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ABSTRACT

Time series data frequently exhibit the presence of missing values, rendering im-
putation a crucial process for downstream time series tasks and applications. How-
ever, existing imputation methods focus on discrete data points and are unable to
effectively model sparse data, resulting in particularly poor performance for im-
puting substantial missing values. In this paper, we propose a novel approach,
ImputeINR, for time series imputation by employing implicit neural representa-
tions (INR) to learn continuous functions for time series. ImputeINR leverages
the merits of INR that the continuous functions are not coupled to sampling fre-
quency and have infinite sampling frequency, allowing ImputeINR to generate
fine-grained imputations even on extremely absent observed values. In addition,
we introduce a multi-scale feature extraction module in ImputeINR architecture
to capture patterns from different time scales, thereby effectively enhancing the
fine-grained and global consistency of the imputation. To address the unique chal-
lenges of complex temporal patterns and multiple variables in time series, we
design a specific form of INR continuous function that contains three additional
components to learn trend, seasonal, and residual information separately. Further-
more, we innovatively propose an adaptive group-based framework to model com-
plex residual information, where variables with similar distributions are modeled
by the same group of multilayer perception layers to extract necessary correlation
features. Since the number of groups and their output variables are determined by
variable clustering, ImputeINR has the capacity of adapting to diverse datasets.
Extensive experiments conducted on seven datasets with five ratios of missing
values demonstrate the superior performance of ImputeINR, especially for high
absent ratios in time series.

1 INTRODUCTION

Time series tasks, mainly including classification, anomaly detection, and forecasting, are vital
across numerous domains, such as healthcare (Schaffer et al., 2021; Morid et al., 2023), indus-
trial monitoring (Liu et al., 2020; Li et al., 2023), traffic flow (Cai et al., 2020; Ma et al., 2021), and
human motion (Pérez-D’Arpino & Shah, 2015; Wang et al., 2017). However, real-world time series
datasets suffer from missing values due to reasons like sensor malfunctions, data collection errors,
or irregular reporting intervals. The missing information negatively impacts the inference of time
series models, making imputation extremely necessary for downstream tasks.

Time series data imputation mainly meets three challenges: capturing temporal patterns, modeling
cross-channel correlations, and dealing with absent observed information. Researchers have already
attempted to address the first two challenges. Some early works (Cleveland et al., 1990; West, 1997)
decompose time series to capture and model temporal patterns. Subsequent studies (Oreshkin et al.,
2020; Wu et al., 2023; Liu et al., 2023c) have built upon the idea of decomposition, extracting
trend and seasonal information separately. On the other hand, some deep learning based methods
(Du et al., 2023; Wang et al., 2024) achieve significant imputation performance by mapping inputs
from the data space to the feature space to learn cross-channel correlations. However, the existing
imputation methods do not involve the cases of extremely absent observed values. Most works
assume that the proportion of missing values requiring imputation does not exceed 50%, which
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means that these methods still require a certain amount of known information. However, in real-
world scenarios, the proportion of missing values is likely to be even higher. How to perform
imputation based on extremely absent observed information remains a challenging task.

Recently, implicit neural representation (INR) has emerged as an effective method for continuously
encoding diverse signals (Liu et al., 2023b; Molaei et al., 2023). It learns continuous functions from
discrete data points, mapping coordinates to signal values. By representing complex structures in a
compact form, INR is not coupled to sampling frequency anymore, which allows for multi-sampling
frequency inputs enabling effective feature extraction even with absent observed samples. Addition-
ally, as a continuous function, INR has infinite sampling frequency, which means it can be queried
at any coordinate. This capacity for infinite sampling frequency interpolation sets it apart from other
imputation methods, making it a promising approach for fine-grained imputation. However, directly
applying INR to time series imputation is ineffective due to the unique complexities of time series.

In this paper, we propose a novel time series imputation approach, named ImputeINR, which can
simultaneously address the three challenges mentioned above. First, we learn the INR continuous
function, enabling modeling based on absent observed values and infinite sampling frequency for
fine-grained interpolation. A multi-scale feature extraction module is incorporated to capture pat-
terns and dependencies at various temporal scales, further achieving fine-grained imputation. Sec-
ond, a novel form of INR continuous function is proposed for capturing complex temporal patterns
and cross-channel correlation features. More specifically, the function is mainly decomposed into
three components to learn trend, seasonal, and residual information separately. To further model the
intricate residual components, we innovatively propose an adaptive group-based architecture. It is
a multilayer perceptron (MLP) network composed of global layers and group layers. The former
focuses on correlation information across all channels, while the latter emphasizes correlation in-
formation among variables with similar distributions. To enable our architecture to adapt to diverse
datasets, we apply variable clustering to determine the number of groups and their outputs. Exper-
imentally, ImputeINR achieves the state-of-the-art imputation performance on seven benchmarks
under five ratios of missing values and the improvement becomes greater as the mask rate increases.
The major contributions of this paper are summarized as follows:

• We propose ImputeINR, which learns INR continuous function to represent the continuous
time series data. It leverages the sampling frequency-independent and infinite-sampling
frequency capabilities of INR to achieve fine-grained imputation with absent observed data.

• We design an adaptive group-based architecture which is a part of the INR continuous
function. It consists of global layers and group layers to learn correlation information across
all variables and among variables with similar distributions, respectively. The number of
groups and the output of each group are determined by variable clustering, allowing our
architecture to adapt to diverse datasets. We use a transformer-based feed-forward network
to predict INR parameters.

