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Fine-Grained Side Information Guided Dual-Prompts for
Zero-Shot Skeleton Action Recognition

Anonymous Authors

ABSTRACT
Skeleton-based zero-shot action recognition aims to recognize un-
known human actions based on the learned priors of the known
skeleton-based actions and a semantic descriptor space shared by
both known and unknown categories. However, previous works
mostly focus on establishing the bridges between the known skele-
ton representation space and semantic descriptions space at the
coarse-grained level for recognizing unknown action categories,
ignoring the fine-grained alignment of these two spaces, resulting
in suboptimal performance in distinguishing high-similarity action
categories. To address these challenges, we propose a novel method
via Side information and dual-prompTs learning for skeleton-based
zero-shot Action Recognition (STAR) at the fine-grained level.
Specifically, 1) we decompose the skeleton into several parts based
on its topology structure and introduce the side information con-
cerning multi-part descriptions of human body movements for
alignment between the skeleton and the semantic space at the fine-
grained level; 2) we design the visual-attribute and semantic-part
prompts to improve the intra-class compactness within the skele-
ton space and inter-class separability within the semantic space,
respectively, to distinguish the high-similarity actions. Extensive
experiments show that our method achieves state-of-the-art perfor-
mance in ZSL and GZSL settings on NTU RGB+D, NTU RGB+D 120,
and PKU-MMD datasets. The code will be available in the future.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
Zero-Shot Learning, Skeleton-based Action Recognition, Side In-
formation, Prompt Learning

1 INTRODUCTION
Many researchers pay attention to the action recognition commu-
nity because of its wide range of applications, including intelligent
monitors, sports analysis, anomaly action recognition [24], etc.
Compared to the RGB-D modalities, human skeleton data (joint
coordinate) has excellent robustness to the light intensity, back-
ground noise, and view variations. Meanwhile, it is easy to obtain
skeleton pose data with the maturity of depth sensors like Kinect
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Figure 1: Methods comparison. (a) Existing skeleton-based
zero-shot action recognition methods project the global em-
bedding of skeleton sequences into semantic space for align-
ment with category names, neglecting the potential correla-
tion at the fine-grained level; (b) Our STAR decomposes the
human skeleton into several regions based on its topology
structure and introducing the extra side information of part
motion descriptions for alignment at the fine-grained level,
enabling significant capacities of transferring knowledge
from known to unknown categories.

[33] and the development of pose estimation methods [34]. To this
end, skeleton-based action recognition becomes a hot topic.

Existing skeleton-based action recognition studies focus on su-
pervised or self-supervised learning to explore the spatial-temporal
characteristics of the actions, which require training data to cover
all the action categories that need to be recognized. However, these
methods have some limitations, as follows. From the perspective of
generality, they work well on recognizing the categories of actions
that have appeared in the training set (known) but fail to recognize
new categories outside of them (unknown), unlike the cognitive
process of humans to recognize new categories based on existing
knowledge. From another perspective of the costs, collecting and
annotating endless action categories in the real world is unrealis-
tic and expensive, especially for anomaly actions. Thus, zero-shot
learning is employed in [9, 12, 13, 35] to address the challenges
concerning recognizing unknown action categories without having
access to the samples of unknown categories during training.

In practice, these works [9, 12, 13, 35] can be further divided
into zero-shot learning (ZSL) and generalized zero-shot learning
(GZSL) settings. The former only needs to classify unknown action
categories during inference, while the latter also aims to classify
actions of both known and unknown categories [21]. The core

https://doi.org/XXXXXXX.XXXXXXX
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of these methods is to align the known skeleton representations
with the corresponding semantic embeddings (e.g., category names)
by projecting them into the common space [12] or other learned
metrics [8]. Then, the relationship of semantic embeddings between
known and unknown categories from the pre-trained language
models [18, 22, 23] shared in the same space can be utilized as the
bridge to transfer knowledge from the known to the unknown. In
this way, the learned model can recognize the skeleton action of
the unknown categories according to their semantic information.

While these methods perform well in recognizing the skeleton
actions of unknown categories, there are still several challenges. (1)
These methods [9, 12, 13, 35] embed the skeleton sequences into
the global representation for alignment with the corresponding
coarse-grained semantic embeddings (e.g., category name), ignor-
ing the potential correlation between fine-grained skeleton parts
and semantics, as shown in Fig. 1(a). (2) The pre-extracted skele-
ton representations and semantic embeddings have low intra-class
compactness and inter-class separability in their respective space,
so it is challenging to distinguish the actions with high similarities.
(3) In the GZSL, the previous studies [9, 13] designed the gating
module through the probability distribution over known categories
to classify unknown categories, which is unreasonable. These prob-
lems limit the model’s generalization power, resulting in challenges
to transferring knowledge from the known to unknown categories.

