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Abstract

We study the problem of sequential prediction in the stochastic setting with an1

adversary that is allowed to inject clean-label adversarial (or out-of-distribution)2

examples. Algorithms designed to handle purely stochastic data tend to fail in the3

presence of such adversarial examples, often leading to erroneous predictions. This4

is undesirable in many high-stakes applications such as medical recommendations,5

where abstaining from predictions on adversarial examples is preferable to mis-6

classification. On the other hand, assuming fully adversarial data leads to very7

pessimistic bounds that are often vacuous in practice.8

To capture this motivation, we propose a new model of sequential prediction that9

sits between the purely stochastic and fully adversarial settings by allowing the10

learner to abstain from making a prediction at no cost on adversarial examples.11

Assuming access to the marginal distribution on the non-adversarial examples, we12

design a learner whose error scales with the VC dimension (mirroring the stochastic13

setting) of the hypothesis class, as opposed to the Littlestone dimension which14

characterizes the fully adversarial setting. Furthermore, we design a learner for VC15

dimension 1 classes, which works even in the absence of access to the marginal16

distribution. Our key technical contribution is a novel measure for quantifying17

uncertainty for learning VC classes, which may be of independent interest.18

1 Introduction19

Consider the problem of sequential prediction in the realizable setting, where labels are generated20

from an unknown f∗ belonging to a hypothesis class F . Sequential prediction is typically studied21

under two distributional assumptions on the input data: the stochastic setting where the data is22

assumed to be identically and independently distributed (i.i.d) according to some fixed (perhaps23

unknown) distribution, and the fully-adversarial setting where we make absolutely no assumptions24

on the data generation process. A simple empirical risk minimzation (ERM) strategy works for the25

stochastic setting where the learner predicts according to the best hypothesis on the data seen so26

far. The number of mistakes of this strategy typically scales with the Vapnik-Chervonenkis (VC)27

dimension of the underlying hypothesis classF . However, in the fully adversarial setting, this strategy28

can lead to infinite mistakes even for classes of VC dimension 1 even if the adversary is required to29

be consistent with labels from f∗. The Littlestone dimension, which characterizes the complexity of30

sequential prediction in fully-adversarial setting, can be very large and often unbounded compared to31

the VC dimension [Lit87]. This mismatch has led to the exploration of beyond worst-case analysis32

for sequential prediction [RST11, HRS20, RS13a, BCKP20].33

In this work, we propose a new framework that sits in between the stochastic and fully-adversarial34

setting. In particular, we consider sequential prediction with an adversary that injects adversarial35

(or out-of-distribution) examples in a stream of i.i.d. examples, and a learner that is allowed to36
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abstain from predicting on adversarial examples. A natural motivation for our framework arises37

in medical diagnosis where the goal is to predict a patient’s illness based on symptoms. In cases38

where the symptoms are not among the commonly indicative ones for the specific disease, or the39

symptoms may suggest a disease that is outside the scope of the doctor’s knowledge, it is safer for40

the doctor to abstain from making a prediction rather than risk making an incorrect one. Similarly,41

for self-driving cars, in cases where the car encounters weather conditions outside of its training, or42

unknown information signs, it is better for the algorithm to hand over access to the driver instead of43

making a wrong decision which could end up being fatal.44

In the proposed framework, the learner’s goal is to minimize erroneous predictions on examples45

that the learner chooses to predict on (i.i.d. or adversarial) while refraining from abstaining on too46

many i.i.d. examples. If the learner was required to predict on every example, then the adversary47

could produce a fully-adversarial sequence of examples which would force the learner to make many48

erroneous predictions. The abstention option allows us to circumvent this challenge and handle any49

number of adversarial injections without incurring error proportional to the number of injections.50

Now we can ask the natural question:51

Is there a statistical price for certainty in sequential prediction?52

In particular, can we recover stochastic-like guarantees in the presence of an adversary if we are53

allowed to abstain from predicting on adversarial examples? A priori, it is not clear where on the54

spectrum between the fully-adversarial and stochastic models, the complexity of this problem lies.55

The main challenges arise from the fact that adversary fully controls the injection levels and provides56

no feedback about which examples were adversarial, and the learner has to perform one-sample57

outlier detection algorithm, which is nearly impossible. Despite this, we show that it is possible to58

guarantee certainty in a statistically efficient manner.59

1.1 Main Contributions60

We summarize the main contributions of our work:61

• We formalize a new model of beyond-worst case learning which captures online learning on62

stochastic input with a clean-label attack adversary. With the option of abstention, our model63

allows for any number of injections by the adversary without incurring error proportional to the64

number of injections. Our notion of error simultaneously guarantees few mistakes on classified65

data while ensuring low abstention rate on non-adversarial data. Our model also naturally connects66

to uncertainty quantification and testable learning.67

• We propose an algorithm that achieves error O(d2 log T ) for classes with VC dimension d for time68

horizon T , given access to the marginal distribution over the i.i.d. examples. This allows us to get69

(up to a factor of d) the guarantees of the stochastic setting while allowing for adversarial injections.70

• We further propose an algorithm that achieves O(
√
T ) error for the special (but important) case of71

VC dimension 1 classes without any access to the marginal distribution over the i.i.d. examples.72

Our algorithms uses a novel measure of uncertainty for VC classes to identify regions of high73

uncertainty (where the learner abstains) or high information gain (where the learner predicts and learn74

from their mistakes). The measure uses structural properties of VC classes, in particular, shattered75

sets of varying sizes. In the known distribution setting, our measure is easy to compute, however for76

the unknown distribution setting, we show how to design a proxy using only the examples we have77

seen so far using a leave-one-out type strategy.78

1.2 Related Work79

Beyond-worst case sequential prediction. Due to pessimistic nature of bounds in adversarial online80

learning, there are several frameworks designed to address this issue. One approach is consider81

mild restrictions on the adversarial instances such as slight perturbation by noise. This has been82

formalized as the smoothed adversary model (see [RST11, HRS20, HRS22, HHSY22, BDGR22])83

and has been used to get statistical and computationally efficient algorithms. Another approach has84

been to make the future sequences more predictable given the past instances. Examples of such85

settings are predictable sequence [RS13b], online learning with hints [BCKP20], and notions of86

adaptive regret bounds [FRS20].87
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Abstention-based learning. Abstention has been considered in several other works in classification,88

both in the online and offline settings. An early example of this is the Chow reject model [Cho70].89

Various versions of this have been considered in offline learning (see e.g. [HW06, BW08, BZ20] and90

references therein) and online learning (see e.g. [ZC16, CDG+19, NZ20] and references therein).91

These results show that abstention can lead to algorithms with desired features, for example fast92

rates without margins assumptions. Another line of work that is closely related to our setting is the93

