
7 Supplementary469

7.1 Assumptions and Future Research470

7.1.1 Assumptions471

During the data collection phase, ActAIM2 operates under the assumption that: 1) the manipulations472

are straightforward enough to be captured using a limited set of action primitives such as grasping,473

pushing, or pulling; 2) an interaction mode is identified upon observing significant visual changes;474

3) the interaction modes can be categorized into a few distinct types. A more detailed discussion of475

these assumptions is provided below.476

Simple Action Space – We employ a scripted, self-supervised method to collect actions that en-477

compass diverse interaction modes. The action space is sufficiently simple, focusing primarily on478

heuristic grasping and random actions. For more complex tasks, such as hammering, washing dishes,479

or cooking, our current method fails to collect adequate data. Addressing these more intricate tasks480

would require a more comprehensive and extensive dataset.481

Significant Visual Change – Our data collection is entirely self-supervised, devoid of any expert data482

or privileged information. We define an interaction as successful if it results in a significant visual483

alteration to the targeted objects. This approach is effective for articulated objects in our studies, such484

as doors, windows, or tables, which typically remain stationary except for their movable components.485

However, challenges arise with objects like tools (e.g., hammers, cups, knives), where it is difficult to486

discern visual changes either in the tools themselves or the targeted objects (e.g., nails, cup holders,487

or deformable objects). Especially in tasks requiring repetitive actions, like continuously striking a488

nail or repeatedly wiping dishes, a more nuanced and generalized method is necessary to determine if489

meaningful interactions are occurring.490

Discrete Interaction Modes – Articulated objects, by design, often have limited manipulation options.491

However, when dealing with other objects such as tools, the number of potential interaction modes492

significantly increases. The functionality of these objects can be diverse; for example, a hammer493

might be used not only for hammering but also for hooking or reaching. Even the act of grasping494

these objects presents countless variations, complicating the task of clustering them into discrete495

modes.496

7.1.2 Future Research497

Based on the assumptions discussed earlier, we have identified two primary avenues for extending498

our current research: long-horizon planning tasks and enhancing tool manipulation strategies.499

Long-horizon Planning Tasks – Leveraging the discrete representation of interaction modes provided500

by ActAIM2, we propose its application to long-horizon planning tasks. Examples of such tasks501

include sequentially opening a table drawer, locating and opening a box within the drawer, and502

finally pressing a button inside the box. These tasks illustrate the potential of ActAIM2 to serve as a503

foundational prior, streamlining the process to discrete searches within complex sequences. To ensure504

the robustness of our approach, it is crucial that the model accurately predicts all feasible interaction505

modes based on the given scenario.506

Extension to Tool Manipulation Tasks – Another direction for expansion involves applying our work507

to tool manipulation. Here, defining the interaction modes for various tools will be pivotal. A robust508

dataset specifically tailored for tool manipulation is essential to support this endeavour. Additionally,509

a more sophisticated scene descriptor is required to effectively determine which objects to manipulate510

and which to designate as targets. This development would facilitate more nuanced and effective tool511

interactions in automated systems.512
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7.2 Dataset Generation513

7.2.1 Iterative Data Collection Method514

When collecting data, we employ a strategy of random sampling, subsequently filtering successful515

actions as determined by our vision model without resorting to any privileged information. Drawing516

inspiration from [43, 51], we delineate the task of manipulating articulated objects into four fundamen-517

tal poses: initiation, reaching, grasping, and manipulating. Throughout these stages, we capture the518

robot’s key action poses ai = (p,R,q)i and RGBD observationsOi from a configuration of five cam-519

eras encircling the articulated object. Upon collecting the trajectory Tj = {(ai, Oi)|i = 0, 1, 2, 3}j ,520

we also archive the initial and final observations, Oinitj and Ofinalj , respectively, captured from the521

multi-view cameras with the robot occluded, to facilitate manipulation success evaluation.522