To address the above challenges, we propose a novel method via
Side information and dual-PrompTs learning for zero-shot skeleton
Action Recognition (STAR) as shown in Fig. 1(b). Specifically, we
decompose the skeleton sequence into several parts based on the hu-
man spatial topological structure. Then, we utilize the GPT-3.5 [1]
as the expert knowledge base to generate the motion descriptions of
each skeleton part as the side information, enriching the part spatial-
temporal information of category names. However, these skeleton
parts and corresponding side information exhibit homogeneity
among high-similarity actions. Thus, we introduce the learnable
visual-attribute prompts and the cross-attention mechanism in each
fine-grained skeleton part to explore their spatial-temporal charac-
teristic, prompting the intra-class compactness in skeleton space.
For semantic space, we propose the learnable semantic-part prompt
to improve the inter-class separability of side information further.
Afterward, several losses instruct the model to establish the one-to-
one and one-to-many correlations between skeleton parts and side
information for alignment at the fine-grained level.

The main contributions can be summarized as follows:

• We decompose the skeleton based on human topological
structure and introduce part descriptions by LLMs as the
side information. In this way, the skeleton and semantic
spaces can be effectively aligned at the fine-grained level.

• We propose the two types of prompts, named visual-attribute
prompt and semantic-part prompt, to improve the intra-class
compactness and inter-class separability among action cate-
gories to recognize high-similarity actions.

• Extensive experiments demonstrate the superior performance
of the proposed method in ZSL and GZSL settings on NTU
RGB+D, NTU RGB+D 120, and PKU-MMD datasets.

2 RELATEDWORK
2.1 Attention-based Zero-Shot Learning
Attention-based ZSL methods aim to augment the critical informa-
tion of the input, which is effective for recognizing fine-grained
categories [21]. Specifically, these methods select important visual
regions or sub-attributes by manually calculating the weight ma-
trix and multiplying them on visual [14, 30, 31, 36] or attribute
features [11, 17]. However, the abovementioned attention mecha-
nism calculates the element’s relation among fixed window sizes,
which are deficient in capturing long-term dependency among el-
ements. Inspired by the success of the self-attention mechanism
in Transformer [27] in the computer vision community, numerous
studies [3, 4, 16, 20] gradually focus on designing various cross-
attention mechanisms between their visual and attribute features to
explore their correlations in long-term ranges, reducing the visual-
semantic gaps. Unlike the above delve into image classification, our
work is the first to utilize an attention mechanism to explore the
relationship between the skeleton representations and learnable
visual-attribute prompts, prompting intra-class compactness for
better alignment and recognition.

2.2 Skeleton-based Zero-Shot Action
Recognition

Existing skeleton-based action recognition methods have poor gen-
erality in recognizing unknown actions, prompting researchers to
solve this challenge by zero-shot learning [9, 12, 13, 35]. Their com-
mon practice is extracting visual features from skeleton sequences
with ST-GCN [32] or Shift-GCN [6] and obtaining semantic embed-
dings from category names or action descriptions with Word2Vec
[19] or Sentence-Bert [23]. After that, they design several modules
to establish the relationship between the skeleton and semantic
spaces at the global level. RelationNet [12] is the first work to learn
a deep non-linear metric for matching global visual-sematic pairs.
After that, SynSE [9] designed a generative multimodal alignment
module based on VAEs to align the global visual features and verb-
noun embeddings.MSF-GZSSAR [13] builds on it to extend category
names with LLMs for rich information. However, these methods
leverage the probability distribution over known categories to rec-
ognize actions in the GZSL is unreasonable. Meanwhile, they ignore
the spatial-temporal characteristic of actions. SMIE [35] introduces
the temporal constraint to align the two modalities globally by
maximizing mutual information. Unfortunately, it cannot extend to
GZSL. In summary, our method differs in three aspects compared to
the abovementioned methods: (1) we introduce the side information
and align different modalities at the local fine-grained level rather
than the global aspect; (2) we introduce two prompts to improve
the intra-class compactness in skeleton space and inter-class sepa-
rability in semantic space to recognize high-similarity actions; (3)
our method can extend to GZSL easily with superior performance
by the calibrated stacking method [2].

3 METHOD
3.1 Problem Definition
Assume we have the skeleton dataset D = D𝑠

𝑡𝑟 ∪ D𝑠
𝑡𝑒 ∪ D𝑢

𝑡𝑒 with
|A| action category names, whereA = A𝑠∪A𝑢 andA𝑠∩A𝑢 = ∅.
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Figure 2: The architecture of the proposed STARmodel. In the skeleton stream, we utilize the GCN backbone to extract skeleton
representations and then decompose them into several parts based on topology-based partition strategies. The attention-based
mechanism and the visual-attribute prompt are devised to improve the intra-class compactness in skeleton space by fully
exploring and capturing spatial-temporal characters of the actions. In the semantic stream, we generate the part descriptions
of the action as the side information to supply extra fine-grained knowledge. After that, we propose the semantic-part prompt
to improve the inter-class separability of these side information with the constraint of the action category name. Finally, we
align the multi-part skeleton representations and the corresponding semantic embeddings with the guidance of several losses.

