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General-sum games are an important model for a wide range of real-world scenarios, but have
been studied less than zero-sum games. Our work contributes to the foundational study of learning
algorithms for these games. It is important to develop learning algorithms that can prevent defect-
defect outcomes in situations modeled by the prisoner’s dilemma, such as public goods problems.
Opponent-shaping methods, as studied in this paper, can achieve this. However, cooperation be-
tween the players can also be undesirable, for instance, in markets, where it leads to collusion.
Moreover, in the long-term, opponent-shaping could allow agents to manipulate others, including
humans. It could thus make sense to also study such negative consequences of opponent-shaping
and the limits of their responsible use in the future. However, we believe that at this stage the bene-
fits of furthering our understanding and of developing algorithms that can achieve more cooperative
learning outcomes outweigh their downsides.

REFERENCES

Stefano V. Albrecht and Peter Stone. Reasoning about hypothetical agent behaviours and their
parameters, 2019.

Robert Axelrod. The Evolution of Cooperation. Basic, New York, 1984.

Waı̈ss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel. A tight and unified
analysis of gradient-based methods for a whole spectrum of games, 2020.

David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster, Karl Tuyls, and Thore Grae-
pel. The Mechanics of n-Player Differentiable Games. arXiv:1802.05642 [cs], June 2018. URL
http://arxiv.org/abs/1802.05642. arXiv: 1802.05642.

Andrew Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems: Theory and Applications, 13, 12 2002. doi: 10.1023/A:
1025696116075.

Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with Opponent-Learning Awareness. arXiv:1709.04326 [cs], September
2018. URL http://arxiv.org/abs/1709.04326. arXiv: 1709.04326.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.
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Opponent Shaping in Differentiable Games. arXiv:1811.08469 [cs], January 2019b. URL http:
//arxiv.org/abs/1811.08469. arXiv: 1811.08469.

Eric V. Mazumdar, Michael I. Jordan, and S. Shankar Sastry. On Finding Local Nash Equilibria (and
Only Local Nash Equilibria) in Zero-Sum Games. arXiv:1901.00838 [cs, math, stat], January
2019. URL http://arxiv.org/abs/1901.00838. arXiv: 1901.00838.

Richard Mealing and Jonathan L. Shapiro. Opponent modeling by expectation–maximization and
sequence prediction in simplified poker. IEEE Transactions on Computational Intelligence and
AI in Games, 9(1):11–24, 2017. doi: 10.1109/TCIAIG.2015.2491611.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The Numerics of GANs.
arXiv:1705.10461 [cs], June 2018. URL http://arxiv.org/abs/1705.10461. arXiv:
1705.10461.

Hessel Oosterbeek, Randolph Sloof, and Gijs van de Kuilen. Cultural Differences in Ultimatum
Game Experiments: Evidence from a Meta-Analysis. Experimental Economics, 7(2):171–188,
June 2004. ISSN 1573-6938. doi: 10.1023/B:EXEC.0000026978.14316.74. URL https:
//doi.org/10.1023/B:EXEC.0000026978.14316.74.

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press, 1994. ISBN
0262150417.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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A NONCONVERGENCE OF HOLA IN THE TANDEM GAME

In the following, we show that for the choice of look-ahead rate α = 1, HOLA does not converge in
the Tandem game. This shows that given a large enough look-ahead rate, even in a simple quadratic
game, HOLA need not converge.

Proposition 6. Let L1, L2 be the two players’ loss functions in the Tandem game as defined in
Section 5 and let hni denote the n-th order exact LOLA update for player i (where n = 0 denotes
naive learning). Consider the look-ahead rate α := 1. Then the functions (hni )n∈N for i = 1, 2 do
not converge pointwise.

Proof. We will prove the auxiliary statement that

hni (x, y) = 2n+2 − 2(1 + x+ y)

for i = 1, 2. It then follows trivially that the hni cannot converge.

The auxiliary result can be proven by induction. The base case n = 0 follows from

∇iLi(x, y) = 2− 2(x+ y) = 22 − 2(1 + x+ y)

for i = 1, 2. Next, for the inductive step, we have to show that

hn1 (x, y) = −∇1(Li(x, y + hn−1
2 (x, y))) (9)

hn2 (x, y) = −∇2(Li(x+ hn−1
1 (x, y), y)) (10)

for any n > 0. This is also a simple calculation of a derivative, which we have verified using
Mathematica. The relevant notebook can be found at https://www.wolframcloud.com/
obj/jonny0/Published/HOLA-nonconvergence-tandem.nb

B PROOF OF PROPOSITION 1

To begin, recall that some differentiable game with continuously differentiable loss functions L1, L2

is given, and that hn = (hn1 , h
n
2 ) denotes the n-th order exact LOLA update function. We assume

that the iLOLA update function h exists, defined via

hi(θ) := lim
n→∞

hni (θ),

for all θ ∈ Rd.