We introduced our method of identifying successful interacted trajectories, which can be purely from523

vision data, specifically the initial and final observation. For each trajectory, characterized by the524

initial observation Oinitj and final observation Ofinalj , we utilize a pre-trained image encoder EO to525

transform the image observations into a latent vector v. The task embedding zj for each trajectory Tj526

is defined as follows:527

zj = vinitj − vfinalj = EO(Oinitj )− EO(Ofinalj ) (9)

In our implementation, we employ a pre-trained VGG-19 network [52], without the final fully528

connected layers, to serve as our image encoder EO. To determine the success or failure of a529

manipulation, we introduce a threshold z̄, defining a trajectory Tj as successful if zj > z̄. It is530

important to note that this process does not rely on any privileged information. To illustrate the531

validity of our method, we define the trajectory’s success as a 30% change in the ground-truth DoF532

value. The efficacy of this criterion is validated against the ground-truth DoF values, demonstrating a533

97.4% accuracy rate across our training and testing dataset. The collected trajectories must exhibit534

the diversity of interaction modes of the articulated objects. Thus, we employ three distinct methods535

of action sampling, as outlined below. The final dataset is a composite of these three methods.536

1. Random Sampling – We generate play data for manipulation without prior interaction. First,537

we select an interaction point p1 ∈ R3 on the articulated object, ensuring it lies within the robot’s538

workspace. Subsequently, we sample a uniformly random manipulation rotation R0 ∈ SO(3) and539

a manipulation position p2 within the valid area, applying filters to exclude any configurations that540

would result in a collision. The robot’s initial position p0 is also determined through random sampling,541

which is a specified distance from the interaction point p1, ensuring a feasible starting position for the542

manipulation task. Based on the previous sampling, we define the randomly sampled action sequence543

as {(p0,R0, 0), (p1,R0, 0), (p1,R0, 1), (p2,R0, 1)}.544

2. Heuristic Grasping Sampling – Heuristic grasping sampling is employed to select interaction545

points on the articulated object to enhance the precision of grasping actions. Utilizing the RGB-D546

observations, we crop the articulated object and transform it into an RGB point cloud, which under-547

goes preprocessing with DBSCAN clustering [53], aimed at identifying segments with significant548

geometric features, such as handles or buttons. After clustering, each segment is analyzed by a549

pre-trained GraspNet model [54] to generate a set of potential grasps. From this set, grasps with550

the highest scores are selected, with the grasp point designated as the interaction point and the grasp551

orientation as the gripper rotation for the trajectory. The initial and manipulation poses are determined552

using the previously described random sampling approach. This heuristic approach to grasping not553

only bolsters the stability of grasp actions but also enriches the dataset with a higher proportion of554

complex interaction modes, such as "grasp to open", enhancing the dataset’s diversity and utility for555

training models to manipulate articulated objects in ’hard’ interaction scenarios.556

3. GMM-based Adaptive Sampling – To foster a wide array of interaction modes within our557

dataset, we implement GMM-based adaptive sampling inspired by the methodology outlined in [12].558

Following the acquisition ofM trajectory datasets {Tj |j = 1, 2, ...,M} through random and heuristic559

grasping sampling from previous interactions, we compute the task embeddings {zj |j = 1, 2, ...,M}560

based on Equation 9. A Gaussian Mixture Model (GMM) prior is constructed from these task561
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(a) (b)

Figure 5: (a) GMM clustering adaptive sampling: his figure illustrates the visualization of using GMM to
represent different interaction modes.
(b) Visualization of Heuristic Grasping: We illustrate the proposed grasping using our predefined heuristic
with ContactGraspNet [55].

embeddings, denoted as P(z|θ) =
∑K
k=1 κkp(a|θk), where θk represents the parameters of each562

Gaussian component within the mixture. The choice of K, the number of clusters, is a hyper-563

parameter that reflects the presumed number of interaction modes inherent to the object.564