For the train-set of known categories D𝑠
𝑡𝑟 = {𝑥𝑠

𝑖
, 𝑦𝑠
𝑖
}𝑁𝑡𝑟

𝑖=1 , 𝑥
𝑠
𝑖
is the

skeleton sequence of known categories with the corresponding
category name 𝑦𝑠

𝑖
∈ A𝑠 . For the test-set of unknown categories

D𝑢
𝑡𝑒 = {𝑥𝑢

𝑖
, 𝑦𝑢
𝑖
}𝑁𝑡𝑒

𝑖=1 , 𝑥
𝑢
𝑖
is the skeleton sequence of unknown cate-

gories with the corresponding category name 𝑦𝑢
𝑖
∈ A𝑢 . The goal

of the ZSL setting is to construct a model on D𝑠
𝑡𝑟 and then predict

the category name on D𝑢
𝑡𝑒 . For the GZSL setting, we need to pre-

dict the category name on D𝑠
𝑡𝑒 ∪ D𝑢

𝑡𝑒 based on the above model,
where D𝑠

𝑡𝑒 is the test-set of known categories. Unlike the image
input, each skeleton sequence 𝑥𝑖 ∈ R3×𝑇×𝑉 ×𝑀 , where 𝑇 denotes
the sequence frames, 𝑉 denotes the human joints,𝑀 denotes the
person number, and 3 denotes the 3D coordinates. For simplicity,
we omit the subscript for known (s) and unknown (u) categories
during the following training procedures. The framework of our
proposed method is illustrated in Fig. 2.

3.2 Fine-grained Formulation
Unlike the previous works [9, 12, 13, 35], our method aims to align
the skeleton and semantic space at the fine-grained level rather
than the global level. From this motivation, we decompose the skele-
ton sequence into multi-part sequences based on human spatial
topological structure. Simultaneously, we generate one-to-one mo-
tion semantic descriptions of skeleton part sequences as the side
information. This way, we can explore the correlation between the
skeleton elements and corresponding side information to transfer
knowledge from known to unknown categories.

(1) Topology-based Multi-part Skeleton Generation. Accord-
ing to the knowledge of human topology structure, we decom-
pose the skeleton into several joint groups with different fine-
grained levels, keeping the same with [29]. Specifically, a two-
part strategy means dividing the skeleton into the upper body

and lower body, and four-part and six-part strategies gradually
decompose the upper body and lower body into finer partitions,
respectively. Afterward, we obtain the fine-grained skeleton rep-
resentation 𝑓𝑣 = {𝑓 𝑒𝑣 ∈ R𝑇×𝑉 ×𝐶 }𝐾

𝑒=1 with the spatial topology and
temporal continuity by the visual feature extractor 𝜙 (·), as opposed
to the previous studies pooling the spatial-temporal dimensions
𝑇 ×𝑉 for global feature 𝑓𝑣 ∈ R𝐶 . The 𝑇 is the down-sampled tem-
poral dimension, 𝑉 is the joint group of the 𝑒-th part, and 𝐾 is the
number of the skeleton parts (𝐾 = {2, 4, 6}).
(2) One-to-One Side Information Generation. Compared to
the previous studies that use the action category names or their
enriched descriptions as the global semantics, we generate the one-
to-one spatial-temporal descriptions of the skeleton elements as
the extra side information at the fine-grained level. Specifically, we
utilize the GPT-3.5 [1] as the expert knowledge base to generate
side information by providing appropriate questions. For example,
we obtain the side information of head description in action "drink
water" with the question "please describe the [head] actions simply
when people [drink water]": head tilts back slightly. This way, we
can depend on the abovementioned skeleton partition strategies
and action category names to generate all actions’ fine-grained
multi-part skeleton side information. Afterward, we utilize the pre-
trained language model as the semantic feature extractor 𝜓 (·) to
extract the embeddings of the category name and side information,
which can be described as 𝑓𝑐𝑛 and 𝑓𝑠𝑖 = {𝑓 𝑒

𝑠𝑖
}𝐾
𝑒=1.

3.3 Dual-Prompt Cross-Modality Alignment
The core of the ZSL is to build a bridge by aligning the cross-
modality spaces, thereby transferring knowledge between the known
and unknown categories. For this, we devise the skeleton represen-
tation and semantic embedding network streams to learn a shared
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latent space. Simultaneously, we propose the visual-attribute and
semantic-part prompts in respective network streams to address
the homogeneity challenges among the high-similarity actions.

(1) Skeleton Representation Network Stream. The skeleton
sequence comprises the human pose coordinates, lacking detailed
descriptions of the surrounding environment and human appear-
ance compared to RGB-D videos. Thus, several action categories
are highly similar if we only observe the skeleton sequence. With
these realities, it is challenging to distinguish highly similar actions
such as "reading" and "writing" because only the hand movements
are slightly different. Therefore, we employ a cross-attention mech-
anism with the proposed visual-attribute prompt to improve the
intra-class compactness in skeleton space by fully exploring the
spatial representations and capturing the long-term dependencies
of the skeleton actions.