To prove Proposition 1, we need to show that h1, h2 are consistent, i.e., satisfy Definition 3, under
the assumption that

lim
n→∞

∇ihn−i(θ) = ∇ih−i(θ)

for i = 1, 2 and any θ.

To that end, define the (exact) LOLA operator Ψ as the function mapping a pair of update functions
f := (f1, f2) to the RHS of Equations 2 and 3,

Ψ1(f)(θ) := −α∇1(L1(θ1, θ2 + f2(θ1, θ2))) (11)

Ψ2(f)(θ) := −α∇2(L2(θ1 + f1(θ1, θ2), θ2)) (12)

for any θ. Note that then we have hn+1
i = Ψi(h

n), i.e., Ψ maps n-th order LOLA to n + 1-order
LOLA.

In the following, we show that iLOLA is a fixed point of the LOLA operator, i.e., Ψ(h) = h. It
follows from the definition of Ψ that then h is consistent. We denote by ‖ · ‖ the Euclidean norm
or the induced operator norm for matrices. We focus on showing Ψ1(h) = h1. The case i = 2 is
exactly analogous.
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For arbitrary θ and n, define θ̂2 := θ2 + h2(θ) and θ̂n2 := θ2 + h2
n(θ) as the updated parameter of

player 2. First, it is helpful to show that Ψ1(hn)(θ) converges to Ψ1(h)(θ):

0 ≤ ‖Ψ1(h)(θ)−Ψ1(hn)(θ)‖ (13)

= α‖∇1(L1(θ1, θ2 + h2(θ)))−∇1(L1(θ1, θ2 + hn2 (θ))‖ (14)

= α‖(∇1h2(θ))>∇2L
1(θ1, θ̂2)− (∇1h

n
2 (θ))>∇2L

1(θ1, θ̂
n
2 ) +∇1L

1(θ1, θ̂2)−∇1L
1(θ1, θ̂

n
2 )‖
(15)

≤ α‖(∇1h2(θ))>∇2L
1(θ1, θ̂2)− (∇1h

n
2 (θ))>∇2L

1(θ1, θ̂
n
2 )‖+ α‖∇1L

1(θ1, θ̂2)−∇1L
1(θ1, θ̂

n
2 )‖

(16)

= α‖(∇1h2(θ))>(∇2L
1(θ1, θ̂2)−∇2L

1(θ1, θ̂
n
2 )) (17)

+ (∇1h2(θ)−∇1h
n
2 (θ))>∇2L

1(θ1, θ̂
n
2 )‖+ α‖∇1L

1(θ1, θ̂2)−∇1L
1(θ1, θ̂

n
2 )‖

≤ α‖(∇1h2(θ))>‖‖∇2L
1(θ1, θ̂2)−∇2L

1(θ1, θ̂
n
2 )‖

+ α‖(∇1h2(θ)−∇1h
n
2 (θ))>‖‖∇2L

1(θ1, θ̂
n
2 )‖+ α‖∇1L

1(θ1, θ̂2)−∇1L
1(θ1, θ̂

n
2 )‖ (18)

n→∞−→ 0. (19)

In the last step, we used the following two facts. First, since ∇iL1(θ) is assumed to be continuous
in θ2, and limn→∞ θ̂n2 = θ2 + limn→∞ hn2 (θ) = θ2 + h2(θ) = θ̂2 by assumption, it follows that
limn→∞∇2L

1(θ1, θ̂
n
2 ) = ∇2L

1(θ1, θ̂2) and limn→∞∇1L
1(θ1, θ̂

n
2 ) = ∇1L

1(θ1, θ̂2). Second, by
assumption, limn→∞∇hn2 (θ) = ∇h2(θ). In particular, both ‖∇2L

1(θ1, θ̂
n
2 )‖ and ‖∇1(h2(θ))> −

∇1(hn2 (θ))>‖ must be bounded, and thus the three terms in (18) must all converge to 0 as n→∞.
It follows by the sandwich theorem that limn→∞Ψ1(hn)(θ) = Ψ1(h)(θ).