Subsequently, we cluster the task embeddings zj , assigning a unique cluster label to each correspond-565

ing trajectory. We found that the task embeddings from different trajectories grouped within the566

same cluster indicate a similar interaction mode, as they share proximate visual characteristics from567

initial and final observation. Upon clustering, a new GMM is formulated for each cluster, based on568

the action sequences, represented as Pk(a|ϕ) =
∑L
l=1 βlpk(a|ϕl). We then aim to sample an equal569

number of actions from each cluster, ensuring that the representation of actions—and, by extension,570

interaction modes—within the dataset are as diverse as possible, thus facilitating a comprehensive571

exploration of the articulated object’s potential interactions.572

Utilizing these sampling methodologies, we concurrently collect data across all articulated objects573

within our dataset, culminating in a dataset denoted as:574

D = {Tj}random ∪ {Tj}grasp ∪ {Tj}GMM (10)
= {(ai, Oi)j}random ∪ {(ai, Oi)j}grasp ∪ {(ai, Oi)j}GMM (11)
= {(Oi, ai)}random∪grasp∪GMM (12)

After data collection, we enrich each trajectory within our dataset by associating the respective task575

embedding with the data tuple (O, a), thereby forming atomic training data instances represented as576

(O, a, ϵ)j .577

7.2.2 Data Collection Algorithm578

The dataset we developed for training purposes is available on our official website. Our dataset579

was constructed through a combination of random sampling, heuristic grasp sampling, and Gaussian580

Mixture Model (GMM)-based adaptive sampling, featuring the Franka Emika robot engaging with581

various articulated objects across multiple interaction modes. It encompasses categories such as582

faucets, tables, storage furniture, doors, refrigerators, and switches, with 8 unique instances per583

category. For each instance, we collected 150 trajectories, ensuring comprehensive coverage of the584

objects’ interaction modes. Objects were scaled to realistic size and initialized in a ’half-open’ state,585

denoting a median value for each degree of freedom (DoF). The data collection methodology is586

detailed in Algorithm 1.587

7.3 Model Architecture and Implementation Details588

This section outlines the detailed implementation of the model architecture, encompassing both the589

mode selector and the action predictor components.590
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Algorithm 1 Data Collection Algorithm

Require: Initial observation Oi, Number of GMM component K, hyper-paramter M for GMM in
each cluster

Ensure: All sampled trajectories are filtered successful by evaluating ϵ > ϵ̄
D ← ∅ ▷ Set the initial dataset to be empty
while D not have enough data do

Dr = {(a, o)i} ∼ RandomSampling ▷ Random Sampling
G = {gi} ∼ GraspNet(Oi) ▷ Sample Grasp using GraspNet
Dg = {(a, o)i} ∼ GenerateTraj(G) ▷ Gnerate trajectory based on grasp
D ← D ∪Dr ∪Dg

ϵi ∼ D ▷ Compute task embedding in current D
Cluster ϵi with GMM, assign cluster label on each trajectory
{Dj |j = 1, ...,K} ← D
DGMM ← ∅
for j in range K do

Extract Dj in D based on cluster label

p(Dj |π,µ,Σ) =
∏N
n=1

(∑M
m=1 πmN (xn|µm,Σm)

)
▷ fit GMM

D̂j ← {(a, o)i} ∼ p(Dj |π,µ,Σ) ▷ Sample action from GMM
DGMM ← DGMM ∪ D̂j

D ← D ∪DGMM

7.3.1 Mode Selector Architecture and Implementation Detail591

This section revisits the stochastic variables’ definitions and distributions, as previously emphasized.592

The distributions of the model parameters are formalized as follows:593

p(c) = Multi(π) (13)
p(y) = N (0, I) (14)

pξ,β(ϵ, x, y, c|Oi) = p(y)p(c)pξ(x|y, c, Oi)pβ(ϵ|x,Oi) (15)

pξ(x|y, c, Oi) =
K∏
k=1

N (µck(y,O
i),Σck(y,O

i)) (16)

pβ(ϵ|x,Oi) = N (µβ(x,O
i),Σβ(x,O

i)) (17)

Here, µck ,Σck , µβ ,Σβ are the model parameters to be optimized. Furthermore, we delineate the594

generative model and compute the inference at test time by defining the posterior as follows:595

q(x, y, c|ϵ, Oi) =
∏
i

qψx
(x|ϵ, Oi)qψy

(y|ϵ, Oi)qψc
(c|x, y,Oi) (18)