Specifically, our skeleton representation network stream con-
sists of 𝐾 branches corresponding to 𝐾 human parst. Each branch
(Attention-basedMechanism) comprises amulti-head cross-attention
layer, a feed-forward network (FFN), a learnable visual-attribute
prompt, and a projecting matrix. The FFN consists of two linear lay-
ers with the Relu activation. The learnable visual-attribute prompt
𝑃𝑣𝑎 = {𝑃𝑒𝑣𝑎 ∈ R𝑚×𝑑𝑣𝑎 }𝐾

𝑒=1 represents the spatial-temporal mo-
tion attribute of the skeleton sequence.𝑚 is the hyperparameter
of motion attributes, and 𝑑𝑣𝑎 denotes the dimension. The multi-
head cross-attention layer uses the 𝑓 𝑒𝑣 as the keys 𝐾𝑣 and values𝑉𝑣 .
Meanwhile, it employs the 𝑒-th part visual-attribute prompt 𝑃𝑒𝑣𝑎
as queries 𝑄𝑣 , which can effectively pay attention to the motions
most relevant to each attribute in a given skeleton part sequence.
The cross-attention with the visual-attribute prompt in our method
can be described as follows:

𝐴𝑡𝑡𝑣
ℎ
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑣𝐾

𝑇
𝑣√
𝑑

)𝑉𝑣, (1)

�̃� 𝑒𝑣 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐴𝑡𝑡𝑣1 , · · ·, 𝐴𝑡𝑡
𝑣
𝑛)𝑊𝑜 , (2)

where 𝑄𝑣 = 𝑃𝑒𝑣𝑎𝑊𝑞, 𝐾𝑣 = 𝑓 𝑒𝑣𝑊𝑘 ,𝑉𝑣 = 𝑓 𝑒𝑣 𝑉𝑣 ,𝑊𝑞,𝑊𝑘 ,𝑊𝑣,𝑊𝑜 are the
learnable weights, ℎ = 1, · · ·, 𝑛 is the head index, 𝑑 is the scale
factor, and 𝑐𝑜𝑛𝑐𝑎𝑡 (·) is the concatenate operation. After that, we
utilize the FFN further to augment the attention-motion features of
the skeleton part sequence. To align with the corresponding side
information, we further project the output of the FFN 𝜑 (·) into the
shared latent space. It is defined as follows:

𝐹𝑒𝑣 = 𝑃𝑒𝑣𝑎𝑊𝜑 ( �̃� 𝑒𝑣 ), (3)

where𝑊 is a learnable projecting matrix. To this end, we sum the
𝐹𝑒𝑣 of each skeleton part as the global skeleton representation 𝐹𝑣 .

(2) Semantic Embedding Network Stream. Human actions may
have similar movements in several body parts, resulting in the same
specific side information. For example, "brush teeth" and "cheer
up" have the same side information of head movements: head tilts
forward slightly. These identical side information belonging to dif-
ferent action categories can make aligning nonhomogeneous skele-
ton sequences in the right direction challenging. In other words,
these identical side information belonging to various action cat-
egories are inseparable in semantic space. To solve this problem,
we introduce learnable semantic-part prompts to supplement the
category-specific knowledge for side information.

Specifically, we first utilize the CLIP [22] text encoder to extract
the category name embeddings 𝑓𝑐𝑛 and multi-part fine-grained
side information embeddings 𝑓𝑠𝑖 = {𝑓 𝑒

𝑠𝑖
}𝐾
𝑒=1. Then, we add the

learnable semantic-part prompt 𝑃𝑠𝑝 = {𝑃𝑒𝑠𝑝 ∈ R |A |×𝑑𝑠𝑝 }𝐾
𝑒=1 to side

information in the 𝑒-th part for supplementing and learning the
category-specific knowledge as follows:

�̂� 𝑒
𝑠𝑖
= 𝑓 𝑒𝑠𝑖 + 𝑃

𝑒
𝑠𝑝 , (4)

where �̂� 𝑒
𝑠𝑖
is the augmented side information with category-specific

knowledge and 𝑑𝑠𝑝 denotes the dimension of prompt. Afterward,
we utilize two projectors consisting of two linear layers with Relu
activation to project the augmented semantic embeddings into the
shared latent space for alignment with skeleton space, denoted as
the 𝐹𝑒

𝑠𝑖
and 𝐹𝑐𝑛 . In this setting, the category name is the category

semantic center that pulls the corresponding augmented side infor-
mation closer and pushes away non-homogeneous augmented side
information as described in Section 3.4, prompting the inter-class
separability of the side information.

3.4 Model Optimization
To achieve effective optimization, we designmulti-part cross-entropy
loss, semantic cross-entropy loss, and global cross-entropy loss to
guide the training process.