• To the best of our knowledge, ImputeINR is the first imputation approach to focus on the
condition of the extremely absent observed data (i.e., mask rate is set to 70%/90%).

• Extensive experiments show that ImputeINR outperforms other baselines on seven datasets
under five ratios of masked values. It achieves a 62.7% relative improvement compared to
the second-best results. The improvement becomes greater as the mask rate increases. We
also provide detailed ablation studies, robustness analysis, and visual analysis.

2 RELATED WORK

2.1 TIME SERIES IMPUTATION

The earliest time series imputation methods are based on the statistical properties of the data,
using mean/median values or statistical models to fill in missing values, such as Simple-
Mean/SimpleMedian (Fung, 2006) and ARIMA (Afrifa-Yamoah et al., 2020). In addition, machine
learning methods learn patterns in the data, demonstrating greater adaptability and accuracy. Promi-
nent implementations of these approaches include KNNI (Altman, 1992) and MICE (Van Buuren
& Groothuis-Oudshoorn, 2011). Although these methods are simple and easy to interpret, their
limitations lie in capturing the complex temporal and variable information inherent in time series

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

data. Recently, there has been widespread interest in using deep models to capture complex tem-
poral patterns for imputation of missing values, due to their powerful representation capabilities.
Common architectures include RNN-based methods (M-RNN (Yoon et al., 2018) and BRITS (Cao
et al., 2018)) , CNN-based methods (TimesNet (Wu et al., 2023)), MLP-based methods (DLinear
(Zeng et al., 2023), TimeMixer (Wang et al., 2024)) and transformer-based methods (SAITS (Du
et al., 2023), FPT (Zhou et al., 2023), iTransformer (Liu et al., 2024), ImputeFormer (Nie et al.,
2024)). However, the existing methods ignore the condition of extremely absent observed data and
fail to impute missing values with absent known information.

2.2 IMPLICIT NEURAL REPRESENTATIONS

INR uses neural networks to model signals as continuous functions rather than explicitly represent-
ing them as discrete points. It captures complex high-dimensional patterns in data by learning a
continuous mapping from input coordinates to output values. Various scenarios have seen success-
ful applications, such as 2D image generation (Saragadam et al., 2022; Liu et al., 2023a; Zhang
et al., 2024), 3D scene reconstruction (Yin et al., 2022; Liu et al., 2023b; Yang et al., 2024), and
video representations (Mai & Liu, 2022; Zhao et al., 2023; Kwan et al., 2024). Since INR learns a
continuous function, it is not coupled to the resolution, which implies that the memory needed to
parameterize the signal does not depend on spatial resolution but rather increases with the complex-
ity of the underlying signal. Also, INR has infinite resolution, which means it can be sampled at
an arbitrary sampling frequency. Therefore, we leverage this characteristic of INR to perform time
series imputation tasks. Sampling from the continuous function of INR enables fine-grained impu-
tation even with extremely absent observed data. To learn the INR for target signal, there are mainly
two typical strategies: gradient-based meta-learning methods (Lee et al., 2021; Liu et al., 2023a)
and feed-forward hyper-network prediction methods (Chen & Wang, 2022; Zhang et al., 2024). In
this work, we use a transformer-based feed-forward method to predict the INR for time series data
since it can be easily adopted to an end-to-end imputation framework.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Denote time series data with N variables and T timestamps as X = {x1,x2, . . . ,xN} ∈ RN×T .
The time series data X is incomplete and the mask rate is r ∈ [0, 1]. The corresponding binary
mask matrix can be defined as M = {mn,t} ∈ {0, 1}N×T , where mn,t = 1 if xn,t is observed, and
mn,t = 0 if xn,t is missing. The imputation task is to predict the missing values Xmiss such that the
predicted values X̂ satisfy X̂ = Fθ(X,M), where Fθ mentions the model with parameters θ. The
goal is to minimize the reconstruction error between the masked data and the imputed data:

L(X̂,Xgt) =
1

|Mmiss|

N∑
t=1

T∑
n=1

(1−mn,t) · (x̂n,t − xn,t)
2
, (1)

where |Mmiss| is the total number of missing values in X and Xgt is the ground truth.

3.2 METHOD OVERVIEW

The core idea of ImputeINR is to leverage the ability of INR to learn continuous functions and en-
able to query at any timestamp to achieve fine-grained interpolation. However, since time series
data has inherently intricate temporal patterns and multi-variable properties, using a simple MLP
as the INR continuous function to fit it is challenging. To address these issues, we design a novel
form of INR continuous function specifically for time series data. This new form includes three
components to capture the trend, seasonal, and residual information to deal with the unique tem-
poral patterns. Furthermore, to enhance the ability of ImputeINR to model multi-variable data, we
propose an adaptive group-based architecture to learn complicated residual information. Each group
focuses on variables with similar distributions. And we use a clustering algorithm to determine the
number of groups and the variables each group outputs. To further enhance the imputation capabil-
ity of ImputeINR, we incorporate a multi-scale feature extraction module to capture information at
different scales, thereby improving fine-grained imputation performance.
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Figure 1: The overall workflow of the proposed ImputeINR method. The INR tokens are predicted
using a transformer encoder. These tokens serve as the parameters for the INR continuous function,
which takes the timestamp t as input.