This necessitates the computation of three additional network parameters: qψx , qψy , qψc . We then596

elaborate on deriving the posterior qψc
(c|x, y,Oi) for categorical variables c, employing the Gumbel597

Softmax for the representation of categorical distributions.598

Notice that c is a categorical parameter that c ∼ Multi(π). We defined that c ∈ C = {c1, c2, ..., ck}599

and the each class probability is described as {π1, π2, ..., πk}. We use the Gumbel Softax trick which600

provides a simple and efficient way to draw samples c from a categorical distribution with class601

probabilities {π1, π2, ..., πk}. The following form represents the categorical c as,602

c = one-hot(argmaxi[gi + log πi]) (19)

where {g1, g2, ..., gk} are i.i.d samples drawn from Gumbel(0,1). Assuming that categorical samples603

c are encoded as k-dimensional one-hot vectors ω lying on the corners of the (k − 1)-dimensional604

simplex ∆k−1 We use the softmax function as a continuous, differentiable approximation to arg max,605

and generate k-dimensional sample vectors ω ∈ ∆k−1. We defined ω as606

ωi =
exp((log(πi) + gi)/τ)∑k
i=1 exp((log(πi) + gi)/τ)

(20)
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Figure 6: The graphical representations elucidate the Conditional Gaussian Mixture Variational Autoencoder
(CGMVAE) framework, showcasing two distinct models: the generative model on the left and the variational
family on the right. These graphical models serve to visually communicate the structural and functional relation-
ships between variables within the CGMVAE, illustrating the data generation process and the approximation
strategy employed by the variational family to infer latent variable distributions.

Where τ is the temperature as the hyperparameter. Therefore, we define the density of the Gumbel-607

Softmax distribution as,608

p(c) = pπ,τ (ω1, ..., ωk) = Γ(k)τk−1

(
k∑
i=1

πi
ωτi

)−k k∏
i=1

πi
ωτi

(21)

Now, given the representation of the categorical distribution of c from Equation 21, we derive how609

we compute the posterior qψc
for c. We consider the posterior qψc

(c = cj |x, y,Oi) given c = cj ,610

qψc
(c = cj |x, y,Oi) =

p(c = cj)p(x|c = cj , y, O
i)∑k

l=1 p(c = cl)p(x|c = cl, y, Oi)
(22)

=
πjp(x|c = cj , y, O

i)∑k
l=1 πlp(x|c = cl, y, Oi)

(23)

Therefore, we derive the posterior qψc
directly and leave 2 posterior network qψx

, qψy
to be trained.611

Based on the following discussion, we draw the generative model and variational model view as612

graphical models in the Figure 6.613

In the implementation detail, we write parameters pβ = (µβ ,Σβ) and pξ = (µck ,Σck) to generate614

a Gaussian distribution with each representing the mean and variance. We implement the network615

µck ,Σck , ψx, ψy with a multi-layer ResNet and implement the network µβ ,Σβ as a multi-view616

transformer since both Oi and ϵ represent multi-view information with the same number on the617

channel as the correspondent view number. We show our model µβ ,Σβ architecture in Figure 7.618

7.3.2 Mode Selector Training and Inference619

We illustrate the functionality and application of our mode selector through two distinct plots,620

highlighting both the training process and the inference mechanism for task embedding generation.621

Figure Figure 9a depicts the model’s operation during training, where it processes the conditional622

variable Oi along with the ground truth data ϵ, to accurately reconstruct the task embedding.623

Conversely, Figure Figure 9b demonstrates the inference stage, where the model, requiring only the624

initial observation Oi and a discretely sampled cluster (employing an 8-cluster configuration for625

implementation), successfully generates the corresponding task embedding ϵ.626

7.3.3 Action Predictor627

We provide the architecture of the action predictor which is a joint transformer that takes in task628

embedding ϵ and novel view as input. The detailed implementation is shown at Figure 8.629
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Figure 7: Mode Selector Decoder Architecture: The depicted architecture highlights the functionality
of the mode selector decoder, which is designed to process two primary inputs: multi-view RGBD images
Oi = (Oi