(1) Multi-Part Cross-Entropy Loss. To align the skeleton space
with the semantic space at the fine-grained level, the initial step is to
bring the pairs of part skeleton-semantic closer together. Therefore,
we achieve this by calculating the dot product between the skele-
ton part representation 𝐹𝑒𝑣 and the fine-grained side information
embeddings 𝐹𝑒

𝑠𝑖
. The multi-part cross-entropy loss can be defined

as follows:

L𝑀𝑃𝐶𝐸 = − 1
𝐵 × 𝐾

𝐵∑︁
𝑖=1

𝐾∑︁
𝑒=1

𝑙𝑜𝑔(
𝑒𝑥𝑝 (𝐹 𝑖,𝑒𝑣 × 𝐹𝑒

𝑠𝑖
)∑

𝑎∈A𝑠 𝑒𝑥𝑝 (𝐹 𝑖,𝑒𝑣 × 𝐹𝑒𝑎
𝑠𝑖
)
), (5)

where 𝐵 is the batch size.

(2) Semantic Cross-Entropy Loss. To ensure the knowledge that
the semantic-part prompt learned is the corresponding category,
we suggest promoting the embedding of the augmented side in-
formation to have the highest compatibility with its correspond-
ing category name embedding. By doing this, the augmented side
information is near its category semantic center, prompting the
inter-class separability with each other. The 𝐿𝑆𝐶𝐸 is defined as:

L𝑆𝐶𝐸 = − 1
𝐾

𝐾∑︁
𝑒=1

𝑙𝑜𝑔(
𝑒𝑥𝑝 (𝐹𝑒

𝑠𝑖
× 𝐹𝑐𝑛)∑

𝑎∈A 𝑒𝑥𝑝 (𝐹𝑒
𝑠𝑖
× 𝐹𝑎𝑐𝑛)

). (6)

(3) Global Cross-Entropy Loss. Besides the alignment at the
fine-grained level, we propose the 𝐿𝐺𝐶𝐸 to align the skeleton and
semantic space at the global level. The optimization operation can
be described as follows:

L𝐺𝐶𝐸 = − 1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑔( 𝑒𝑥𝑝 (𝐹 𝑖𝑣 × 𝐹𝑐𝑛)∑
𝑎∈A𝑠 𝑒𝑥𝑝 (𝐹 𝑖𝑣 × 𝐹𝑎𝑐𝑛)

) . (7)

We ultimately formulate the overall training loss as shown below:

L𝑡𝑜𝑡𝑎𝑙 = L𝑀𝑃𝐶𝐸 + 𝛼L𝑆𝐶𝐸 + 𝛽L𝐺𝐶𝐸 . (8)

𝛼 and 𝛽 are the trade-off parameters, which are set to 0.1.
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3.5 ZSL/GZSL Prediction
During the inference stage, for a given sample, we can obtain its
skeleton global representation 𝐹𝑣 and embeddings {𝐹𝑎𝑐𝑛}

|A |
𝑎=1 of all

category names. Then, we utilize the calibrated stacking method [2]
to predict the category of the sample, which is defined as follows:

A∗ = 𝑎𝑟𝑔max
𝑎∈A𝑢/A

𝐹𝑣 × 𝐹𝑎𝑐𝑛 − 𝛾I[𝑎 ∈ A𝑠 ], (9)

where A𝑢/A corresponds to the ZSL/GZSL setting, respectively, 𝛾
is a calibration factor.

4 EXPERIMENTS
4.1 Datasets

(1) NTU RGB+D 60 Dataset [26]. It contains 56880 action samples
with multi-modalities, including RGB, depth map, skeleton, and
infrared (IR) video, performed by 40 subjects and classified into
60 action categories. For skeleton modality, each sample consists
of a maximum of two people, each comprising 3D coordinates of
25 joints. Two official benchmarks are applied: (1) Cross-subject
(Xsub): the training set contains 20 subjects, and the remaining
subjects are used for testing; (2) Cross-view (Xview): the training
set contains view2 and view3, while the view1 make up the test set.

(2) NTU RGB+D 120 Dataset [15]. It is the extension of the NTU
RGB+D 60, which contains 114,480 action samples of 120 action
categories and has the same multi-modalities. Similarly, it also split
the dataset into two official benchmarks: (1) Cross-subject (Xsub):
the training set contains 53 subjects and the rest of the subjects’
data for testing; (2) Cross-setup (Xset): even camera IDs belong to
the training and the testing data consists odd IDs.

(3) PKU-MMD Dataset [7]. It contains two phases for action
recognition with increasing difficulty, which covers the same multi-
modalities as the NTU dataset. The actions are collected into 51
action categories, and almost 20000 instances are included. Two
official experimental settings are proposed: (1) Cross-subject (Xsub):
57 subjects belong to the training set and 9 subjects for the testing
set; (2) Cross-view (Xview): the middle and right views are chosen
for the training set, and the left is for the testing set.

4.2 Evaluation Protocols
We conduct extensive experiments on the above three datasets
in the ZSL and GZSL settings. In the ZSL setting, we compute
the Top-1 recognition accuracy of the test samples from unknown
categoriesD𝑢

𝑡𝑒 , i.e.,𝐴𝑐𝑐 . In the GZSL setting, we calculate the Top-1
recognition accuracy of the test samples from the known categories
D𝑠
𝑡𝑒 and unknown categoriesD𝑢

𝑡𝑒 , denoted as 𝑆 and𝑈 , respectively.
Then, we also compute their harmonic mean𝐻 = (2×𝑆×𝑈 )/(𝑆+𝑈 ),
keeping the same as the previous works [9, 12, 13, 35].