KWIK (knows what it knows) framework by [LLW08] which requires the learner to make predictions94

only when it is absolutely confident, and abstain otherwise. This requirement was relaxed to allow95

for mistakes in [SZB10]. The key difference from our work is that it assumes a fully-adversarial96

stream thus, the error bounds can be as large as the domain size. Perhaps, the work that is closest to97

our setting is the study of adversarial learning with clean-label injections by [GKKM20, KK21]. In98

their transductive adversarial model, the learner is given labeled training examples and unlabeled99

test examples on which it must predict, where the test examples may have been injected by an100

adversary. They show how to abstain with few test misclassifications and few false abstentions on101

non-adversarial examples. However, in many real-world scenarios, it is unrealistic to expect to have102

the entire test set in advance, which further motivates the fully online setting that we consider.103

Adversarially robust learning. Highly related to our setting is the problem of inductive learning104

in the presence of adversarial corruptions. The literature on this is generally divided into two105

scenarios: test-time attacks and training-time attacks. In the case of test-time attacks, the learning106

algorithm is trained on an (uncorrupted) i.i.d. training set, but its test examples may be corrupted107

by an adversary whose intention is to change the classification by corrupting the test example108

[SZS+13, BCM+13, GSS15, FMS18, AKM19, MHS19, MHS20, MHS21, MHS22, MGDS20]. On109

the other hand, in the case of training-time attacks, the training data the learning algorithm trains on110

is corrupted by an adversary (subject to some contraints on what fraction it may corrupt and what111

types of corruptions are possible), while the test examples are uncorrupted [Val85, KL93, BEK02,112

BNL12, ABL17, SKL17, SHN+18, LF21, GKM21, HKM+22, BBHS22]. In particular, within113

this literature, most relevant to the present work is the work on clean-label poisoning, where the114

adversary’s corrupted examples are still labeled correctly by the target concept [SHN+18, BHQS21].115

Comparing to the present work, it is interesting to note that the fact that our setting involves sequential116

prediction (i.e., online), our problem may be viewed simultaneously as both training-time and test-117

time corruption: that is, because on each round the point we are predicting (or abstaining) on may be118

inserted by an adversary, this could be viewed as a test-time attack; on the other hand, since the prefix119

of labeled examples we use to make this prediction may also contain adversarial examples, this can120

also be viewed as a training-time attack. Thus, our setting requires reasoning accounting for issues121

arising from both attack scenarios, representing a natural blending of the two types of scenarios.122

Adversarial Examples. Our clean-label attack is very closely related and motivated by the setting of123

adversarial examples [SZS+13, BCM+13, GSS14]. The goal in this setting is to learn a classifier that124

predicts correctly on all adversarial examples, which is a very strong requirement. Empirical work in125

this space has focused on designing methods to make training adversarially robust [MMS+17, WK18],126

and also on detecting adversarial examples [PDDZ18, AHFD22]. Detecting adversarial examples127

is a very challenging tasks and proposed solutions are often brittle [CW17]. In fact, our framework128

does not explicitly require detection as long as we can predict correctly on these.129

2 Abstention Framework130

In this section, we present the formal framework for sequential prediction with abstentions.131

Notation. We will denote the domain with X and the distribution over X as D. We let ∆(X ) denote132

the set of all distributions over X . We will work in the realizable setting where our label will be133

according to some function inF with VC dimension d. Given a classF and a data set S =
{
(xi, yi)

}
,134

we will denote by F|S , the class F|S =
{
f ∈ F : ∀i f(xi) = yi

}
. When the data set contains a135

single point S =
{
(x, y)

}
, it will be convenient to denote F|S as Fx→y .136

Protocol. At the start, the adversary (or nature) picks a distribution D over the domain X and the137

labelling function f⋆ ∈ F . We will be interested in both the setting where the learner knows the138

distribution D and the setting where the learner does not know the distribution D. In the traditional139

sequential prediction framework, the learner sees input xt at time t and makes a prediction ŷt and140

observes the true label yt. The main departure of our setting from this is that an adversary also141
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decides before any round whether to inject an arbitrary element of X (without seeing xt). We denote142

by x̂t the instance after the adversarial injection (x̂t = xt or x̂t ̸= xt). The learner then observes x̂t143

and makes a prediction ŷt and observes the true label yt, as in the traditional sequential prediction144

framework. We present this formally as a protocol in 2.145

Protocol 1 Sequential Prediction with Adversarial Injections and Abstentions
Adversary (or nature) initially selects distribution D ∈ ∆(X ) and f⋆ ∈ F . The learner does not have
access to f⋆. The learner may or may not have access to D.
for t = 1, . . . , T do

Adversary decides whether to inject an adversarial input in this the round (ct = 1) or not (ct = 0).
if ct = 1 then Adversary selects any x̂t ∈ X
else Nature selects x̂t ∼ D
Learner receives xt and outputs ŷt ∈ {0, 1,⊥} where ⊥ implies that the learner abstains.
Learner receives clean label yt = f⋆(x̂t).

It is important to note we are in the realizable setting, even after the adversarial injections since the146

labels are always consistent with a hypothesis f∗ ∈ F . This model can naturally be extended to the147

agnostic setting with adversarial labels.148

Objective. The goal of the learner is to have low error rate on the rounds they decides to predict149

(that is when ŷt ∈ {0, 1}) while also ensuring that they do not abstain (ŷt =⊥) on too many non-150

adversarial rounds (ct = 0). More formally, the learner’s objective is to minimize the following error151

(or regret),152

Error :=
T∑

t=1

1[ŷt = 1− f⋆(xt)]︸ ︷︷ ︸
MisclassificationError

+

T∑
t=1

1[ct = 0 ∧ ŷt =⊥]︸ ︷︷ ︸
AbstentionError

.

We could formulate a relaxed cost-based version of this objective that allows us to trade-off these153

errors, however, we will focus on the strong notion of error for this paper.154

Connections to Testable Learning. A further interesting connection can be made by viewing our155

model as an online version of testable learning framework of [RV22]. In order to see the analogy156

more direct, we will focus on the setting where the learner knows the distribution D. In the setting, a157

learning algorithm is seen as a tester-learner pair. The tester takes the data set as input and outputs158

whether the data set passes the test. The algorithm then takes as input any data set that passes the test159

and outputs a hypothesis. The soundness guarantee for the pair of algorithms is that the algorithm160

run on any data set that passes the test must output a hypothesis that is good on the distribution. The161

completeness requires that when the dataset is indeed from the "nice" distribution, then the tester162

passes with high probability. We can see our framework in this light by noting that the decision163

of whether to abstain or not serves as a test. Thus, in this light, completeness corresponds to the164

abstention error being small when the data is non-adversarial i.e. is from the true distribution, while165

the soundness corresponds to the misclassification error being small on points the algorithm decides166

not to abstain. While the testable learning literature primarily focuses on the computational aspects167

of learning algorithms, our focus is solely on the statistical aspects.168

3 Warm-up: Disagreement-based Learners169

As a first example to understand the framework, we consider the most natural learner for the problem.170