Figure 1 demonstrates the overall workflow of the proposed ImputeINR method. The masked data is
first reordered based on the variable clustering results so that variables with similar distributions are
placed adjacent to each other. This is to enable the subsequent representation of variables within the
same cluster using the same group-based MLP in the INR continuous function. Then the reordered
masked data is standardized and segmented into patches to prepare the data tokens. Simultaneously,
we initialize the INR tokens, which are learnable vector parameters. The processed data tokens
are input into convolutional layers of different scales to extract multi-scale features. Subsequently,
these extracted features and the initialized INR tokens are fed together into the transformer encoder
to predict the INR tokens. These INR tokens are essentially the parameters of the INR continuous
function. Based on these parameters, INR continuous function takes the timestamp t as input and
predict the missing values.

3.3 VARIABLE CLUSTERING

We adopt a clustering algorithm C to cluster the variables of the time series data X ∈ RN×T based
on the similarity matrix S ∈ RN×N , which partitions the variables into K clusters:

C : RN×N → {C1, C2, . . . , CK} , (2)

where Ck is a subset of the total variable set {x1,x2, . . . ,xN} and its cardinality |Ck| denotes the
number of variables in this cluster. The objective of the clustering function C is defined as follows:

argmax{C1,C2,...,CK}

K∑
k=1

∑
xi,xj∈Ck

S (xi,xj) , (3)

where S(xi,xj) represents the similarity between variables xi and xj . Then we obtain the permu-
tation matrix P ∈ RN×N :

Pij =

{
1, if j = π(i),

0, otherwise,
(4)
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where π is the permutation vector which orders the variables according to the clusters. Finally, the
reordered matrix X′ with columns permuted according to π is given by:

X′ = X · P. (5)
In this reordered matrix X′, rows (i.e., variables) are grouped according to the clusters.

3.4 MULTI-SCALE FEATURE EXTRACTION

To further capture features from different scales for fine-grained imputation, the reordered data
X′ ∈ RN×T is fed to multiple convolutional layers with varying scales. Each convolutional layer l
refers to kernel size kl, stride sl, padding pl, and the number of output channels cl. For each output
channel i in the lth convolutional layer, the convolution operation can be formulated as:

Φl (X
′)i,t =

kl∑
j=1

Wl,i,j ·X′
t+j−pl

+ bl,i, (6)

Generated from
Different Distributions

Best Worst

(a) (b) (c) (d)

Figure 2: We manually synthesize a time series
dataset with four variables, which are generated
from two different distributions. Four different
experimental settings are applied, including a sin-
gle MLP with variables from the (a) same or
(b) different distributions placed adjacent to each
other, and a group-based MLP with variables from
the (a) same or (b) different distribution in the
same group. We observe that the setup in (c) per-
forms the best, while (d) performs the worst.

where W and b denotes the weight matrix and
bias matrix respectively. Then these features of
different scales Φl (X

′) ∈ Rcl×(T−kl+2pl+1)

are concatenated to obtained the multi-scale
features Ẋ ∈ R

∑L
l=1 cl×(T ′−kl+2pl+1). Finally,

these features are fed to the transformer en-
coder together with the initialized INR tokens
to predict the INR tokens.

3.5 INR CONTINUOUS FUNCTION

INR continuous function f maps the timestamp
t to time series data:

f : t ∈ R 7→ X(t) ∈ RN , (7)
where X(t) represents the output values of N
variables at timestamp t. To effectively capture
the complicated temporal patterns and success-
fully model the multiple variables, we design a
novel form of INR continuous function. Based
on the idea of time series decomposition (Wen
et al., 2019; Oreshkin et al., 2020), our INR
continuous function includes three components
to model trend, seasonal, and residual patterns separately. It can be defined as follows:

X̂(t) = f(t) = ftre(t) + fsea(t) + fres(t), (8)
where t is the input timestamp and f(t) denotes the output (i.e., imputed data). The parameters in
INR continuous function are predicted by the transformer encoder (i.e., INR tokens).

Trend Component The trend represents the long-term movement or direction of the time series
data, capturing the underlying pattern that shows whether the data is increasing or decreasing over
time. It is typically smooth and reflects gradual shifts in the level of the time series, free from noise
or short-term fluctuations. Mathematically, it can be modeled as a polynomial function:

ftre(t) =

m∑
i=0

αit
i, (9)

where αi denotes the coefficients and m refers to the degree of the polynomial.

Seasonal Component The seasonal component focuses on the repeating patterns or cycles in the
time series data, representing predictable fluctuations due to seasonality or recurring events. These
regular, cyclical, and short-term fluctuations are modeled with a periodic function:

fsea(t) =

⌊T/2−1⌋∑
i=1

(
βi sin (2πit) + γi+⌊T/2⌋ cos (2πit)

)
, (10)
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Table 1: Details of benchmark datasets.

Dataset Source Dimension Window #Training #Test

ETT Electricity Transformer Temperature 7 96 34465 11521
Weather Weather Station 21 96 36696 10444
Phy2012 PhysioNet Challenge 2012 37 48 7671 2399
Phy2019 PhysioNet Challenge 2019 34 48 6104 1908

BAQ Beijing Multi-Site Air-Quality 132 96 213 76
IAQ Italy Air Quality 13 96 58 19
Solar Solar Alabama 137 96 271 138

where βi and γi are Fourier coefficients.

Residual Component: Adaptive Group-based Architecture The residual component represents
the unexplained variation after removing the trend and seasonal effects, often modeled as a stochas-
tic process. It is challenging to capture this complex information. As shown in Figure 2, we find
that regardless of the order of the variables, using a single MLP is not effective in modeling multiple
variables from different distributions. However, if variables from the same distribution are repre-
sented using the same set of MLP layers, the performance will significantly improve. We define
such a set as a group. In addition, the layers in the MLP that extract information across all variables
are called global layers, while the layers within groups are referred to as group layers. The number
of groups and their outputs are determined by the results of variable clustering, which allows our
architecture to adapt to datasets with various characteristics. It is worth noting that when variables
with different distributions are in the same group, the representation capability is significantly re-
duced. This proves the importance of the correlation information between the variables. Detailed
analysis can be found in Appendix A.3.