4.3 Implementation Details
We take the same data processing procedure as the [5]. Follow-
ing the previous works [9, 12, 13, 35], we employ the Shift-GCN
pre-trained on known categories as the visual feature extractor.
Meanwhile, we utilize the pre-trained ViT-L/14@336px text en-
coder of CLIP [22] to obtain semantic embeddings. We employ the
SGD optimizer to train the model with a batch size of 64 during

Table 1: The hyper-parameter 𝛾 and𝑚 on NTU RGB+D 60,
NTU RGB+D 120, and PKU-MMD datasets.

Parameter NTU RGB+D 60 NTU RGB+D 120 PKU-MMD

𝛾 0.012 0.069 0.022
𝑚 100 100 100

the training step. For the NTU series datasets, the initial learning
is 0.001 and reduced with 0.1 multiplied at epochs 20 and 30. The
weight decay is set to 5e-4. The cross-attention layer is set to 1
with eight attention heads. The Table. 1 shows we set the hyper-
parameter 𝛾 and𝑚. We conduct the following experiments on the
PyTorch framework with an NVIDIA A100 GPU.

4.4 Baseline Settings
We found that previous studies [9, 13, 35] had used the skeleton fea-
tures and experimental settings provided by SynSE [9] for method
validation. However, these settings do not correspond with the offi-
cial requirements of NTU series datasets, needing more evaluation
of their methods’ robustness with the subject variation and view
changes. At the same time, the number of skeleton features pro-
vided by SynSE [9] can not match the official dataset. Therefore, we
conduct the experiment based on the official experimental settings
(cross-subject, cross-view, and cross-set) of the above datasets. As
for known and unknown categories partition strategies that the of-
ficial requirements lacked, for convenience, we follow the previous
studies [9, 35]. For NTU 60, we utilize the 55/5 and 48/12 split strate-
gies, which include 5 and 12 unknown categories. For NTU 120, we
employ the 110/10 and 96/24 split strategies. For PKU-MMD II, we
take the 46/5 and 39/12 split strategies. To make a fair comparison,
we update the performance results of the previous studies under
the current experimental settings based on their public code.

4.5 Comparison with State-of-the-Art

(1) Zero-Shot Learning. In this study, we evaluate the effectiveness
of the proposed STAR method compared with other state-of-the-art
methods on three datasets in the ZSL setting. As shown in Table
2 and Table 3, our STAR method achieves the best accuracy on
NTU series datasets with different unknown-known split strategies.
For the cross-subject task, STAR outperforms SMIE by 3.5% and
3.6% in the 55/5 split and 48/12 split of the NTU 60, respectively.
Meanwhile, STAR appears to have a similar trend of improvement
in NTU 120, indicating that the STAR method can capture the
spatial-temporal characteristics of actions at the fine-grained level
between cross-subjects. Our STAR method achieves high accuracy
for the cross-view task in NTU 60, with 81.6% and 42.5% in different
split strategies. Additionally, STAR also achieves state-of-the-art
results in the cross-setup task of the NTU 120. These results demon-
strate the robustness of our method in dealing with view and setup
changes, showing the remarkable capacity to generalize models
into unseen views while maintaining accuracy for unknown cate-
gories. Lastly, we also explore the different scenarios (PKU-MMD
II), as shown in Table 4. We can find that our method dramatically
improves accuracy across various tasks and split strategies. Notably,
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Table 2: Comparison of STAR with the state-of-the-art methods on NTU RGB+D 60 dataset in ZSL and GZSL setting.

Method

Xsub Xview

55/5 Split 48/12 Split 55/5 Split 48/12 Split

ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL

Acc S U H Acc S U H Acc S U H Acc S U H

ReViSE [10] 69.5 40.8 50.2 45.0 24.0 21.8 14.8 17.6 54.4 25.8 29.3 27.4 17.2 34.2 16.4 22.1
JPoSE [28] 73.7 66.5 53.5 59.3 27.5 28.6 18.7 22.6 72.0 61.1 59.5 60.3 28.9 29.0 14.7 19.5
CADA-VAE [25] 76.9 56.1 56.0 56.0 32.1 50.4 25.0 33.4 75.1 65.7 56.1 60.5 32.9 49.7 25.9 34.0
SynSE [9] 71.9 51.3 47.4 49.2 31.3 44.1 22.9 30.1 68.0 65.5 45.6 53.8 29.9 61.3 24.6 35.1
SMIE [35] 77.9 - - - 41.5 - - - 79.0 - - - 41.0 - - -

STAR (Ours) 81.4 69.0 69.9 69.4 45.1 62.7 37.0 46.6 81.6 71.9 70.3 71.1 42.5 66.2 37.5 47.9

Table 3: Comparison of STAR with the state-of-the-art methods on NTU RGB+D 120 dataset in ZSL and GZSL setting.