Given the data S of the examples seen thus far, the learner predicts on examples x̂ whose labels it is cer-171

tain of. That is, if there is a unique label for x̂ consistent with F|S , the learner predicts that label. Else,172

it abstains from making a prediction. This region of uncertainty is known as the disagreement region.173

Example: thresholds in one dimension. Consider learning a single-dimensional threshold in [0, 1]174

(that is, concepts x 7→ 1[x ≥ t] for any t ∈ [0, 1]). While it is well known that ERM achieves log(T )175

misclassification error for i.i.d. data sequences, in the case of an adversarially chosen sequence,176

it is also well known that the adversary can select inputs in the disagreement region each time177

(closer and closer to the decision boundary) and thereby force any non-abstaining learner to make178

a linear number of mistakes (recall that the Littlestone dimension of thresholds is infinite) [Lit87].179
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Indeed, it is known that the function classes F for which non-abstaining predictors can be forced180

to have MisclassificationError = Ω(T ) are precisely those with embedded threshold problems of181

unbounded size [Lit87, She78, Hod97, ALMM19]. Let us now consider the learner that abstains in182

the disagreement region and predicts based on the consistent hypothesis outside of this region.183

Proposition 3.1. Disagreement-based learner for one dimensional thresholds has184

MisclassiciationError = 0 and AbstentionError ≤ 2 log(T ).185

To see this note that our learner only predicts when the input is not in the disagreement region186

and thus it never predicts incorrectly (MisclassiciationError = 0). As for the abstentions, a simple187

exchangeability, argument shows that when there are n i.i.d. examples in the sequence, the probability188

of the new non-adversarial example being in the disagreement region is 1/n. Summing this over the189

time horizon gives us the above proposition.190

Perfect Selective Classification and Active Learning. The learner for the above thresholds problem191

is a well-known strategy from the areas of perfect selective classification and active learning known192

as disagreement-based learning [RS88, EYW10, CAL94, BBL09, DHM07, HY15]. In the perfect193

selective classification setting [RS88, EYW10], the learner observes the examples sequentially, as in194

our framework, and may predict or abstain on each, and must satisfy the requirement that whenever195

it predicts its prediction is always correct. From this fact, it immediately follows that applying any196

perfect selective classification strategy in our setting, we always have MisclassiciationError = 0,197

so that its performance is judged purely on its abstention rate on the iid examples. It was argued198

by [EYW10] that the optimal abstention rate among perfect selective classification strategies is199

obtained by the strategy that makes a prediction on the next example if and only if all classifiers in200

the hypothesis class that are correct on all examples observed so far, agree on the example. Note that201

this is precisely the same learner used above. This same strategy has also been studied in the related202

setting of stream-based active learning1 [CAL94, BBL09, Han09, Han14, DHM07, HY21]. The203

abstention rate achievable by this strategy for general hypothesis classes is thoroughly understood204

[Han07, Han11, Han09, Han12, Han14, Han16, EYW10, EYW12, WHE15, HY15]. In particular,205

a complete characterization of the optimal distribution-free abstention rate of perfect selective206

classification is given by the star number of the hypothesis class [HY15, Han16]. The star number207

s is the size of the largest number s such that there are examples {x1, . . . , xs} and hypotheses208

h0, h1, . . . , hs such that hi and h0 disagree exactly on xi. For instance, s = 2 for threshold classifiers209

[HY15]. It was shown by [Han16] that the optimal distribution-free abstention rate for perfect210

selective classification is sublinear if and only if the star number is finite (in which case it is always211

at most s log(T )). One can show that s is always lower bounded by the VC dimension of the class.212

Unfortunately, the star number is infinite for most hypothesis classes of interest, even including213

simple VC classes such as interval classifiers [HY15].214

Beyond disagreement-based learning. The learner that abstains whenever it sees an example that it215

is not certain of may be too conservative. Furthermore, it does not exploit the possibility of learning216

from mistakes. Let us consider another example to elucidate this failure. Consider the class of d217

intervals in one dimension where the positive examples form a union of intervals. This class has VC218

dimension d but infinite star number. Suppose that d = 2 but examples in the second interval are very219

rarely selected by i.i.d. examples. Then the disagreement-based learner would suggest to abstain220

on all examples to protect against the possibility that our new example is in the second interval.221

However, consider the following simple strategy: if the new example lies between two positives (resp.222

negatives), we predict positive (resp. negative), else we abstain.223

Proposition 3.2. The proposed strategy for the class of d-intervals in one dimension has224

MisclassiciationError ≤ d and AbstentionError ≤ 2d log(T ).225

To see this, note that whenever we predict, either we are correct or we have identified the location of226

a new interval, hence reducing the VC dimesnion of the class by 1. Since there are at most d intervals,227

we will therefore make at most d errors when we predict, implying MisclassiciationError ≤ d. As228

for abstaining on i.i.d. examples, the same argument for thresholds can be applied here by treating229

the intervals as at most d thresholds.230

1In this setting, instead of observing a sequence of labelled examples, the learner only observes the examples
without their target labels, and at each time may query to observe the target label. The disagreement-based
strategy chooses to query precisely on the points for which the classifiers in the hypothesis class correct on the
observed labels so far do not all agree on the label [CAL94]. The rate of querying for this strategy is precisely
the same as the abstention rate in the perfect selection classification setting [Han11, Han14, EYW12].
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4 Higher-order Disagreement-based learner with Known marginals231

We will first focus on the setting when the marginal distribution D is known. In this setting, the232

algorithm that naturally suggests itself is to take a cover for the class under D of accuracy poly(T−1)233

and use an adversarial algorithm for prediction. Since there are covers of size TO(d) and Littlestone234

dimension of any finite class is bounded by the logarithm of the size, this seems to indicate that this235

algorithm will achieve our goal with misclassication error O(d log T ) and zero abstention error. But236

unfortunately note that this algorithm competes only with the best classifier on the cover. The cover237

is a good approximation only on the marginal distribution D and not on the adversarial examples.238

In fact, when we restrict to the hypothesis class being the cover, the data may no longer even be239

realizable by the cover. Therefore, we need to use the access to the distribution is a completely240

different way.241

The inspiration for our approach comes from the work of [Han09, Han12] on active learning strategies242

that go beyond disagreement-based learning by making use of higher-order notions of disagreement243

based on shattering. We note, however, that while the work of [Han09, Han12] only yields asymptotic244

and distribution-dependent guarantees (and necessarily so, in light of the minimax characterization of245