Theoretically, for any given timestamp t, we design L1 global layers, L2 group layers, and K groups.
K is determined by the results of variable clustering. The global layers is given as follows:

h(0) = t, (11)

h(l1) = σ
(
W (l1)h(l1−1) + b(l1)

)
, (12)

where l1 ∈ [1, L1], h(l1) is the output of the lth1 global layer, W and b are weight matrix and bias
matrix. Then, for group gk, the input is the output of the last global layer:

y(0)gk
= h(L1), (13)

y(l2)gk
= σ

(
W (l2)

gk
y(l2−1)
gk

+ b(l2)gk

)
, (14)

where l2 ∈ [1, L2], yl2gk refers to the output of the lth2 group layer in group gk, W and b are weight
matrix and bias matrix. yL2

gk
∈ R|Ck| and |Ck| is the number of variables in the kth cluster. The final

output is the concatenation of the outputs from the last group layer of each group:

fres(t) = y(L2)
g1 ⊕ y(L2)

g2 ⊕ . . .⊕ y(L2)
gK . (15)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We use seven time series imputation benchmark datasets to validate the performance of Im-
puteINR, including ETT (Zhou et al., 2021), Weather (Wetterstation), Phy2012 (Silva et al., 2012),
Phy2019 (Reyna et al., 2019)), BAQ (Zhang et al., 2017), IAQ (Vito, 2016) and Solar (NREL,
2006). Table 1 shows details of the above benchmark datasets. These datasets are collected from
different fields and have varying characteristics. Based on these datasets, we can evaluate the ability
of models to handle varying numbers of variables and different sizes of datasets.

Baseline Methods We compare our proposed ImputeINR method to nine popular baselines, in-
cluding statistical methods (Mean/Median), RNN-based methods (BRITS (Cao et al., 2018)), CNN-
based methods (TimesNet (Wu et al., 2023)), MLP-based methods (TimeMixer (Wang et al., 2024)),
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Table 2: Imputation results. The best results are in Bold. And the second ones are underlined.

Methods ImputeINR ImputeFormer TimeMixer iTransformer FPT TimesNet SAITS BRITS Transformer Mean/Median
Mask Rate MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
10% 0.020 0.098 0.021 0.091 0.035 0.115 0.042 0.141 0.017 0.087 0.018 0.088 0.021 0.100 0.021 0.089 0.021 0.099 1.104 0.790
30% 0.027 0.109 0.023 0.098 0.041 0.125 0.066 0.180 0.030 0.110 0.031 0.111 0.030 0.114 0.028 0.110 0.032 0.124 1.104 0.790
50% 0.028 0.111 0.034 0.116 0.054 0.143 0.109 0.234 0.041 0.130 0.035 0.123 0.031 0.116 0.040 0.130 0.044 0.147 1.104 0.790
70% 0.039 0.134 0.050 0.142 0.077 0.170 0.124 0.246 0.085 0.181 0.057 0.155 0.043 0.135 0.068 0.181 0.064 0.176 1.104 0.790
90% 0.095 0.214 0.122 0.218 0.223 0.276 0.247 0.336 0.272 0.309 0.231 0.295 0.213 0.218 0.251 0.358 0.234 0.335 1.104 0.790

W
ea

th
er

10% 0.026 0.063 0.032 0.076 0.029 0.069 0.036 0.081 0.028 0.064 0.028 0.064 0.031 0.073 0.027 0.063 0.030 0.080 0.634 0.606
30% 0.030 0.072 0.033 0.080 0.032 0.080 0.051 0.113 0.035 0.075 0.031 0.073 0.035 0.077 0.031 0.073 0.036 0.088 0.634 0.606
50% 0.031 0.073 0.037 0.084 0.037 0.076 0.069 0.144 0.043 0.076 0.036 0.076 0.041 0.091 0.035 0.077 0.042 0.097 0.634 0.606
70% 0.036 0.082 0.074 0.097 0.045 0.086 0.078 0.147 0.053 0.087 0.043 0.084 0.047 0.096 0.042 0.085 0.053 0.107 0.634 0.606
90% 0.065 0.123 0.082 0.116 0.076 0.126 0.124 0.191 0.089 0.129 0.073 0.125 0.066 0.124 0.090 0.130 0.099 0.173 0.634 0.606

Ph
y2

01
2 10% 0.072 0.096 0.200 0.153 0.104 0.115 0.097 0.108 0.087 0.104 0.080 0.101 0.200 0.163 0.097 0.100 0.080 0.102 0.224 0.143

30% 0.079 0.101 0.205 0.155 0.117 0.120 0.099 0.111 0.099 0.111 0.103 0.108 0.203 0.168 0.108 0.105 0.094 0.107 0.224 0.143
50% 0.092 0.107 0.210 0.158 0.142 0.124 0.109 0.115 0.105 0.118 0.145 0.118 0.208 0.173 0.117 0.116 0.108 0.118 0.224 0.143
70% 0.071 0.112 0.229 0.169 0.148 0.129 0.124 0.120 0.132 0.131 0.149 0.128 0.237 0.195 0.125 0.123 0.122 0.125 0.224 0.143
90% 0.127 0.124 0.232 0.170 0.179 0.143 0.160 0.135 0.167 0.145 0.177 0.144 0.214 0.159 0.163 0.139 0.144 0.139 0.224 0.143