Method

Xusb Xset

110/10 Split 96/24 Split 110/10 Split 96/24 Split

ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL

Acc S U H Acc S U H Acc S U H Acc S U H

ReViSE [10] 19.8 0.6 14.5 1.1 8.5 3.4 1.5 2.1 30.2 4.0 23.7 6.8 13.5 2.6 3.4 2.9
JPoSE [28] 57.3 53.6 11.6 19.1 38.1 41.0 3.8 6.9 52.8 23.6 4.4 7.4 38.5 79.3 2.6 4.9
CADA-VAE [25] 52.5 50.2 43.9 46.8 38.7 48.3 27.5 35.1 52.5 46.0 44.5 45.2 38.7 47.6 26.8 34.3
SynSE [9] 52.4 57.3 43.2 49.5 41.9 48.1 32.9 39.1 59.3 58.9 49.2 53.6 41.4 46.8 31.8 37.9
SMIE [35] 61.3 - - - 42.3 - - - 57.0 - - - 42.3 - - -

STAR (Ours) 63.3 59.9 52.7 56.1 44.3 51.2 36.9 42.9 65.3 59.3 59.5 59.4 44.1 53.7 34.1 41.7

Table 4: Comparison of STAR with the state-of-the-art meth-
ods on the cross-subject task of PKU-MMD II dataset in ZSL
and GZSL setting.

Method 46/5 Split 39/12 Split

ZSL GZSL ZSL GZSL

ReViSE [10] 54.2 39.1 19.3 19.0
JPoSE [28] 57.4 52.4 27.0 37.6
CADA-VAE [25] 73.9 61.7 33.7 41.1
SynSE [9] 69.5 53.0 36.5 42.3
SMIE [35] 72.9 - 44.2 -

STAR (Ours) 76.3 65.0 50.2 55.4

our proposed method can effectively enhance the recognition of un-
known categories by learning the fine-grained relationship between
skeleton and semantic spaces rather than global alignment.

(2) Generalized Zero-Shot Learning. Here, we compare our pro-
posed STAR with other state-of-the-art methods on three datasets
in the GZSL setting. To make a fair comparison with our alignment
method, we employ the calibrated stacking method in Section 3.5
as the gating module of all methods to classify known and un-
known categories. As shown in Table 2, Table 3, and Table 4, our

proposed STAR achieves the highest accuracy across various tasks
and split strategies. Additionally, our method achieves a balanced
accuracy regarding known and unknown categories. For instance,
our STAR can obtain better performance on known categories and
unknown categories as 59.3% and 59.5% for the cross-setup task in
NTU 120 with 110/10 split dataset, and thus result in the harmonic
mean as 59.4%. In contrast, JPoSE [28] has a considerable margin
(19.2%) between their accuracy of known and unknown categories
in the same dataset, resulting in poor performance on the harmonic
mean. Therefore, this demonstrates that our STAR can learn the
discriminant and transferable representations at the fine-grained
level, thereby alleviating the problems of domain bias.

4.6 Ablation Study

(1) Influence of Known-Unknown Categories Settings. Dif-
ferent known-unknown category settings may affect the method’s
performance. We optimize the experiment procedure and randomly
resplit categories into three known-unknown settings to evaluate
their robustness. These three split settings are non-overlap, and we
compute their average results in the ZSL and GZSL to eliminate
the variance, as shown in Table 5. Our proposed STAR performs
better than all previous methods in the ZSL, improving by 13.3% and
6.4%, respectively. It demonstrates that STAR is robust in the vari-
ous known-unknown category settings, and learning prior action
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Table 5: Influence of known-unknown categories settings on
NTU RGB+D 60 and PKU-MMD II datasets. The columns of
the ZSL and GZSL represent the Top1 accuracy and harmonic
mean, respectively.

Method
NTU RGB+D 60 PKU-MMD II
55/5 (Xsub) 46/5 (Xsub)

ZSL GZSL ZSL GZSL

ReViSE [10] 54.7 27.4 48.7 32.8
JPoSE [28] 56.6 44.7 39.2 31.7
CADA-VAE [25] 58.0 47.1 49.0 52.7
SynSE [9] 59.9 49.9 43.5 40.4
SMIE [35] 64.2 - 66.4 -

STAR (Ours) 77.5 62.8 70.6 67.1

Table 6: Influence of topology-based partition strategies at
various fine-grained levels onNTURGB+D 60 and PKU-MMD
II datasets. The columns of the ZSL and GZSL represent the
Top1 accuracy and harmonic mean, respectively.

Strategies
NTU RGB+D 60 PKU-MMD II
55/5 (Xsub) 46/5 (Xsub)

ZSL GZSL ZSL GZSL

Two-part 77.4 67.5 73.9 63.5
Four-part 78.1 68.6 74.7 64.5
Six-part 81.4 69.4 76.3 65.0

knowledge from body parts at the fine-grained level can increase
generalization performance to recognize unknown actions. In the
GZSL, the STAR outperforms the second by 12.9% and 14.4% (rela-
tively 25.6% and 27.3% ), showing that the proposed STAR alleviates
the issues of domain bias effectively.