Now we can directly prove that Ψ1(h)(θ) = h1(θ). It is

0 ≤ ‖Ψ1(h)(θ)− h1(θ)‖ (20)
= ‖Ψ1(h)(θ)−Ψ1(hn)(θ) + Ψ1(hn)(θ)− hn1 (θ) + hn1 (θ)− h1(θ)‖ (21)
≤ ‖Ψ1(h)(θ)−Ψ1(hn)(θ)‖+ ‖Ψ1(hn)(θ)− hn1 (θ)‖+ ‖hn1 (θ)− h1(θ)‖ (22)

= ‖Ψ1(h)(θ)−Ψ1(hn)(θ)‖+ ‖hn+1
1 (θ)− hn1 (θ)‖+ ‖hn1 (θ)− h1(θ)‖ (23)

n→∞−→ 0, (24)

where in the last step we have used the above result, as well as the assumption that hn1 (θ) converges
pointwise, and thus must also be a Cauchy sequence, so the last and the middle term both converge
to zero as well.

It follows by the sandwich theorem that Ψ1(h)(θ) = h1(θ). Since θ was arbitrary, this concludes
the proof.

C INFINITE-ORDER TAYLOR LOLA

In this Section, we repeat the analysis of iLOLA from Section 4.1 for infinite-order Taylor LOLA
(Taylor iLOLA). I.e., we define Taylor consistency, and show that Taylor iLOLA satisfies this consis-
tency equation under certain assumptions. This result will be needed for our proof of Proposition 2.

To begin, assume that some differentiable game with continuously differentiable loss functions
L1, L2 is given. Define the Taylor LOLA operator Φ that maps pairs of update functions (f1, f2) to
the associated Taylor LOLA update

Φi(f) := −α∇i(Li + (∇−iLi)>f−i) (25)

for i = 1, 2.

We then have the following definition.

Definition 4 (Taylor consistency). Two update functions h1, h2 are called Taylor consistent if for
any i = 1, 2, it is

Φ(h1, h2) = (h1, h2).
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Next, let hni denote i’s n-th order Taylor LOLA update. I.e., hni := Φi(h
n−1) for n ≥ 0, where we

let h−1
i := 0. Then we define

Definition 5 (Taylor iLOLA). If (hn1 , h
n
2 ) converges pointwise as n→∞, define Taylor iLOLA as

the limiting update

h := lim
n→∞

(
hn1
hn2 .

)
Finally, we provide a proof that Taylor iLOLA is Taylor consistent; i.e., we give a Taylor version of
Proposition 1.
Proposition 7. Let hni denote player i’s n-th order Taylor LOLA update. Assume that
limn→∞ hni (θ) = hi(θ) and limn→∞∇ihn−i(θ) = ∇ih−i(θ) for all θ and i ∈ {1, 2}. Then Tay-
lor iLOLA is Taylor consistent.

Proof. The proof is exactly analogous to that of Proposition 1, but easier. We show Φ(h) = h.
It follows from the definition of Φ in Equation 25 that then h is Taylor consistent. We focus on
showing Φ1(h) = h1, and the case i = 2 is exactly analogous.

First, we show that Φ1(hn)(θ) converges to Φ1(h)(θ) for all θ. Letting n be arbitrary and omitting
θ in the following for clarity, it is

0 ≤ ‖Φ1(h)− Φ1(hn)‖ (26)

= ‖ − α∇1(L1 + (∇2L
1)>h2) + α∇1(L1 + (∇2L

1)>hn2 )‖ (27)

= α‖ − ∇12L
1h2 − (∇2L

1)>(∇1h2)> +∇12L
1hn2 + (∇2L

1)>(∇1h
n
2 )>‖ (28)

≤ α‖∇12L
1(hn2 − h2)‖+ α‖(∇2L

1)>(∇1h
n
2 −∇1h2)>‖ (29)

≤ α‖∇12L
1‖‖hn2 − h2‖+ α‖∇2L

1‖‖∇1h
n
2 −∇1h2‖ (30)

n→∞−→ 0. (31)

In the last step, we used the assumptions that limn→∞ hn2 = h2 and limn→∞∇hn2 = ∇h2. It
follows by the sandwich theorem that limn→∞ Φ1(hn)(θ) = Φ1(h)(θ).

It follows from the above that Φ1(h)(θ) = h1(θ), using exactly the same argument as in Equa-
tions 20-24 with Φ instead of Ψ. Since θ was arbitrary, this concludes the proof.