Ph
y2

01
9 10% 0.071 0.102 0.199 0.159 0.100 0.116 0.072 0.104 0.082 0.111 0.075 0.105 0.199 0.168 0.089 0.103 0.080 0.105 0.203 0.153

30% 0.079 0.109 0.206 0.160 0.104 0.120 0.098 0.122 0.091 0.116 0.084 0.111 0.203 0.169 0.099 0.110 0.090 0.111 0.203 0.153
50% 0.087 0.115 0.209 0.164 0.109 0.125 0.100 0.123 0.102 0.124 0.094 0.118 0.204 0.175 0.109 0.118 0.099 0.119 0.203 0.153
70% 0.098 0.120 0.211 0.172 0.119 0.132 0.112 0.129 0.116 0.133 0.109 0.128 0.205 0.178 0.122 0.124 0.113 0.126 0.203 0.153
90% 0.121 0.131 0.214 0.174 0.152 0.149 0.123 0.132 0.153 0.152 0.149 0.149 0.206 0.180 0.151 0.142 0.137 0.137 0.203 0.153

B
A

Q

10% 0.083 0.169 1.050 0.747 0.165 0.172 0.235 0.258 0.215 0.224 0.262 0.266 1.085 0.748 0.208 0.175 0.349 0.315 1.135 0.744
30% 0.096 0.171 1.096 0.749 0.205 0.193 0.308 0.321 0.231 0.229 0.292 0.267 1.088 0.749 0.210 0.186 0.387 0.324 1.135 0.744
50% 0.101 0.172 1.106 0.750 0.274 0.237 0.404 0.399 0.285 0.242 0.318 0.269 1.112 0.750 0.211 0.191 0.422 0.337 1.135 0.744
70% 0.117 0.181 1.119 0.751 0.359 0.289 0.556 0.488 0.325 0.262 0.341 0.280 1.124 0.751 0.230 0.206 0.448 0.359 1.135 0.744
90% 0.122 0.185 1.129 0.752 0.503 0.367 0.803 0.615 0.430 0.301 0.427 0.317 1.127 0.752 0.411 0.308 0.506 0.395 1.135 0.744

IA
Q

10% 0.007 0.061 1.340 0.725 0.139 0.171 0.592 0.466 0.228 0.264 0.248 0.286 1.277 0.735 0.164 0.210 0.599 0.514 1.493 0.767
30% 0.008 0.062 1.377 0.738 0.244 0.242 0.639 0.503 0.237 0.271 0.262 0.290 1.442 0.755 0.224 0.243 0.627 0.521 1.493 0.767
50% 0.009 0.063 1.424 0.753 0.375 0.306 0.783 0.556 0.291 0.305 0.274 0.297 1.461 0.757 0.241 0.273 0.710 0.553 1.493 0.767
70% 0.010 0.068 1.466 0.757 0.527 0.377 0.907 0.618 0.426 0.357 0.304 0.314 1.472 0.761 0.504 0.355 0.857 0.609 1.493 0.767
90% 0.029 0.116 1.478 0.761 0.847 0.498 1.205 0.767 0.811 0.504 0.720 0.477 1.493 0.764 0.981 0.505 1.201 0.716 1.493 0.767

So
la

r

10% 0.022 0.074 0.768 0.771 0.024 0.079 0.060 0.167 0.075 0.173 0.048 0.132 0.770 0.772 0.023 0.075 0.061 0.128 0.773 0.775
30% 0.023 0.075 0.770 0.772 0.034 0.107 0.071 0.181 0.084 0.185 0.049 0.133 0.771 0.773 0.024 0.076 0.063 0.129 0.773 0.775
50% 0.024 0.078 0.772 0.773 0.052 0.143 0.079 0.189 0.101 0.202 0.052 0.139 0.772 0.774 0.026 0.080 0.065 0.135 0.773 0.775
70% 0.025 0.079 0.773 0.774 0.075 0.173 0.088 0.200 0.139 0.243 0.061 0.151 0.773 0.775 0.030 0.085 0.067 0.140 0.773 0.775
90% 0.026 0.081 0.774 0.775 0.166 0.249 0.120 0.250 0.435 0.444 0.121 0.211 0.774 0.776 0.052 0.100 0.077 0.158 0.773 0.775

A
ve

ra
ge

0.1 0.043 0.095 0.516 0.389 0.085 0.120 0.162 0.189 0.105 0.147 0.108 0.149 0.512 0.394 0.090 0.116 0.174 0.192 0.795 0.568
0.3 0.049 0.100 0.530 0.393 0.111 0.141 0.190 0.219 0.115 0.157 0.122 0.156 0.539 0.401 0.103 0.129 0.190 0.201 0.795 0.568
0.5 0.053 0.103 0.542 0.400 0.149 0.165 0.236 0.251 0.138 0.171 0.136 0.163 0.547 0.405 0.111 0.141 0.213 0.215 0.795 0.568
0.7 0.057 0.111 0.560 0.409 0.193 0.194 0.284 0.278 0.182 0.199 0.152 0.177 0.557 0.413 0.160 0.166 0.246 0.235 0.795 0.568
0.9 0.084 0.139 0.576 0.424 0.307 0.258 0.397 0.347 0.337 0.283 0.271 0.245 0.585 0.425 0.300 0.240 0.343 0.293 0.795 0.568

and transformer-based methods (Transformer (Vaswani, 2017), SAITS (Du et al., 2023), FPT (Zhou
et al., 2023), iTransformer (Liu et al., 2024), ImputeFormer (Nie et al., 2024)). More details of these
baselines are provided in Appendix A.4.