0, O
i
1, O

i
2, O

i
3, O

i
4), and the Mixture of Gaussian (GMM) variable x. It is important to note that x

can be represented as a multi-view feature vector, with our encoding approach preserving the separation of
multi-view channels. Initially, the multi-view RGBD images are passed through a pre-trained VGG-19 image
encoder to extract feature vectors for each view. Subsequently, these feature vectors, along with the GMM
variable x, are inputted into a joint transformer. This transformer, featuring four attention layers, is tasked with
producing the means and variances associated with the reconstructed task embedding ϵ.

Figure 8: Action Predictor Architecture: This model integrates multi-view observations directly as input,
sourced from predefined cameras within the scene. The process begins with the extraction of five RGBD images,
which are subsequently transformed into RGB point clouds. These are then subject to orthogonal projection
to generate five novel view images. Subsequently, these novel views are partitioned into smaller patches and
fed into a joint transformer. This transformer, characterized by four attention layers, integrates the sampled
task embedding derived from a Mixture of Gaussian distribution. The architecture of the joint transformer
encompasses eight attention layers, culminating in the production of a heatmap. This heatmap delineates the
action’s translation, the discretized rotation, and a binary variable indicating the gripper’s state—open or closed.

7.4 More Qualitative Results630

We supplement our presentation with additional qualitative results, further elucidating the model’s631

proficiency in learning the disentanglement of interaction modes. Initially, we demonstrate the632

efficacy of the mode selector through a t-SNE plot. This choice of visualization is motivated by our633

methodology of training the mode selector and action predictor independently, allowing for a focused634

examination of the mode selector’s performance.635
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(a) Training Process of the Mode Selector: This figure illustrates the training procedure of the mode selector,
mirroring the approach of a conditional generative model. It highlights the contrastive analysis between the
initial and final observations—the latter serving as the ground truth for task embedding—to delineate generated
data against the backdrop of encoded initial images as the conditional variable. The process involves inputting
both the generated task embedding data and the conditional variable into a 4-layer Residual network-based mode
encoder, which then predicts the categorical variable c. Following the Gaussian Mixture Variational Autoencoder
(GMVAE) methodology, the Gaussian Mixture Model (GMM) variable x is computed and introduced alongside
the conditional variable to the task embedding transformer decoder. This model is tasked with predicting the
reconstructed task embedding, sampled from the Gaussian distribution as outlined in the architecture of the
mode selector decoder, and calculating the reconstruction loss against the input ground truth data.

(b) Inference Process: In the inference phase, the agent discretely samples a cluster from the trained Gaussian
Mixture Variational Autoencoder (GMVAE) model to calculate the Mixture of Gaussian variable x. This variable
x, in conjunction with the conditional variable (initial image observation), is then inputted into the mode selector
transformer decoder. The objective is to reconstruct the task embedding for inference, effectively translating the
conditional information and sampled cluster into actionable embeddings.
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Subsequently, we extend our qualitative analysis with figures akin to those presented in the main636

paper, offering a comprehensive view of the model’s capabilities. These additional figures serve to637

reinforce the insights gained from the initial results, showcasing the model’s nuanced understanding638

of interaction modes through the distinct visual representations of the data.639

7.4.1 Mode selector TSNE plot Figure 14640

Utilizing our pre-trained Conditional Gaussian Mixture Variational Autoencoder (CGMVAE) mode
selector, we conduct disentanglement learning visualization on our comprehensive dataset. Specif-
ically, we focus on the "single drawer" object (object ID: 20411), employing the mode selector to
delineate the generated clusters and compare them with the ground truth task embeddings. The data
for this visualization is derived from our dataset, and we calculate the task embedding ϵj for each
data point as the difference between the initial and final object states, represented by

ϵj = vinitj − vfinalj = EO(Oinitj )− EO(Ofinalj )