D PROOF OF PROPOSITION 2

We begin by proving that LCGD and CGD do not coincide with LOLA and iLOLA. It is sufficient to
manifest a single counter-example: we consider the Tandem game given by L1 = (x+y)2−2x and
L2 = (x + y)2 − 2y (using x, y instead of θ1, θ2 for simplicity). Throughout this proof we use the
notation introduced by Balduzzi et al. (2018) and Letcher et al. (2019b) including the simultaneous
gradient, the off-diagonal Hessian and the shaping term of the game as

ξ =

(
∇1L

1

∇2L
2

)
and Ho =

(
0 ∇12L

2

∇21L
2 0

)
and χ = diag

(
HT
o ∇L

)
respectively. Note that in two-player games, LOLA’s shaping term reduces to

χ =

(
∇12L

2∇2L
1

∇21L
1∇1L

2

)
.

LCGD 6= LOLA. Following Schäfer & Anandkumar (2020), LCGD is given by

LCGD = −α
(
∇xf − αD2

xyf∇yg
∇yg − αD2

yxg∇xf

)
= −α

(
I −αD2

xyf
−αD2

yxg I

)(
∇xf
∇yg

)
= −α(I − αHo)ξ

while LOLA is given (Letcher et al., 2019b) by

LOLA = −α(I − αHo)ξ + α2χ .

15
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Any game with χ 6= 0 will yield a difference between LCGD and LOLA; in particular,

χ = 4(x+ y)

(
1
1

)
in the Tandem game implies that LCGD 6= LOLA whenever parameters lie outside the measure-zero
set {x+ y = 0} ⊂ R2.

CGD does not recover HOLA. Since CGD is obtained through a bilinear approximation (Taylor
expansion) of the loss functions, one would expect that the authors’ claim of recovering HOLA is
with regards to Taylor (not exact) HOLA. For completeness, and to avoid any doubts for the reader,
we prove that CGD neither corresponds to exact nor Taylor HOLA.

Following Schäfer & Anandkumar (2020), the series-expansion of CGD is given by

CGDn = −α
n∑
i=0

(
0 −αD2

xyf
−αD2

yxg 0

)i(
Dxf
Dyg

)
= −α

n∑
i=0

(−αHo)
iξ

and converges to CGD whenever α < 1/‖Ho‖ (where ‖·‖ denotes the operator norm induced by the
Euclidean norm on the space). Assume for contradiction that the series-expansion of CGD recovers
HOLA, i.e. that CGDn = HOLAn for all n. In particular, we must have

CGD = lim
n→∞

CGDn = lim
n→∞

HOLAn = iLOLA

whenever α < 1/‖Ho‖. In the tandem game, we have

Ho = 2

(
0 1
1 0

)
with ‖Ho‖ = 2, so CGD = iLOLA whenever α < 1/2. Moreover, Ho being constant implies that

∇HOLAn = ∇CGDn = −α
n∑
i=0

(−αHo)
i∇ξ ,

so gradients of HOLA also converge pointwise for all α < 1/2. In particular, CGD = iLOLA must
satisfy the (exact or Taylor) consistency equations by Proposition 1 or Proposition 7. However, the
update for CGD is given by(

h1

h2

)
= −α(I + αHo)

−1ξ = −2α(x+ y − 1)

(
1 2α

2α 1

)−1(
1
1

)
=
−2α(x+ y − 1)

1 + 2α

(
1
1

)
.

For the exact case, the RHS of the first consistency equation is

−α∇x
(
(x+ y + h2)2 − 2x

)
= −2α ((1 +∇xh2)(x+ y + h2)− 1)

=
−2α

1 + 2α

(
x+ y +

−2α(x+ y − 1)

1 + 2α
− 1− 2α

)
= h1 +

4α2(x+ y + 2α)

(1 + 2α)2

which does not coincide with the LHS of the consistency equation (= h1) whenever parameters lie
outside the measure-zero set {x+ y + 2α = 0} ⊂ R2. Similarly for Taylor iLOLA, the RHS of the
first consistency equation is

−α∇x
(
(x+ y)2 − 2x+ 2(x+ y)h2

)
= −2α

(
x+ y − 1 +

−2α(x+ y − 1)

1 + 2α
+
−2α(x+ y)

1 + 2α

)
= h1 +

4α2(x+ y)

(1 + 2α)2

which does not coincide with the LHS of the consistency equation (= h1) whenever parameters lie
outside the measure-zero set {x+y = 0} ⊂ R2. This is a contradiction to consistency; we are done.
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LCGD = LookAhead. We have already shown that LCGD is given by−α(I−αHo)ξ in the proof
that LCGD 6= LOLA. This coincides exactly with LookAhead following Letcher et al. (2019b).