[HY15] based on the star number), our analysis differs significantly in order to yield distribution-free246

finite-sample bounds on the misclassification error and abstention rate.247

As we saw earlier, just looking at the disagreement region does not lead to a good algorithm for248

general VC classes (whenever the star number is large compared to the VC dimension). The main249

algorithmic insight of this section is that certain higher-order versions of disagreement sets do indeed250

lead to good notions of uncertainty for VC classes. Our measure uses the probability of shattering k251

examples (for different values of k) freshly drawn from the underlying distribution, under the two252

restrictions of the class corresponding to the two labels for the current test example, to make the253

abstention decision. One can think of the probability of shattering as a proxy for the complexity of254

the version space. This serves both as a method to quantify our uncertainty about whether the current255

example is from the distribution or not, since we can understand the behavior of this quantity in the256

i.i.d. case, and also as potential function which keeps track of the number of mistakes. In order to257

formally state this, we will need some definitions.258

Definition 4.1 (Shattering and VC Dimension). Let X be a domain and F be a binary function class259

on X i.e. F ⊂ {0, 1}X . A set {x1, . . . , xk} ⊆ X is said to be shattered by F if for all y ∈ {0, 1}k260

there exists a function f ∈ F such that f (xi) = yi. The VC dimension of F is defined as the261

maximum k such that there is a set of size k that is shattered.262

Definition 4.2 (Shattered k-tuples). Let k be a positive integer. The set of shattered k-tuples, denoted263

by Sk, for hypothesis class F over a domain X is defined as264

Sk (F) =
{
(x1, . . . , xk) : {x1, . . . xk} is shattered by F

}
.

Additionally, given a distribution D on the domain, we will refer to as the k shattering probability of265

F with respect to D, denoted by ρk (F ,D), as266

ρk (F ,D) = D⊗k
(
Sk (F)

)
= Pr

x1,...,xk∼D⊗k

[
{x1, . . . , xk} is shattered by F

]
.

Let us now describe the algorithm (see Algorithm 1). The algorithm maintains a state variable k267

which we will refer to as the level the algorithm is currently in. The level can be thought of as the268

complexity of the current version space. At level k, we will work with shattered sets of size k. At269

each round, the algorithm, upon receiving the example x̂t, computes the probabilities of shattering270

k examples (drawn i.i.d. from D) for each of the classes corresponding to sending x̂t to 0 and 1271

respectively. The algorithm abstains if both these probabilities are large, else predicts according to272

whichever one is larger. At the end of the round, after receiving the true label yt, the algorithm checks273

whether the probability of shattering k examples is below a threshold αk, in which case it changes274

the level, that is, updates k to be k − 1.275

Below, we state the main error bound of the algorithm. The theorem shows that both the misclassica-276

tion error and the abstension error are bounded in terms of the VC dimension.277

Theorem 4.1. Let F be a hypothesis class with VC dimension d. Then, in the corruption model with278

abstensions with time horizon T , Algorithm 1 with αk = T−k gives the following guarantee279

E[MisclassificationError] ≤ d2 log T and E[AbstentionError] ≤ 6d.
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Algorithm 1: Level-based learning for Prediction with Abstension
Set k = d and F1 = F
for t = 1, . . . , T ∧ k > 1 do

Receive x̂t

if min

{
ρk

(
F x̂t→1

t

)
, ρk

(
F x̂t→0

t

)}
≥ 0.6ρk (Ft) then predict ŷt = ⊥

else predict ŷt = argmaxj∈{0,1}

{
ρk

(
F x̂t→j

t

)}
Upon receiving label yt, update Ft+1 ← F x̂t→yt

t
if ρk (Ft+1) ≤ αk then Set k = k − 1

if k = 1 ∧ x̂t ∈ S1 then ŷt = ⊥
if k = 1 ∧ x̂t /∈ S1 then Predict with the consistent label for x̂t

We will now present the main technical idea that we will use to analyze the theorem. We defer the full280

proofs to Appendix A. Let k be a positive integer and x be any example in X . The following lemma281

upper bounds the probability for a random example the shattering probability of the two restrictions282

of the class are both large compared to the original shattering probability of the class. That is to say283

for most examples, one of the two restrictions of the class will have a smaller shattering probability284

compared to the original class.285

Lemma 4.2. Let F be a hypothesis class and D be a distribution. Then for any k ∈ N and any286

η > 1/2, we have287

Pr
x∼D

[
ρk

(
Fx→1

)
+ ρk

(
Fx→0

)
≥ 2ηρk (F)

]
≤ 1

2η − 1
· ρk+1 (F)

ρk (F)
. (1)

With this in hand, we will first look at the abstention error. The intuition is that when the algorithm288

is at level k, an abstention occurs only if the condition from (1) is satisfied and Lemma 4.2 bounds289

the probability of this event. It remains to note that when the algorithm is at level k we both have an290

upper bound on ρk+1 (since this is the condition to move down to level k from level k + 1) and a291

lower bound on the ρk (since this is the condition to stay at level k).292

Lemma 4.3 (Abstention error). For any k ≤ d, let [ℓk, ek] denote the interval of time when Algo-293

rithm 1 is at level k. Then, the expected number of non-adversarial rounds at level k on which the294

algorithm abstains satisfies295

E

 ek∑
t=ℓk

I [ct = 0 ∧ ŷt = ⊥]

 ≤ 5T · αk+1

αk
. (2)

Next, we bound the misclassification error. The main idea here is to note that every time a misclassi-296

cation occurs at level k, the k-th disagreement coefficient reduces by a constant factor. Since we have297

a lower bound on the disagreement coefficient at a fixed level, this leads to a logarithmic bound on298

the number of misclassifications at any given level.299

Lemma 4.4 (Misclassification error). For any k ≤ d, let [ℓk, ek] denote the interval of time when300

Algorithm 1 is at level k. For any threshold αk in Algorithm 1,301

E

 ek∑
t=ℓk

I
[
ŷt = 1− f∗(x̂t)

] ≤ 2 · log
(

1

αk

)
.

Putting together Lemma 4.4 and Lemma 4.3 along with a setting of αk = T−k, gives us Theorem 4.1.302

5 Structure-based Algorithm for VC Dimension 1 Classes303

We move to the case of unknown distributions. In this setting, the example x are drawn from a304

distribution D that is unknown to the learner. As we saw earlier, it is challenging to decide whether a305
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single point is out of distribution or not, even when the distribution is known. This current setting306

is significantly more challenging since the learner needs to abstain on examples that are out of307

distribution for a distribution that it doesn’t know. A natural idea would be to use the historical data to308

build a model for the distribution. The main difficulty is that, since we do not get feedback about what309

examples are corrupted, our historical data has both in-distribution and out-of-distribution examples.310

The only information we have about what examples are out of distribution is the prediction our311

algorithm has made on them. Such issues are a major barrier in moving from the known distribution312

case to the unknown distribution case.313

A key quantity that we will use in our algorithm will be a version of the probability of the disagreement314

region but computed on the historical data. The most natural version of this would be the leave-one-315

out disagreement. That is, consider the set of examples which are in the disagreement region when316

the class is restricted using the data set with the point under consideration removed. This estimate317

would have been an unbiased estimator for the disagreement probability (referred to earlier as ρ1 in318