Evaluation Metrics We utilize Mean Square Error (MSE) and Mean Absolute Error (MAE) to
report the imputation accuracy of all mentioned methods. These metrics are defined as follows:

MSE =
1

|Ω|
∑
i,j∈Ω

(
X̂i,j −Xgti,j

)2

,MAE =
1

|Ω|
∑
i,j∈Ω

∣∣∣X̂i,j −Xgti,j

∣∣∣ , (16)

where Xgt is the ground truth, X̂ is the imputed data, Ω is the index set of masked entries.

Experimental Settings We apply the same data processing techniques and parameter settings. A
sliding window approach is used, with a fixed window size of 48 for the Phy2012 and Phy2019
datasets, and 96 for all other datasets. These settings follow those used in previous work (Wu
et al., 2023; Du, 2023). To evaluate the imputation performance, we randomly mask values in
Xgt based on the mask rate r. For the main results, the multi-scale feature extraction module uses
three parallel convolutional layers with kernel sizes of 3,5,7 respectively. The adaptive group-based
architecture in the INR continuous function involves one global layer and one group layer within
the residual component, with hidden dimensions set to 16. The transformer encoder consists of 6
blocks. Ablation Studies are reported in Section 4.3 to demonstrate the effectiveness of each module.
Experiments are performed using the ADAM optimizer (Kingma, 2014) with an initial learning rate
of 10−3. We use the agglomerative clustering method to achieve variable clustering since it adopts
diverse inputs without the need to pre-specify the number of clusters. The visualization of the
variable clustering results are provided in Section 4.5. All experiments are conducted on a single
24GB GeForce RTX 3090 GPU.
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Table 3: The ablation studies on multi-scale feature extraction, variable clustering, and adaptive
group-based architecture. Mask rate r is 50% and the best results are in Bold.

Multi-scale
Features

Variable
Clustering

Adaptive
Group

ETT Weather Phy2012 Phy2019 BAQ IAQ Solar
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

✗ ✗ ✗ 0.039 0.135 0.038 0.083 0.099 0.114 0.098 0.119 0.227 0.262 0.018 0.092 0.036 0.106

✗ ✗ ✓ 0.036 0.130 0.035 0.081 0.099 0.113 0.096 0.117 0.222 0.258 0.015 0.084 0.034 0.098
✗ ✓ ✗ 0.036 0.129 0.036 0.080 0.098 0.113 0.097 0.118 0.218 0.259 0.015 0.083 0.033 0.096
✓ ✗ ✗ 0.035 0.127 0.035 0.082 0.097 0.114 0.095 0.117 0.209 0.252 0.017 0.088 0.033 0.100

✗ ✓ ✓ 0.029 0.115 0.032 0.074 0.093 0.108 0.088 0.111 0.192 0.243 0.010 0.066 0.031 0.092
✓ ✗ ✓ 0.034 0.124 0.034 0.079 0.095 0.113 0.093 0.116 0.203 0.248 0.012 0.077 0.031 0.094
✓ ✓ ✗ 0.033 0.123 0.033 0.078 0.096 0.113 0.094 0.117 0.199 0.244 0.014 0.081 0.032 0.096

✓ ✓ ✓ 0.028 0.111 0.031 0.073 0.092 0.107 0.087 0.115 0.101 0.172 0.009 0.063 0.024 0.078

4.2 MAIN RESULTS

We compare our ImputeINR method to nine popular baselines with five different mask rates r. As
shown in Table 2, our ImputeINR achieves the best performance in most conditions in terms of
both MSE and MAE metrics. Overall, across all datasets and mask rates, our method achieves an
average MSE reduction of 62.7% compared to the second-best results. The superiority of ImputeINR
is much more significant in IAQ, the dataset with fewest training samples. We observe similar
improvements, occurring in other small datasets, BAQ and Solar. More specifically, the average
MSE of our method is reduced by 16.6%, 54.9% and 96.1% on the Solar, BAQ and IAQ datasets
respectively; while ImputeFormer and SAITS perform poorly on these datasets, yielding results
similar to Mean/Median. These results demonstrate that our proposed ImputeINR can effectively
deal with datasets of various sizes.

In addition, we observe that the performance of most methods declines as the mask rate r increases.
This aligns with our expectations, as fewer samples are captured leading to incomplete information,
which increases the difficulty of imputation. However, ImputeINR is still effective even with an
extreme mask rate. When 90% of the data is masked, the average MSE of our method is reduced
by 69.2% compared to the second-best ones. This indicates that ImputeINR can learn continuous
function from very few data points, achieving fine-grained imputation.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to evaluate the effectiveness of multi-scale feature ex-
traction block, variable clustering and adaptive group-based architecture. Table 3 presents the im-
putation results for all conditions. First, the model without any of the three modules exhibits the
lowest performance. Building on this, adding any one of the modules will enhance the imputation
capability of the model. This individually validates the effectiveness of each of the three modules.
Furthermore, the permutation of any two modules will lead to higher performance. Among them,
the combination of variable clustering and adaptive group-based architecture yields the best results.
This is as expected, since the outcomes of variable clustering correspond directly to the number
of groups. Therefore, these two modules can support each other, facilitating better representation
learning. Finally, the model using all three modules displays the highest imputation performance.