CGD recovers high-order LookAhead. The series expansion of CGD is given by

CGDn = −α
n∑
i=0

(−αHo)
iξ .

On the other hand, high-order (Taylor) LookAhead is defined recursively by expanding
hn1 = −α∇1

(
L1(θ1, θ2 +⊥hn−1

2 )
)
≈ −α

(
∇1L

1 +∇21L
1hn−1

2

)
hn2 = −α∇2

(
L2(θ1 +⊥hn−1

1 , θ2)
)
≈ −α

(
∇2L

2 +∇12L
2hn−1

1

)
,

where ⊥ is the stop-gradient operator (see (Balduzzi et al., 2018) for details on this operator) and
h−1

1 = h−1
2 = 0. This can be written more succinctly as(

hn1
hn2

)
= −α

(
∇1L

1 +∇21L
1hn−1

2

∇2L
2 +∇12L

2hn−1
1

)
= −αξ − αHo

(
hn−1

1

hn−1
2

)
.

We prove by induction that (
hn1
hn2

)
= −α

n∑
i=0

(−αHo)
iξ

for all n ≥ 0. The base case is trivial; assume the statement holds for any fixed n ≥ 0. Then(
hn+1

1

hn+1
2

)
= −αξ − αHo

(
−α

n∑
i=0

(−αHo)
iξ

)
= −αξ − α

n+1∑
i=1

(−αHo)
iξ = −α

n+1∑
i=0

(−αHo)
iξ

as required. Finally we conclude

LookAheadn =

(
hn1
hn2

)
= −α

n∑
i=0

(−αHo)
iξ = CGDn

as required.

E PROOF OF PROPOSITION 3

We prove that the two pairs of linear functions
h1 = h2 = −2(x+ y + 1)

and
h1 = h2 = −1

2
(x+ y − 2)

are solutions to the consistency equations in the Tandem game with α = 1. (See below for a
generalization to any α > 0.) For the first pair of functions, we have

−∇x (f(x, y + h2)) = −∇x
(
(x+ y + 2)2 − 2x

)
= −2(x+ y + 1) = h1

for the first consistency equation and similarly
−∇y (g(x+ h1, y)) = −∇x

(
(x+ y + 2)2 − 2y

)
= −2(x+ y + 1) = h2

for the second. For the second pair of functions we similarly obtain

−∇x (f(x, y + h2)) = −∇x
(

1

4
(x+ y + 2)2 − 2x

)
= −1

2
(x+ y − 2) = h1

for the first consistency equation and

−∇y (g(x+ h1, y)) = −∇x
(

1

4
(x+ y + 2)2 − 2y

)
= −1

2
(x+ y − 2) = h2

for the second. This shows that both functions are solutions to the consistency equations. For general
α > 0, we can similarly show that h1 = h2 = ax+ by + c with

a =
±
√

1 + 8α− 1− 4α

4α
; b =

−2α(1 + a)

1 + 2α(1 + a)
; c =

2α

1 + 2α(1 + a)

are two distinct solutions (depending on±) to the consistency equations in the Tandem game, noting
that the denominators cannot be 0 for α > 0 (otherwise leading to a contradiction in the expression
for a). This is left to the reader, noting that the proof for α = 1 is sufficient to establish that
consistent solutions are not always unique.
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F PROOF OF PROPOSITION 4

Recall from the proof of Proposition 3 that the linear functions

h1 = h2 = −2(x+ y + 1)

are consistent solutions to the Tandem game with α = 1. The SFPs of the Tandem game are
(x, 1− x) for each x ∈ R, but none of these are preserved by the consistent solutions above since

h1(x, 1− x) = h2(x, 1− x) = −4 6= 0 .

We conclude that consistency does not imply preservation of SFPs.

Moreover, we prove that any (non-zero) linear solution to the consistency equations cannot preserve
more than one SFP in the Tandem game, for any opponent shaping rate α. Assuming it did, we must
have linear functions

h1 = ax+ by + c

h2 = a′x+ b′y + c′

satisfying
h1(x, 1− x) = 0 = h1(x′, 1− x′)

for some x 6= x′ ∈ R. Subtracting RHS from LHS we obtain (x − x′)(a − b) = 0 hence a = b,
which substituted again into the LHS yields b = −c. Applying the same method for h2 we obtain
a′ = b′ = −c′ and so h1, h2 take the form

h1 = a(x+ y − 1)

h2 = a′(x+ y − 1).