Definition 4.2). As mentioned earlier, unfortunately, in the presence of adversarial injections, this319

need not be a good estimate for the disagreement probability.320

In order to remedy this, we consider a modified version of the leave-one-out disagreement estimate321

which considers examples x in the disagreement region for the class F|Sf\(x,y) where Sf is the322

subset of the datapoints which disagrees with a fixed reference function f . It is important to note323

that this function f is fixed independent of the true labelling function f⋆. Though this seems a bit324

artificial at first, we will see that this is a natural quantity to consider given the structure theorem for325

VC dimension one classes which we will discuss subsequently.326

Definition 5.1. Let F be a class of functions and let f ∈ F be a reference function. Let S =327 {
(xi, yi)

}
be a realizable data set. Define328

Γ(S,F , f) =
{
x : ∃y (x, y) ∈ S ∧ x ∈ S1

(
F|Sf\(x,y)

)}
where Sf = {(x, y) ∈ S : f(x) ̸= y}. Further, we will denote the size of this set by γ(S,F) =329 ∣∣Γ(S,F , f)∣∣. We will suppress the dependence on F when it is clear from context.330

Let us now present the main algorithm (see Algorithm 2). The main idea of the algorithm is similar to331

Algorithm 1 in the known distribution case. We will make a prediction in the case when the difference332

between Γ for the two classes corresponding to the two labels for the point x is large. The idea is that333

when a prediction is made and a mistake happens, the size of Γ goes down similar to ρk in the known334

distribution case. In the case when the difference is small, we will abstain.335

Algorithm 2: Structure-based learning for Prediction with Abstention for Unknown Distribution
Let f ∈ F be a reference function and α be the abstention threshold.
Set F0 = F and S0 = ∅
for t = 1, . . . , T do

Receive x̂t

Let a0 =
∣∣∣Γ (

St−1,F x̂t→0, f
)∣∣∣ and a1 =

∣∣∣Γ (
St−1,F x̂t→1, f

)∣∣∣
if x̂t /∈ S1 (Ft) then Predict with the consistent label for x̂t

else if max {a0, a1} ≥ α then ŷt = argmaxb ab
else ŷt = ⊥
Upon receiving label yt, update St ← St−1 ∪

{
(x̂t, yt)

}
and Ft ← F x̂t→yt

t−1

336

Though the algorithm is simple and can be made fairly general, our analysis is restricted to the case337

of VC dimension one. The main reason for this restriction is that our analysis relies on a structure338

theorem for VC dimension one classes which has no direct analogy for higher VC dimension. But339

since the algorithm has a natural interpretation independent of this representation, we expect similar340

algorithms to work for higher VC dimension classes as well.341

Theorem 5.1. Let F be a hypothesis class with VC dimension 1. Then, in the corruption model with342

abstentions with time horizon T , Algorithm 2 with parameter α =
√
T gives the following guarantee343

E[MisclassificationError] ≤ 2
√
T log T and E[AbstentionError] ≤

√
T log T .

We will now present the main technical ideas that we use to analyze the algorithm. We defer the full344

proofs to Appendix B. We will keep track of the mistakes using the size of the disagreement region,345
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which we denote by γt = γ (St,F). The main idea for the proof is to note that when we decide to346

predict the label with the larger value of Γ is bigger by an additive α. Thus, when a mistake occurs the347

value of γ decreases by at least α. Summing the errors over all time steps gives the following bound.348

Lemma 5.2. Algorithm 2 has E[MisclassificationError] ≤ 2T/α.349

Next, we move on to the analysis of the number of abstentions. In fact, we will prove a stronger350

structural results that shows that the number of examples such that there is any set of adversarial351

injections that would make the algorithm abstain is small. We refer to examples on which algorithm352

can be made to abstain as attackable examples (formally defined in Definition B.2). The main idea353

is to prove that in any set of iid examples, there are only a few attackable ones. This is formally354

stated and proved as Lemma B.3. Using this claim, we can bound the number of abstentions using355

an exchangeability argument.356

Lemma 5.3. Algorithm 2 has E[AbstentionError] ≤ α log T .357

The proof of Theorem 5.1 follows from Lemma 5.2 and Lemma 5.3 by setting α =
√
T/ log T .358

6 Discussion and Future Directions359

In this paper, we introduce a framework for beyond-worst case adversarial sequential predictions by360

using abstention. Our proposed framework falls at the intersection of several learning paradigms such361

as active learning, uncertainty quantification, and distribution testing. In this framework we show two362

main positive results, validating the beyond-worse case nature of our framework. However, our work363

has only scratched the surface of understanding learnability for VC classes in this new framework.364

Here we discuss several exciting future directions:365

• Our techniques rely strongly on the realizability, however our framework can naturally be extended366

to settings with label noise. Immediate questions here would be to extend our results to simple367

noise models such as random classification noise and Massart noise or more ambitiously the368

agnostic noise model.369

• Our framework can naturally be extended to more general forms of prediction such as multiclass370

classification, partial concept classes, and regression. It would be interesting to characterize371

learnability in these settings.372

• In the known distribution case, it remains to find the optimal error bound. We conjecture that the373

correct dependence on VC dimemsion d should be linear.374

• In the unknown distribution case, extending our result for VC dimension d > 1 classes is wide375

open. Though, we have algorithms for certain classes of higher VC dimension, such as intervals376

and axis-aligned rectangles, they seem to heavily exploit the structure of the particular class. Thus,377

showing either an upper or lower bounds of the error dependence on both the class and the time378

horizon would be interesting.379

• The unknown distribution case can be seen as form of distribution-free uncertainty quantification.380

It would be interesting to understand connections to other forms such as conformal prediction. On381

a technical level, our work exploits exchangeability of the i.i.d. sequence which is the foundation382

of conformal prediction, though the main challenge in our setting is the presence of adversarial383

inputs. It would be interesting to build on this connections and understand whether techniques384

can be ported over in either direction.385

• Our focus for this paper has been entirely on the statistical benefits of abstention. Understanding386

the computational complexity in this setting is an exciting avenue for research. Concretely, for387

halfspaces in d dimensions, is there a polynomial time algorithm for learning with abstentions,388

even for well-behaved distributions such as Gaussians. On a related note, showing computational-389

statistical gaps in this specialized setting would be interesting, albeit disappointing.390

Broader Impact. The aim of our work is design a theoretical framework for handling adversarial391

examples and guaranteeing certainty in sequential prediction. Our model assumes no cost for392

abstaining on adversarial inputs. However, in real-world scenarios, these costs can be high, consider393

the human cost of evaluating each of the abstained examples. Furthermore, as with any framework,394

application of our metric without taking into account the nuances of the real-world situation could lead395

to unintended consequences, for example, a high abstention rate on marginalized sub-populations.396
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A Proofs from Section 4579

A.1 Properties of Higher-Order Disagreement: Proof of Lemma 4.2580

We first begin by relating the probabilities of shattering k points for the classes gotten by restricting581

to evaluating to 0 and 1 at x respectively, for an arbitrary point x. The proof of the following lemma582

uses a simple inclusion exclusion argument.583

Lemma A.1. For all x ∈ X and any hypothesis class F , we have584

D⊗k

(
Sk

(
Fx→1

))
+D⊗k

(
Sk

(
Fx→0

))
≤ D⊗k

(
Sk (F)

)
+D⊗k

(
Sk

(
Fx→1

)
∩ Sk

(
Fx→0

))
.