4.4 ROBUSTNESS ANALYSIS

We further evaluate the robustness of our ImputeINR method on mask rate r and the number of
variables. As shown in Figure 3a, ImputeINR outperforms other comparison methods under all
mask rate settings, proving its robustness on diverse missing ratio. Particularly, as the mask rate r
increases, the improvement of our method over others also becomes more pronounced. For example,
when r = 10%, the average MSE of our method is reduced by 49.5%, while at r = 0.9, the reduction
reaches 69.2%. In addition, we also validate the robustness on the number of variables. As shown
in Figure 3b, our method consistently performs the best on diverse numbers of variables. This
demonstrates that our approach effectively addresses the challenges of multi-variable scenarios.
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(a) Robustness on Mask Rates. (b) Robustness on # of Variables.

Figure 3: Robustness analysis for mask rates and the number of variables.
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(a) ETT Dataset
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(b) BAQ Dataset
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(c) Solar Dataset

Figure 4: The visualization of variable clustering of (a) ETT dataset, (b) BAQ dataset, (c) IAQ
dataset, and (c) Solar dataset. Variables with similar distributions are clustered and to be learned
within the same group.

4.5 VISUAL ANALYSIS

In order to show the importance of variable clustering, we visualize the clustering results of ETT,
BAQ, and Solar datasets. As shown in Figure 4, variables with similar distributions are clustered
and will be assigned to the same group. We observe that even with a small number of variables,
their distributions can vary significantly. Moreover, as the number of variables increases, the situa-
tion becomes more complex. In this case, using a single MLP to model all variables may weaken
the unique local information within the same cluster, leading more focus on global information.
Therefore, variable clustering is necessary, and previous ablation studies also prove this.

5 CONCLUSION

In this paper, we propose ImputeINR, an adaptive group-based time series imputation method. It
learns the INR continuous function to map timestamps to the corresponding variable values. In con-
trast to existing imputation approaches, ImputeINR leverages the sampling frequency-independent
and infinite-sampling frequency capabilities of INR to achieve fine-grained imputation with absent
observed data. In addition, a multi-scale feature extraction module is added to further enhance
fine-grained interpolation by capturing temporal patterns from different time scales. To model
the complex information of time series data, we design a novel form of INR continuous function,
which mainly includes three components to learn trend, seasonal, and residual information sepa-
rately. Moreover, we propose an adaptive group-based architecture for the residual component. It
focuses on correlation information across all variables and among variables with similar distribu-
tions through global layers and group layers respectively. We apply a variable clustering algorithm
to determine the number of groups and the output dimension of each group, allowing the architec-
ture to adapt to diverse datasets. Comprehensive experiments are conducted on seven imputation
benchmark datasets under five ratios of masked values. The experimental results demonstrate that
ImputeINR outperforms other state-of-the-art imputation methods. And the improvement becomes
greater as less data is observed. In future work, we plan to explore the ability of INR for time series
forecasting, which is the most challenging task.
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A APPENDIX

A.1 DATA CONTINUITY AND IMPLICIT NEURAL REPRESENTATIONS

The real-world signals are not discrete, but they are represented in a discrete manner. For instance,
we represent time series as sequences of discrete points, using sampled values at specific time inter-
vals. However, these discrete representations come with a significant drawback: they only capture
a absent amount of information about the signal. Therefore, to utilize these discrete sampling infor-
mation to represent the complete continuous signal, we need to learn a continuous function f that
parameterizes the signal mathematically. With a timestamp t, f outputs the corresponding values at
that time. And we can sample the time series at any time point from f .

This type of continuous function is called implicit neural representation (INR). INRs are neural
networks (e.g., MLPs) that estimate the function f that represents a signal continuously by training
on discretely represented samples of the same signal, based on the idea that neural networks can
estimate complex functions after observing training data. The process to learn continuous function
f can be defined as follows:

f
(
x, ϕ,∇xϕ,∇2

xϕ, · · ·
)
= 0, ϕ : x 7→ ϕ(x), (17)

where ϕ is parameterized by the network and the estimated f is implicitly encoded in the network
after training on the discretely represented samples.

Unlike traditional representations that use discrete data points (like pixels in images or time points
in time series), INRs encode information through functions that map coordinates (such as spatial
positions or timestamps) directly to values (like colors or variables). Therefore, INRs allow for
smooth representation of data, making it possible to generate high-resolution outputs from low-
resolution inputs by querying the model at arbitrary points. And the continuous nature of INRs can
lead to better generalization in tasks requiring interpolation or extrapolation of data.

A.2 ALGORITHM

The algorithm of variable clustering (Algorithm 1) and the overall ImputeINR imputation method
(Algorithm 2) are presented as follows. All experiments are implemented based on PyTorch.

For the variable clustering (Algorithm 1), we employ the agglomerative clustering method because
it allows for varied inputs and does not require a predetermined number of clusters. Agglomerative
clustering is a hierarchical clustering technique that starts with each data point as its own individual
cluster. The algorithm iteratively merges the closest pairs of clusters based on a chosen distance
metric until a stopping criterion is met. This method is particularly useful for its flexibility, as it
does not require the number of clusters to be specified in advance, making it suitable for exploratory
data analysis. With this clustering method, we obtain the clusters C which is used to determine the
specific settings of the adaptive group-based architecture.

For the overall ImputeINR imputation method (Algorithm 2), we predict the masked values with
our designed INR continuous function. The masked data is firstly reordered based on the variable
clustering results to make variables with similar distributions adjacent and then fed into a multi-
scale feature extraction module to capture information from different time scales. The extracted
features are entered in a transformer encoder with initialized INR tokens to predict the INR tokens.
These learned INR tokens are the parameters of the INR continuous functions. More specifically,
these parameters are not learnable but are predicted by the transformer encoder. With the predicted
parameters, we input timestamp t to calculate the corresponding variable values as the imputed data.
The objective function (i.e., loss function) is the reconstruction error between the masked data and
the imputed data as mentioned in Equation 1.