Note that since h1, h2 were assumed to be nonzero, it follows that a, a′ 6= 0. Plugging these into the
first consistency equation, we obtain

a(x+ y − 1) = −2α [(1 + a′) ((x+ y)(1 + a′)− a′)− 1] .

Comparing x terms and constant terms yields

a = −2α(1 + a′)2 and a = −2α
(

1 + a′ + a′
2
)

which concludes the contradiction a′ = 0.

G PROOF OF PROPOSITION 5

LOLA and SOS diverge. Assume (x0, y0) 6= 0 and α > 1. We prove the more general claim
that p-LOLA diverges for any 0 ≤ p ≤ 1 (where p may take a different value at each learning step),
recalling that LOLA and SOS are both special cases of p-LOLA (Letcher et al., 2019b). Indeed, the
p-LOLA gradient update is given by(

h1

h2

)
= −α(I − αHo)ξ + pα2χ = −α

(
y + αx(1 + p)
−x+ αy(1 + p)

)
and we show that each update leads to increasing distance from the origin as follows:

‖(x+ h1, y + h2)‖2 = x2 − 2xα(y + αx(1 + p)) + α2
(
y2 + α2x2(1 + p)2 + 2αxy(1 + p)

)
+

y2 − 2yα(−x+ αy(1 + p)) + α2
(
x2 + α2y2(1 + p)2 − 2αxy(1 + p)

)
=
(
x2 + y2

) (
1− α2(2p+ 1) + α4(1 + p)2

)
≥
(
x2 + y2

) (
1− α2 + α4

)
:= ‖(x, y)‖2 λ

where the inequality follows because the final expression in p has positive derivative for α > 1,
hence minimized at p = 0. Now λ > 1 for any α > 1, so we conclude by induction that

‖(xn, yn)‖2 ≥ λn ‖(x0, y0)‖2 →∞

as n→∞, provided (x0, y0) 6= 0, as required.
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Consistent solution converges. We begin by showing that the following linear functions satisfy
the consistency equations for the Hamiltonian game:(

h1

h2

)
=

−α
1 + 2α2

(
y + 2αx
−x+ 2αy

)
.

Indeed, the RHS of the first consistency equation is

−α∇x
(
x

(
y − α−x+ 2αy

1 + 2α2

))
=

−α
1 + 2α2

(
y(1 + 2α2)− α(−x+ 2αy) + αx

)
=

−α
1 + 2α2

(
y + 2αx

)
= h1

and similarly for the second equation.

To prove uniqueness, assume there is a second pair of linear update functions ĥ1, ĥ2 also satisfying
consistency. Let a, b, c ∈ R such that ĥ1(x, y) = ax + by + c. Note that substituting the second
equation into the first yields

ĥ1(x, y) = −α∇x
(
L1(x, y − α∇y

(
L2(x+ ĥ1(x, y), y)

)
)
)

= −α
(
y + α

(
2x+ ĥ1(x, y) + x∇xĥ1(x, y) + y∇yĥ1(x, y) + xy∇xyĥ1(x, y)

))
Expanding the above and substituting the equation for ĥ1, we obtain

ax+ by + c = −2α2x(1 + a)− αy(1 + 2αb)− α2c

for all x, y ∈ R, which yields (by comparing coefficients)
a(1 + 2α2) = −2α2 ; b(1 + 2α2) = −α ; c(1 + α2) = 0.

It follows that
ĥ1(x, y) =

−α
1 + 2α2

(
y + 2αx

)
= h1(x, y),

proving the uniqueness of h1. Since h2 is directly determined by h1 via the second consistency
equation, this concludes the proof.

Finally we prove that this linear update leads to decreasing distance from the origin as follows:

‖(x+ h1, y + h2)‖2 = x2 − 2xα

1 + 2α2
(y + 2αx) +

α2

(1 + 2α2)2

(
y2 + 4α2x2 + 4αxy

)
+

y2 − 2yα

1 + 2α2
α(−x+ 2αy) +

α2

(1 + 2α2)2

(
x2 + 4α2y2 − 4αxy

)
=
(
x2 + y2

)(
1− α2(3 + 4α2)

(1 + 2α2)2

)
:= ‖(x, y)‖2 λ .

