F (x) = U(Mx) is given by

∆F (x) =

n∑
i=1

(M⊤M)i,iu
′′(xi).

Proof. The proof of (i) comes from the fact that ∂iU(x) = u′(xi), hence ∂j∂iU(x) = u′′(xi) if
i = j, zero otherwise. The proof of (ii) consists in summing the k = ℓ terms in (S69) and using
(i).

For simplicity, let us note p(x) = e−H(x)/Z where Z0 is a normalization constant and H(x) =

x⊤Kx/2 + V (x). Then,

∇xp(x) = −∇xH(x), ∇2
xp(x) = −∇2

xH(x),

and the formula in the left of (S68) comes from the fact that the Hessian of x⊤Kx is 2K.

For the second term, let us first recall that if x̄1 and x1 are the wavelet coefficients and low-frequencies
of x, they are linked by (18). Consequently, the joint density of (x̄1, x1) is:

q(x̄1, x1) = e−H(γG
⊤
x1+γḠ

⊤
x̄1)/Z1

where Z1 is another normalization constant. The conditional distribution of x̄1 given x1 is:

q(x̄1|x1) =
q(x̄1, x1)

Z1(x1)
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where Z1(x) =
∫
q(x̄1, u)du. Consequently,

∇x̄1
log q(x̄1|x1) = ∇x̄1

(−H(γG⊤x1 + γḠ⊤x̄1)− logZ1)−∇x̄1
Z1(x1)

= −∇x̄1
H(γG⊤x1 + γḠ⊤x̄1)

and additionally:
∇2

x̄1
q(x̄1|x1) = −∇2

x̄1
H(γG⊤x1 + γḠ⊤x̄1).

The RHS of (S68) then follows from the lemmas in the preceding section.

S9 Experimental Details on CelebA-HQ

Data We use Haar wavelets. The 128× 128 original images are thus successively brought to the
64× 64 and 32× 32 resolutions, separately for each color channel. Each of the 3 channels of xj and
9 channels of x̄j are normalized to have zero mean and unit variance.

Architecture Following [38], both the conditional and unconditional scores are parameterized by a
neural network with a U-Net architecture. It has 3 residual blocks at each scale, with a base number of
channels of C = 128. The number of channels at the k-th scale is akC, where the multipliers (ak)k
depend on the resolution of the generated images. These multipliers are (1, 2, 2, 4, 4) for models at
the 128× 128 resolution, (2, 2, 4, 4) for models at the 64× 64 resolution, (4, 4) for the conditional
model at the 32× 32 resolution, and (1, 2, 2, 2) for the unconditional model at the 32× 32 resolution.
All models include multi-head attention layers in blocks operating on images at resolutions 16× 16
and 8×8. The conditioning on the low frequencies xj is done with a simple input concatenation along
channels, while conditioning on time is done through affine rescalings with learned time embeddings
at each GroupNorm layer [38, 40].

Training The networks are trained with the (conditional) denoising score matching losses:

ℓ(θJ) = ExJ ,t,z

[
||sθJ (t, e

−txJ +

√
1− e−2tz)− z√

1− e−2t
||2

]

ℓ(θ̄j) = Ex̄j ,xj ,t,z

[
||s̄θ̄j (t, e

−tx̄j +

√
1− e−2tz |xj)−

z√
1− e−2t

||2
]

where z ∼ N (0, Id) and the time t is distributed as Tu2 with u ∼ U([0, 1]). We fix the maximum
time T = 5 for all scales. Networks are trained for 5× 105 gradient steps with a batch size of 128 at
the 32 × 32 resolution and 64 otherwise. We use the Adam [21] optimizer with a learning rate of
10−4 and no weight decay.

Sampling For sampling, we use model parameters from an exponential moving average with a rate
of 0.9999. For each number of discretization steps N , we use the Euler-Maruyama discretization
with a uniform step size δk = T/N starting from T = 5. This discretization scheme is used at all
scales. For FID computations, we generate 30, 000 samples in each setting.
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