A.3 REPRESENTATION CAPABILITY OF INR FOR TIME SERIES

To evaluate the representation capability of the INR continuous function for time series, we synthet-
ically create a time series dataset and conduct several validation experiments. The synthetic dataset
includes four variables, with two variables sampled from a normal distribution with a mean of 0 and
a variance of 1, and the other two variables sampled from a normal distribution with a mean of 1 and
a variance of 3. In other words, the four variables are generated from two different distributions.
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Algorithm 1 Variable Clustering

1: Input: Data points X = {x1,x2, . . . ,xn}, distance metric d, stopping criterion ϵ
2: Output: Clusters C
3: Initialize each point as its own cluster: C = {{x1}, {x2}, . . . , {xn}}
4: while the number of clusters |C| > 1 do
5: Find the closest pair of clusters Ci, Cj such that d(Ci, Cj) = minCk,Cl∈C d(Ck, Cl)
6: if d(Ci, Cj) < ϵ then
7: Merge clusters: C ← C \ {Ci, Cj} ∪ {Ci ∪ Cj}
8: end if
9: end while

10: return C

Algorithm 2 ImputeINR Imputation Algorithm

1: Input: Time series data X with missing values, mask rate r

2: Output: Imputed values X̂
3: Perform feature clustering on the N features of X to obtain clusters C
4: Reorder X based on clusters C to get X′

5: for each convolutional layer in the multi-scale feature extraction module do
6: Extract features from X′ using different kernel sizes
7: end for
8: Concatenate outputs from all convolutional layers to obtain Ẋ
9: Initialize INR tokens θ

10: Input Ẋ and θ into transformer encoder to predict the INR tokens θ∗
11: for each timestamp t do
12: Query the corresponding value of the timestamp t to get the imputed data X̂ = fθ∗(t)
13: end for
14: return X̂

Based on this synthetic dataset, we test the representation capabilities of four different paradigms of
INR continuous functions. As shown in the Figure 5, Model C demonstrates the fastest convergence
speed and the best fitting results. This indicates that the representation capability of INR is strongest
when both variable clustering and adaptive grouping are used simultaneously. In contrast, Model D
has the worst fitting results, suggesting that the correlation information between variables from the
same distribution significantly impacts the representation capability of INR. It is worth noting that in
our ablation experiments, using variable clustering or adaptive grouping individually also improve
the imputation ability. This is because the variable distributions in real datasets are more complex,
making it challenging to separate variables belonging to the same cluster into different groups as in
the synthetic dataset.

A.4 DETAILS OF BASELINE MODELS

The details of the baseline models are summarized here.

• ImputeFormer1 A low-rank-induced Transformer that strikes a balance between strong
inductive bias and high model expressiveness. By leveraging the inherent structures of spa-
tiotemporal data, ImputeFormer learns well-balanced signal-noise representations, making
it adaptable to a wide range of imputation challenges.

• TimeMixer 2 A fully MLP-based architecture incorporates Past-Decomposable-Mixing
and Future-Multipredictor-Mixing blocks to effectively leverage disentangled multiscale
series during both past extraction and future prediction phases.

• iTransformer 3 A transformer-based architecture which straightforwardly applies the at-
tention mechanism and feed-forward network to the inverted dimensions. In this approach,

1https://github.com/tongnie/ImputeFormer
2https://github.com/kwuking/TimeMixer
3https://github.com/thuml/iTransformer
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Model A Model B Model C Model D

Figure 5: The four architectures we test to evaluate the representation capability of the INR continu-
ous function for the synthetic time series dataset. The results prove that the representation capability
of INR is strongest when both variable clustering and adaptive grouping are used simultaneously.

the time points of each individual series are embedded into variate tokens, which the atten-
tion mechanism uses to capture multivariate correlations. Simultaneously, the feed-forward
network operates on each variate token to learn nonlinear representations.

• FPT 4 A frozen pre-trained transformer which leverages large language models on billions
of tokens for time series analysis. Specifically, the self-attention and feedforward layers of
the residual blocks in the pre-trained model are remained. It is assessed through fine-tuning
across all major types of time series tasks.

• TimesNet 5 A method that transforms the 1D time series into a set of 2D tensors based on
multiple periods. This transformation can embed the intraperiod- and interperiod-variations
into the columns and rows of the 2D tensors respectively, making the 2D-variations to be
easily modeled by 2D kernels.

• SAITS 6 A self-attention mechanism based method that learns missing values using a
weighted combination of two diagonally-masked self-attention (DMSA) blocks. DMSA
effectively captures both temporal dependencies and feature correlations across time steps,
enhancing imputation accuracy and training speed. Additionally, the weighted combination
allows SAITS to dynamically assign weights to the representations learned from the two
DMSA blocks based on the attention map and missingness information.

• BRITS 7 A RNN-based method directly learns the missing values in a bidirectional recur-
rent dynamical system, without any specific assumption.

• Transformer It is the most basic transformer architecture, but in some cases, it performs
better than other complex methods.

• Mean/Median It imputes missing entries using the mean or median values of the corre-
sponding columns, yielding similar results for both methods.

4https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All/tree/main
5https://github.com/thuml/Time-Series-Library
6https://github.com/WenjieDu/SAITS
7https://github.com/caow13/BRITS
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