.641

Subsequently, we employ a t-SNE plot to simultaneously visualize the ground truth and generated642

task embeddings. In this visualization, distinct colors within the ground truth plot indicate data points643

originating from different interaction modes. Similarly, varied colors in the generated plot correspond644

to data points arising from disparate clusters within the Mixture of Gaussians model. Through this645

approach, we demonstrate that:646

1. The ground truth task embeddings ϵ are distinctly clustered based on the interaction modes.647

2. The CGMVAE model effectively generates clusters that categorize data points by their respective648

categories c.649

3. The reconstructed data closely aligns with the ground truth data points, with the majority of the650

clustered data encompassed within the respective ground truth clusters.651

This visualization underscores the efficacy of our generative model mode selector in extracting task652

embeddings for further application in the action predictor, highlighting the model’s capability to653

discern and categorize interaction modes accurately.654

7.4.2 Action Predictor Qualitative Results655

We present extensive qualitative results in Figure 15a, Figure 15b, Figure 16a, and Figure 16b,656

demonstrating the model’s ability to predict distinct interaction modes through discrete sampling. For657

each object, we explore three different clusters, each representing a unique interaction mode. The658

initial state of the robot and the articulated object is depicted from three perspectives: top-down, front,659

and side views. The heatmaps, derived from the top view during manipulation steps, highlight the660

variance in action space corresponding to different sampled interaction modes. Subsequent imagery661

illustrates the robot’s movement within the simulator and the outcome following interaction with the662

articulated objects. It is important to note that comprehensive video demonstrations accompany this663

document and are accessible on our website, https://actaim2.github.io/.664

7.4.3 Comparison of ActAIM2 and VQVAE-RVT665

Inspired by the Genie [48] approach, we have compared our ActAIM2 with VQVAE-RVT to assess666

the efficacy of these models in discerning discrete interaction modes in robotic manipulation tasks.667

Our primary objective was to evaluate the distinction between interaction modes using a simplified668

scenario, a single-drawer table, which naturally exhibits two distinct interaction modes: opening and669

closing.670

In our experiments, we visualized the latent spaces generated by both ActAIM2 and VQVAe-RVT.671

Particularly for VQVAE-RVT, the latent space visualization involved examining the distribution of672

eight code vectors. As depicted in Figure 10, these vectors clustered into two categories, which ideally673

should correspond to the two expected interaction modes of the drawer. This clustering pattern was674

anticipated and desired as it suggests a clear demarcation between the distinct modes of interaction.675
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Figure 10: Visualization of Latent Space Clustering in VQVAE-RVT: This figure illustrates the distribution
of eight code vectors within the latent space, categorized into two distinct clusters. These clusters are intended
to represent the discrete interaction modes of opening and closing a drawer. The spatial arrangement highlights
the expected separation of code vectors, symbolizing the potential for mode-specific action mapping in robotic
manipulation tasks. Despite this apparent clustering, subsequent heatmaps (see Figure 11) reveal a lack of
diversity in the action predictions, undermining the practical utility of this model configuration.

Figure 11: Comparative Visualization of Action Heatmaps and Observational Data From left to right: (1)
VQVAE-RVT action heatmap synthesized using all eight code vectors, showing identical outcomes across the
board, indicating a failure to differentiate interaction modes. (2) Action heatmap generated by \algoName when
sampling from one cluster, demonstrating a specific interaction mode. (3) Action heatmap from \algoName when
sampling from a different cluster, showcasing another distinct mode of interaction. (4) Top-view observation of
the drawer, correlating with the spatial contexts of the heatmaps, providing a visual reference for the interaction
zones mapped by the heatmaps. This series highlights \algoName’s capability to discern and represent distinct
action strategies through targeted cluster sampling.