Equivalently,585

ρk

(
Fx→1

)
+ρk

(
Fx→0

)
≤ ρk (F)+ Pr

x1,...,xk∼D

[
x1, . . . , xk is shattered by both Fx→1 and Fx→0

]
.

Proof. For x1, . . . , xn ∈ X , consider the four indicator random variables given by586

A1 = 1

(
x1, . . . , xn is shattered by Fx→1

)
A2 = 1

(
x1, . . . , xn is shattered by Fx→0

)
A3 = 1

(
x1, . . . , xn is shattered by Fx→1 and Fx→0

)
A4 = 1 (x1, . . . , xn is shattered by F) .

Note that A1 +A2 ≤ A3 +A4. Taking expectations gives the desired result.587

In order to prove the main lemma, we then take expectations with respect to the point x drawn588

independently from D. The key observation is to relate the probability of k point being shattered by589

both classes that evaluate to 0 and 1 at x, for a random point x, to the probability of shattering k + 1590

points.591

Proof of Lemma 4.2. The proof follows by using Lemma A.1 to get (3) and Markov’s inequality592

to get (4). The final line follows by noting that since x1, . . . , xk and x are drawn from D and are593

shattered, (4) computes the probability that k + 1 points are shattered.594

Pr
x∼D

[
ρk

(
Fx→0

)
+ ρk

(
Fx→1

)
≥ 2ηρk (F)

]
≤ Pr

x∼D

[
ρk (F) + Pr

x1,...,xk∼D

[
x1, . . . , xk is shattered by both Fx→1 and Fx→0

]
≥ 2ηρk (F)

]
(3)

≤ Pr
x∼D

[
Pr

x1,...,xk∼D

[
x1, . . . , xk is shattered by both Fx→1 and Fx→0

]
≥ (2η − 1) ρk (F)

]

≤
·E

[
Prx1,...,xk∼D

[
x1, . . . , xk is shattered by both Fx→1 and Fx→0

]]
(2η − 1) ρk (F)

(4)

≤ 1

2η − 1
· ρk+1 (F)

ρk (F)
.

595

A.2 Proof of Lemma 4.4596

Proof. Note that from definition of Algorithm 1, we have that when ŷt ̸= ⊥,597

min

{
ρk

(
Fxt→1

t

)
, ρk

(
Fxt→0

t

)}
≤ 0.6ρk (Ft). Thus, since we predict with the label corre-598

sponding to max

{
ρk

(
Fxt→1

t

)
, ρk

(
Fxt→0

t

)}
, if we make a mistake, we have599

ρk (Ft+1) ≤ 0.6 · ρk (Ft) .
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Also, note once end of the phase corresponding to k, ek, is reached when ρk (Ft) ≤ αk. This leads600

to the required bound.601

A.3 Proof of Lemma 4.3602

Proof. Let t ∈ [ℓk,mk]. Recall that Ft denotes the class consistent with the data seen till time t.603

Recall that Ht denotes the history of the interaction till time t.604

E
[
1
[
ct = 0 ∧ ŷt (x̂t) = ⊥

]
| Ht

]
= E

[
1
[
ct = 0 ∧ ŷt (xt) = ⊥

]
| Ht

]
(5)

≤ E
[
1
[
ŷt (xt) = ⊥

]
| Ht

]
≤ Pr

[
min

{
ρk

(
Fxt→1

t

)
, ρk

(
Fxt→1

t

)}
≥ 0.6ρk (Ft) | Ht

]
(6)

≤ Pr

[
ρk

(
Fxt→1

t

)
+ ρk

(
Fxt→1

t

)
≥ 1.2ρk (Ft) | Ht

]
(7)

≤ 5
ρk+1 (Ft)

ρk (Ft)
(8)

≤ 5
αk+1

αk
. (9)

The equality in (5) follows from the fact that in the uncorrupted rounds, x̂t = xt. The inequality in605

(6) follows from the condition for abstention in Algorithm 1 and the fact that xt ∼ D. (7) follows606

from the fact that the min of two numbers is at most their average. The key step is (8) which follows607

from Lemma 4.2. (9) follows from the fact that at level k in Algorithm 1, ρk+1 (Ft) ≤ αk and608

ρk (Ft) ≥ αk+1. Summing this bound and noting that ek − ℓk is at most T , we get the required609

bound.610

A.4 Proof of Theorem 4.1611

Proof. First, let us look at the misclassication error. Note that Algorithm 1 will not misclassify612

when k = 1. To see this, recall from Definition 4.2 that x̂t ̸ S1 implies that there is a unique label613

consistent with the history. For the remaining levels, we sum the errors from Lemma 4.4 and recall614

that αk = T−k, which gives us615

MisclassificationError =
T∑

t=1

1[ŷt = 1− f⋆(xt)]

≤ 2

d∑
k=2

log

(
1

αk

)

≤ 2

d∑
k=2

k log T

≤ d2 log T.

For the abstention error, we again begin with the case of k = 1. Note that for t ≥ ℓ1, we have616

Pr
x∼D

[
x ∈ S1 (Ft)

]
≤ α1.
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Thus, we have a bound of Tα1 ≤ 1 on the expected error in this case. For the remaining levels, we617

sum the error from (2) over all k, which gives us the bound618

AbstentionError =
T∑

t=1

1[ct = 0 ∧ ŷt =⊥]

=

d∑
k=1

E

 ek∑
t=ℓk

1 [ct = 0 ∧ ŷt = ⊥]


= 1 + 5T

d∑
k=2

αk+1

αk

= 1 + 5T

d∑
k=2

1

T

≤ 5d+ 1

≤ 6d.