Notice that the derivative of λ is strictly negative in α while its limit as α→∞ is 0, with value 1 at
α = 0, hence |λ| = λ < 1 for any α > 0. We conclude by induction that

‖(xn, yn)‖2 = λn ‖(x0, y0)‖2 → 0

as n→∞, with λ decreasing (hence the speed of convergence increasing) as α increases.

H TRAINING DETAILS COLA

All code was implemented using Python. The code relies on the PyTorch library for autodifferentia-
bility (Paszke et al., 2019).

H.1 QUADRATIC AND BILINEAR GAMES

For the quadratic and bilinear games, COLA uses a neural network with 1 non-linear layer for
both h1(θ1, θ2) and h2(θ1, θ2). The non-linearity is a ReLU function. The layer has 8 nodes. For
training, we randomly sample pairs of parameters on a [-1, 1] parameter region. In general, the size
of the region is a hyperparameter. We use a batch size of 8. We found that training is improved
with a learning rate scheduler. For the learning rate scheduling with a γ of 0.9. We train the neural
network for 120’000 steps. To compute the consistency loss we use the squared distance measure.
The optimizer used is Adam (Kingma & Ba, 2017).
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H.2 NON-QUADRATIC GAMES

For the non-quadratic games, we deploy a neural network with 3 non-linear layers using Tanh ac-
tivation functions. Each layer has 16 nodes. For this type of game, the parameter region is set to
[-7, 7], because the parameters will be squished into probability space, allowing us to explore the
full probability space. During training, we used a batch size of 64. The optimizer used is Adam
(Kingma & Ba, 2017).
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I FURTHER EXPERIMENTAL RESULTS

I.1 TANDEM GAME

(a) (b)

Figure 4: Tandem game with a look-ahead rate of 1.0. The standard deviation for the initialization
of parameters used here is 0.1, which is standard in the literature (Letcher et al., 2019b).

(a) (b)

(c) (d)

Figure 5: Gradients field of the Tandem game at two different look-ahead rates, 0.1 and 1.0.
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I.2 BALDUZZI AND HAMILTONIAN GAME

The Hamiltonian game was originally introduced in (Balduzzi et al., 2018) as a minimal example of
Hamiltonian dynamics. Recall that its loss function is

L1(x, y) = xy and L2(x, y) = −xy (32)

The Balduzzi game was introduced to investigate the behaviour of differentiable game algorithms
when a weak attractor is coupled with strong rotational forces in the Hamiltonian dynamics (Bal-
duzzi et al., 2018), captured by the losses

L1(x, y) =
1

2
x2 + 10xy and L2(x, y) =

1

2
y2 − 10xy (33)

Results for both games are displayed in Figures 12 and 7.

(a) (b)

Figure 6: Balduzzi game with a look-ahead rate of 0.01 and 0.1. The standard deviation for the
initialization of parameters used here is 1.0

(a) (b)

Figure 7: Hamiltonian game with a look-ahead rate of 0.1 and 0.9. The standard deviation for the
initialization of parameters used here is 1.0
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Table 4: (a) Comparison of consistency losses over multiple look-ahead rates on the Hamiltonian
game. (b) Cosine similarity between COLA and LOLA, HOLA3 and HOLA6 over different look-
ahead rates on the Hamiltonian game.

(a)

α LOLA HOLA3 HOLA6 COLA
0.9 6.99 4.63 13.68 9.08e-15
0.5 12.67 13.77 13.00 3.06e-15
0.4 5.78 7.14 6.38 2.20e-15
0.1 0.08 0.01 1.74e-6 1.32-16
0.05 1.63e-5 3.98e-10 3.08e-15 3.97e-17

(b)

α LOLA HOLA3 HOLA6
0.9 1.0 -1.0 0.4852
0.5 1.0 1.0 0.996
0.4 1.0 1.0 0.999
0.1 1.0 1.0 1.0
0.05 1.0 1.0 1.0

Table 5: Comparison of consistency losses over multiple look-ahead rates on the Balduzzi game.

α LOLA HOLA3 HOLA6 COLA
0.9 1.78e+6 4.65e+10 3.88e+17 5.09e-13
0.1 2.71e+2 1.09e+3 1.73e+4 6.04e-15
0.05 1.61e+1 4.01 1.03 4.13e-15
0.03 2.16 0.07 0.01 1.08e-15
0.01 0.03 1.08e-5 1.69e-10 1.32e-16
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I.3 MATCHING PENNIES

Matching Pennies (MP) is a single-shot, zero-sum game, where two players, A and B, each flip a
biased coin (Lee & K, 1967). Player A wins if the outcomes of both flips are the same and player B
wins if they are different.