However, subsequent visualizations raised concerns about the practical efficacy of the VQVAE-RVT676

model in our application context. When we explored the heatmaps generated by the VQVAE-RVT677

model, we observed a critical limitation: all 8 code vectors produced essentially the same heatmap,678

despite their differing positions in the latent space. This heatmap, illustrated in Figure [Y], consistently679

depicted all plausible interaction modes for the drawer, regardless of the specific code vector used.680

This outcome was in stark contrast to the results from ActAIM2, where distinct heatmaps clearly681

indicated specific interaction actions like pushing or pulling, depending on the sampled cluster within682

the latent space.683

These findings led us to conclude that merely replacing the GMVAE component with a VQVAE in684

the setup did not achieve the desired disentanglement of interaction modes. The VQVAE-RVT model685

failed to map the code vectors to unique, mode-specific interaction strategies, instead converging on a686

generalized representation that was not useful for distinguishing between the actionable options of687

opening and closing the drawer. Consequently, ActAIM2’s ability to discriminate between distinct688

interaction modes via cluster-specific sampling proves superior in contexts demanding discrete and689

distinguishable action representations.690
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Figure 12: Opening and Closing a Drawer: This figure demonstrates the effective action sequence generated
by ActAIM2 for a drawer. The left part of the image shows the drawer being opened, showcasing the robot’s
approach and grip adjustment. The right part of the image captures the drawer in a fully closed position,
illustrating the final state after the action sequence execution.

Figure 13: Opening and Closing a Door: This figure illustrates the ActAIM2’s manipulation capability with
a door. The left image displays the door being opened, highlighting the robot’s positioning and the initial
interaction phase. The right image shows the door completely closed, detailing the end of the manipulation
sequence and the effectiveness of the action predictor.

8 Generation of Demonstration Videos691

To illustrate the practical applications and effectiveness of ActAIM2, we generated demonstration692

videos by employing its inference mechanism. The process involves several key steps:693

1. Generative Mode Selection: Initially, observations are inputted into the generative mode selector694

of ActAIM2. This component is responsible for reconstructing the task’s latent space, which is695

modeled as a Mixture of Gaussians. This structure enables discrete sampling of clusters, which696

represent distinct interaction modes that the robotic system can execute.697

2. Sampling and Action Prediction: From the reconstructed latent space, we sample the task em-698

beddings by selecting a cluster within the Gaussian Mixture Model (GMM) and its corresponding699

Gaussian distribution. This sampled task embedding is then forwarded to the action predictor. The700

action predictor generates the specific actions needed to interact with the environment effectively.701

3. Simulation and Recording: As depicted in Figure 12 and Figure 13, ActAIM2 reconstructs702

an object-based GMM and samples different task embeddings. Depending on the sampled task703

embedding, different interactions are reconstructed and executed within a simulator. We recorded704

the manipulation processes, which are detailed in the video provided in the supplementary files.705

Each video showcases how ActAIM2 navigates through different interaction scenarios, reflecting706

the diverse capabilities of the model in real-time applications.707

This comprehensive demonstration not only validates the functionality of ActAIM2 but also provides708

a visual understanding of its potential in diverse robotic manipulation tasks. The videos highlight the709

nuanced interactions achievable through targeted sampling within the model’s structured latent space.710
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Figure 14: Disentanglement Visualization with CGMVAE: This figure illustrates the efficacy of the Condi-
tional Gaussian Mixture Variational Autoencoder (CGMVAE) in disentangling interaction modes for the "single
drawer" object (ID: 20411), using a t-SNE plot for visualization. Task embeddings ϵj , defined by the variance
between initial and final object states, are visualized in distinct colors to denote various interaction modes
and clusters. The sequence of figures demonstrates the CGMVAE’s precision in clustering and aligning data
points with their respective interaction modes: (1) Generated clusters from the CGMVAE mode selector reveal
distinct groupings. (2) Ground truth task embeddings confirm the model’s capacity for accurate interaction mode
classification. (3) A combined visualization underscores the alignment between generated clusters and ground
truth, showcasing the model’s ability to consistently categorize tasks within identical interaction modes.
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(a) Door, Object ID: 8961

(b) Faucet, Object ID: 154
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(a) Table, Object ID: 19898

(b) Table, Object ID: 41083
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