This gives us the desired bounds.619

B Proofs from Section 5620

B.1 Structure for VC Dimension One Classes621

Definition B.1. Consider a domain X and a partial order ≺ on X . We say that a set I is an initial622

segment of ≺ if for all x ∈ I and y ∈ X such that y ≺ x, we have y ∈ I . We say that a partial order623

is a tree ordering if every initial segment I is a linear order i.e. for all x, y ∈ I , either x ≺ y or y ≺ x.624

Theorem B.1 ([BD15]). Let F be a hypothesis class over the domain X . Then, the following are625

equivalent:626

a. F has VC dimension 1.627

b. There is a tree ordering ≺ on X and a hypothesis f ∈ F such that every element of the set628

Ff = {h⊕ f : h ∈ F}
is an initial segment of ≺.629

The result above was initially observed in [BD15].630

B.2 Proof of Lemma 5.2631

Lemma B.2. For any t, we have that632

γt+1 ≤ γt − α · 1 [Misclassification at time t] + 1. (10)

Proof. First, note that in any round that a mistake was not made, we have that γt+1 ≤ γt + 1. This is633

because at most one point is added to the data set in each round.634

Note that
∣∣∣Γ (

St−1,F x̂t→1
)∣∣∣ +

∣∣∣Γ (
St−1,F x̂t→0

)∣∣∣ ≤
∣∣Γ (St−1,F)

∣∣. Further, we have635 ∣∣Γ (St,F)
∣∣ ≤ ∣∣∣Γ (

St−1,F x̂t→yt
)∣∣∣ + 1. From the condition for predicting, we have that636

max

{∣∣∣Γ (
St−1,F x̂t→1

)∣∣∣ ,∣∣∣Γ (
St−1,F x̂t→0

)∣∣∣} ≥ α. Since if we make a misclassication, we go to637

the smaller value for Γ, we get the desired bound.638

Proof. Note that MisclassificationError =
∑T

t=1 1 [Misclassification at time t]. Rearranging (10)639

and summing gives us640

MisclassificationError ≤ 1

α

T∑
t=1

(γt − γt+1 + 1)
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Note that for all i, we have that γi ≤ T which gives us the desired bound.641

B.3 Proof of Lemma 5.3642

Definition B.2 (Attackable Point). Let F be a hypothesis class and let f ∈ F be a representative643

function. Let S be a realizable dataset. We say that a point x is attackable with respect to a data set644

S if there exists is a sequence of adversarial examples Ax such that algorithm abstains on example645

x when the history is S ∪ Ax\ {x}. In other words, x is attackable if there is a set of adversarial646

examples Ax such that x /∈ S1
(
F|S∪Ax\{x}

)
and647

max

{∣∣∣∣Γ(
S ∪Ax\ {x} ,Fx→0

)∣∣∣∣ ,∣∣∣∣Γ(
S ∪Ax\ {x} ,Fx→1

)∣∣∣∣
}
≤ α.

The key lemma for our analysis is that the number of attackable examples is bounded.648

Lemma B.3. Let F be a hypothesis and f ∈ F be any reference function. Let S be any set of649

examples. Then, the number of attackable examples is at most α.650

The proof uses a structure theorem for classes with VC dimension one which states that they can be651

represented as initial segements of a tree order.652

Proof. Let f be the representative function from the characterization in Theorem B.1. Futher, let T653

be the tree corresponding to the tree order on X . Since f is a fixed function that does not depend on654

the algorithm or the history of interaction with adversary, we can preprocess all points and labels655

to be xored with the labels of f . In other words, we tranform the class to be such that f is the all656

zeros function. In this setting, the true hypothesis f⋆ corresponds to a path p and a threshold x⋆ on657

T such that f⋆(x) = 1 if and only if x ∈ p and x ≺ x⋆. For this proof, it is important to consider658

only adversaries that do not get to chose the true hypothesis f⋆ adaptively. Thus the path is fixed659

throughout the history of the interaction.660

Let S be the data set under consideration. First note that by definition, we only need to consider the661

points x in the disagreement region. The labels of all points that are not in the subtree of the deepest662

1 labeled point in S are fixed and thus cannot be in the disagreement region. Thus, we only need to663

consider the points in the subtree of the deepest 1 labeled point in S.664

First note that points that have more than α points in descendant subtree cannot be attacked. This is665

because if the point is labelled as a 0 then all its descendants are in the disagreement region. This666

remains true even for any points that are added to the data set. Thus,
∣∣∣Γ (

S ∪Ax\ {x} ,Fx→0
)∣∣∣ > α.667

This is because in the definition of γ we remove all points labelled 0.668

For any node u, denote by pos(v) the closest ancestor on the path p corresponding to the positive669

points. We claim that if u has fewer than α points in its descendant subtree, then u is attackable only670

if671 ∣∣∣{v ∈ S : pos(u) ⪯ pos(v) ∧ v is not a descendant of u
}∣∣∣ ≤ α (11)

First note that adding any 0 labelled points to S as Au does not change the number of points in Γ.672

Further note that for v such that pos(u) ⪯ pos(v), adding a 1 labelled point must be on the path673

between pos(u) and pos(v). But, this would remove u from the disagreement region. Thus, all point674

v would be counted in Γ and if these are greater than α then u is not attackable.675

Consider the point w that is minimal amongst pos(u) for u satisfying (11) and u be a node such that676

pos(u) = w. First note that all points that satisfy (11) are in the subtree of w. Second, note that this677

subtree has at most α points. This is because if there were more than α points, u would not satisfy678

(11) which is a contradiction.679

Proof of Lemma 5.3. Let iT be the number of i.i.d. points in the data set at time T . Note that the only680

i.i.d. points that we abstain on are the attackable points. But, since the i.i.d. points are exchangeable681

if i i.i.d. points are seen so far, the probability of abstain is given by α
i . Thus, the expected total682
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number of abstentions is at most683

iT∑
i=1

α

i
≤ α log T

as required.684

C Discussion685

In this section, we further discuss the proposed algorithms and propose potential ways to extend these686

beyond the current settings.687

C.1 Generalizing Higher-order Disagreement to Unknown Distribution688

In Section 4, we saw an algorithm that for any class F with VC dimension d, achieves abstention689

error and misclassification error bounded only as a function of d. As mentioned earlier, an interesting690

open question is to extend this to the unknown distribution case. In this section, we will briefly691

discuss a natural algorithm extending the algorithm from the known distribution case. Recall that692

Algorithm 1 computed the probabilities of shattering k points using the knowledge of the distribution693

and made a prediction ŷt depending on the relative magnitudes of the probabilities corresponding694

to the two restricted classes. The main challenge in the unknown distribution case is that it is not695

immediately obvious how to compute these quantities.696

One natural approach is to use the historical data as a proxy for the distribution. That is, given the697

data set St of size n, compute the leave-k-out estimator for the probability as follows698

ρ̃k(S,F) =
1(
n
k

) ∑
T⊂S;|T |=k

1

[
T is shattered by F|S\T

]
.