Table 6: Payoff Matrix for the Matching Pennies game.

Head Tail
Head (+1, -1) (-1, +1)
Tail (-1, +1) (+1, -1)

Table 7: Cosine similarities over multiple COLA training runs on the MP and Tandem game for
different look-ahead rates.

Game@LR Cosine Sim
MP@10 0.971 +/- 0.006
MP@0.5 0.998 ± 0.002
Tandem@0.1 1.0
Tandem@1.0 0.976 ±0.008

(a) (b)

(c) (d)

Figure 8: Gradients field of the MP game at two different look-ahead rates: 0.5 and 10. COLA is on
the upper row, HOLA4 is on the lower row.
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I.4 ULTIMATUM GAME

Table 8: (a) Comparison of consistency losses over multiple look-ahead rates on the Ultimatum
game. (b) Cosine similarity between COLA and LOLA, HOLA2 and HOLA4 over different look-
ahead rates on the Ultimatum game.

(a)

α LOLA HOLA2 HOLA4 COLA
1.1 2.16e-3 4.77e-3 0.01 6.23e-5
0.7 4.29e-4 1.91e-4 1.53e-4 3.12e-6
0.3 2.50e-5 1.97e-7 4.85e-8 1.41e-7
0.1 2.36e-7 1.29e-11 5.59e-13 1.98e-7
0.001 3.12e-15 4.20e-17 9.19e-17 2.58e-8

(b)

α LOLA HOLA2 HOLA4
1.1 0.941 0.943 0.92
0.7 0.99 0.99 0.99
0.3 0.99 0.99 0.99
0.1 0.99 0.99 0.99
0.001 0.99 0.99 0.99

Figure 9: Gradients field of the ultimatum game at two different look-ahead rates: 0.2 and 1.1.
COLA is on the upper row, HOLA4 is on the lower row.
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(a) (b)

(c) (d)

Figure 10: Ultimatum with a look-ahead rate of 0.2 and 5.0

I.5 CHICKEN GAME

In the Chicken game, an agent can either choose to yield to avoid a catastrophic payoff but face
a small punishment if they are the only agent to yield. Imagine a game where two agents drive
towards each other in their cars. If both never swerve, they frontally crash into each other, an
obviously catastrophic outcome. If any of the agents ”chicken out”, e.g. swerve, they do not crash
but receive a small punishment for having chickened out. At the same time, the other agent is being
rewarded for staying on track, as quantified in Table 9.

Table 9: Payoff Matrix for the Chicken game.

C (swerve) D (straight)
C (swerve) 0, 0 -1, +1
D (straight) +1 ,-1 -100, -100

Table 10: (a) Comparison of consistency losses over multiple look-ahead rates on the chicken game.

α LOLA HOLA2 HOLA4 SOS CGD COLA
1.0 2429 3892 46637 1494 1677 5.02e-3
0.5 643 484 4320 475 2330 7.81e-3
0.1 11.99 7.69 73.28 2.73 8.46 0.75
0.05 0.84 0.17 0.47 0.37 1.31 0.06
0.01 9.97e-4 3.41e-6 5.77e-9 2.40e-4 0.04 9.83e-5
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(a) (b)

(c) (d)

Figure 11: Gradients field of the Chicken game at two different look-ahead rates, 0.01 and 1.0.

I.6 IPD

Table 11: Payoff Matrix for the IPD game.

C D
C (-1, -1) (0, -3)
D (0, -3) (-2, -2)

Table 12: Cosine similarity of LOLA, HOLA2 and HOLA4 with COLA on the IPD game.

α LOLA HOLA2 HOLA4
1.0 0.77 0.70 0.53
0.03 0.96 0.98 0.98

Table 13: Consistency losses of LOLA, HOLA2, HOLA4 and COLA on the IPD game at two
different look-ahead rates.

α LOLA HOLA2 HOLA4 COLA
1.0 39.56 21.16 381.21 0.65
0.03 1.72e-3 4.72e-6 9.72e-8 0.33
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(a) (b)

(c) (d)

Figure 12: Chicken game with a look-ahead rate of 0.04 and 0.5, We used a standard deviation of
1.0 to initialize the parameters.

Figure 13: CGD, SOS, Taylor LOLA (TLOLA), Exact LOLA (ELOLA) and Naive Learning (NL)
on the IPD at a look-ahead rate of 1.0. We used a standard deviation of 1.0 to initialize the parame-
ters.
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