There are a few things to observe about this estimator. First, in the case when the data is generated699

i.i.d., this estimator is unbiased. Further, though each of the summands is not independent, one700

can show concentration for estimators of this form using the theory of U-statistics. Additionally,701

recall that in Algorithm 1 required the thresholds αk to be set to T−O(k) (we use T−k but it is702

straightforward to extend this to T−ck for c < 1). This appears to be high precision but note that703

the “number of samples" one has for a data set of size n is nO(k). Thus, it is conceivable that such704

an estimator can give the necessary bounds. Unfortunately, the challenge with analyzing this in our705

setting is that we do no know which of the examples are corrupted. Thus, the adversary could inject706

examples to make our estimates arbitrarily inaccurate. Thus, as in the case of the VC dimension 1707

classes we saw in Section 5 and the case of the rectangles we will see subsequently, our analysis708

would need to not rely on the accuracy of the estimates but rather use these estimates to maintain709

progress or construct other versions of estimators that are unaffected by the adversarial injections.710

C.2 Generalizing Structure-based Algorithm beyond VC Dimension 1 Classes711

In Section 5 we saw an algorithm that for any class F with VC dimension 1, achieves abstention712

and misclassification error bounded by O(
√
T ) without access to the underlying distribution. An713

interesting open question is to extend structure-based algorithms beyond the VC 1 classes. Here714

we will show that for the class of axis-aligned rectangles in dimension p (VC dimesnion is 2p),715

we can indeed design an algorithm that achieves abstention and misclassification error bounded716

by O(p
√
T log T ). This exhibits a class of VC dimension > 1 for which we can attain the desired717

guarantees without access to the distribution.718

Both our algorithms heavily utilize the structure of the underlying function class and analyze based719

on the notion of attackability. It would be interesting to characterize other structural hypothesis720

classes that enjoy similar guarantees. A natural extention to the axis-aligned rectangles would be any721

intersection closed hypothesis class.722
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C.2.1 Structure-based Algorithm for Axis-aligned rectangles723

Recall that the class of axis-aligned rectangles consists of functions f parameterized by724

(a1, b1, . . . , ap, bp) such that725

f(a1,b1,...,ap,bp)(x) =

{
1 if ∀i ∈ [p], ai ≤ xi ≤ bi
0 otherwise.

Now consider the following algorithm:726

Algorithm 3: Structure-based learning for Axis-aligned Rectangles
Set a1, . . . , ap = −∞ and b1, . . . , bp =∞
for t = 1, . . . , T do

Receive x̂t

if ∀τ < t, yτ = 0 then ŷt = 0
else if x̂t /∈ S1(Ft−1) then ŷt = f(x̂t) for any f ∈ Ft−1

else if ∃s1, . . . , sα < t and ∃i1, . . . , iα ∈ [p] such that x̂sj ,ij ∈ [x̂t,ij , aij ) ∪ (bij , x̂t,ij ] then
ŷt = 0

else ŷt = ⊥
Receiving label yt
Update St ← St−1 ∪

{
(x̂t, yt)

}
and Ft ← F x̂t→yt

t−1

Update a1, . . . , ap and b1, . . . , bp such that [a1, b1]× . . . [ap, bp] is the smallest rectangle
containing the points labelled positive so far. i.e. ai = min{xi : (x, 1) ∈ S}

727

If we have only seen 0 labels so far, the algorithm predicts 0. Otherwise, let [a1, b1]× [a2, b2]× . . .×728

[ap, bp] be the minimal rectangle enclosing the positive examples so far (i.e., the Closure hypothesis).729

For the next point x̂t, if it isn’t in the region of disagreement, we predict the agreed-upon label.730

Otherwise, we check whether there exist at least α examples x̂s, s < t, for each of which there exists731

a coordinate i with xsi ∈ [xti, ai) ∪ (bi, xti] (at most one of these sides is non-empty – or sometimes732

both sides will be empty for some coordinates i). If so, we predict 0. Otherwise, we abstain. (The733

algorithm never predicts 1 in the region of disagreement, similar to the Closure algorithm). We734

formally capture the guarantees of the algorithm below:735

Theorem C.1. Let F be the class of axis aligned rectangles in Rp. Then, Algorithm 3 with α =736 √
T/ log T satisfies737

MisclassificationError ≤ p
√
T log T ,

AbstentionError ≤ 2p
√

T log T + 2p log T.

Proof. For any example with target label 1, if the algorithm predicts 0, there are at least α examples738

x̂s which each have some coordinate x̂s,i that was not in [ai, bi] before the update, but which will have739

x̂s,i in [ai, bi] after the update. For each example x̂s, this can happen at most p times (corresponding740

to each coordinate) before it will never again be included in a future set of α examples that convince741

us to predict 0. So we make at most pT/α misclassifications on adversarially injected examples.742

Since the algorithm never predicts 1 unless the true label is 1, we never misclassify a negative example.743

So it remains only to bound the number of abstentions on the i.i.d. examples.744

For any n, suppose x̂t is the n-th i.i.d. example, and let x̃1, ..., x̃n be these n i.i.d. examples (so745

x̃n = xt). If xt is "attackable" (same to Definition B.2 meaning that there is some set of examples746

the adversary could add, knowing x̂t, to make us abstain) then it must be that either x̂t is a positive747

example in the region of disagreement of the version space induced by the other n − 1 points, or748

else x̂t is a negative example such that there are < α points x̃s, s < n, for which there exists i with749

x̃s,i ∈ [xt,i, ai) ∪ (bi, xt,i]. In particular, in the latter case, it must be that each coordinate i has < α750

examples x̃s with x̃s,i ∈ [xt,i, a
∗
i ) ∪ (b∗i , xt,i], where the target concept is [a∗1, b

∗
1] × . . . × [a∗p, b

∗
p].751

This is because the current estimated rectangle will be inside the true rectangle.752

We will use exchangeability to bound the probability that x̃n is attackable by 1
n times the number753

of x̃s, s ≤ n, which would be attackable if they were swapped with x̃n. Among x̃1, . . . , x̃n there754

are at most 2p positive examples in the region of disagreement of the version space induced by the755

others (namely, the minimum spanning set of the positive examples). For each coordinate i, there are756
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at most 2α examples x̃s, s ≤ n, with < α other examples x̃s′,i in [x̃s,i, a
∗
i ) ∪ (b∗i , x̃s,i] (namely, the757

≤ α examples with smallest x̃s,i such that x̃s,i > b∗i , and the ≤ α examples with largest x̃s,i such758

that x̃s,i < a∗i ). So there are at most 2αp negative examples x̃s which would be attackable if they759

were swapped with x̃n.760

Altogether there are at most 2p(α+ 1) examples x̃s which would be attackable if they were swapped761

with x̃n. Thus, the probability i.i.d. example x̂t is attackable is at most 2p(α + 1)/n where n is762

the number of i.i.d. points seen so far including x̂t. Summing, the expected number of abstentions763

on i.i.d. examples is at most 2p(α + 1) log T . Now setting α =
√

T/ log T , gives us the desired764

result.765
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