(2) Influence of Fine-grained Levels. Under the baseline settings,
we explore how different topology-based partition strategies at
various fine-grained levels affect the proposed STAR. The strategies
we tested include two-part (upper body, lower body), four-part
(head, hand-arm, hip, leg-foot), and six-part (head, hand, arm, hip,
leg, foot). According to the results presented in Table 6, the six-part
partition strategy performs the best on two datasets. This suggests
aligning the skeleton and semantic space at the fine-grained level is
necessary. Meanwhile, the higher the fine-grained level, the better
the recognition performance.

(3) Influence of Components. In Table 7, we assess the effective-
ness of modules, prompts, and loss functions in the STAR. We can
observe that the STAR performs significantly worse without the
attention-based mechanism (AM), resulting in a decrease of nearly
2.7%/4.9% and 7.2%/4.5% on two datasets. This indicates that the
AM can capture skeleton actions’ spatial characteristics and long-
term temporal dependency. Additionally, dual-prompts (VPP and
SPP) are crucial in improving intra-class compactness in skeleton
space and prompting inter-class separability in semantic space. If
we remove them, approximately 3.0%/8.5% and 1.9%/5.8% drop on

Table 7: Influence of different components on NTU RGB+D
60 and PKU-MMD II datasets. The columns of the ZSL and
GZSL represent the Top1 accuracy and harmonic mean, re-
spectively. "AM" is the attention-based mechanism, "VAP" de-
notes the visual-attribute prompt, and "SPP"means semantic-
part prompt.

Method
NTU RGB+D 60 PKU-MMD II
55/5 (Xsub) 46/5 (Xsub)

ZSL GZSL ZSL GZSL

STAR w/o AM 78.7 64.5 69.1 60.5
STAR w/o VAP 78.4 60.9 67.9 58.2
STAR w/o SPP 79.5 63.6 69.5 61.6
STAR w/o L𝑀𝑃𝐶𝐸 78.2 60.5 58.6 57.1
STAR w/o L𝑆𝐶𝐸 76.3 51.5 52.6 56.1
STAR w/o L𝐺𝐶𝐸 78.6 45.8 56.2 50.9

STAR (full) 81.4 69.4 76.3 65.0
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(a) 𝛾 on NTU RGB+D 60
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(b) 𝛾 on PKU-MMD II
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(c) 𝑚 on NTU RGB+D 60
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(d) 𝑚 on PKU-MMD II

Figure 3: The influence of hyper-parameters on the NTU
RGB+D 60 and the PKU-MMD II datasets.

the NTU RGB+D 60 dataset, respectively. Moreover, the multi-part
cross-entropy mechanism can effectively align the skeleton space
and semantic space at a fine-grained level to transfer knowledge,
resulting in improvements of 3.2%/8.9% and 17.7%/7.9% on two
datasets, respectively. The semantic cross-entropy and global cross-
entropy constraints ensure the optimization direction is towards
the action category name as the center, effectively prompting the
harmonic mean in the GZSL and mitigating the bias problem.

(4) Influence of Hyper-parameters. We investigate the influ-
ence of the 𝛾 and𝑚 in STAR by selecting a range of values. Our
findings, illustrated in Fig. 3(a) - Fig. 3(b), showed that increasing
the calibration factor value leads to a decrease in the accuracy of
known categories and an increase in the accuracy of unknown
categories, enabling us to determine the optimal calibration factor
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Figure 4: t-SNE visualizations of skeleton and semantic spaces for known and unknown categories. The color denotes different
known/unknow categories random selected from the cross-subject task of NTU RGB+D 60 dataset under the 55/5 split settings.
The first row ((a) - (d)) represents the skeleton space, and the second row ((e) - (h)) represents the semantic space.

value for GZSL. This calibration factor effectively balances the ac-
curacy of known and unknown categories, achieving the trade-off
between them to alleviate the bias problem. Additionally, our exper-
iments with motion attribute𝑚 in Fig. 3(c) - Fig. 3(d) show that the
recognition accuracy remains stable with the number of attributes
increases, indicating the robustness of proposed prompts.

4.7 Qualitative Analysis

(1) t-SNE Visualizations of Spaces. As shown in Fig. 4, we plot
the t-SNE visualization of the skeleton and semantic spaces for
known and unknown categories on the NTU RGB+D 60 dataset.
Fig. 4(a) - Fig. 4(d) represent the distribution of skeleton features
with the visual-attribute prompt or not, showing the capacity to
improve the intra-class compactness of skeleton space over the
known and unknown categories. Meanwhile, we find that the area
of the triangle in Fig. 4(e) - Fig. 4(h) increases with the addition of
the semantic-part prompt, demonstrating that the semantic-part
prompt can improve the inter-class separability of semantic space.
Besides, the optimized part descriptions are pulled closer to their
semantic center (category name) for better alignment with the
decomposed human skeleton.

(2) Visualization of the Confusion Matrices. Here, we com-
pare the capacity of STAR with SMIE [35] for distinguishing high-
similar skeleton actions that never appeared before. We draw the
confusion matrices of two methods for unknown categories on the
cross-subject task of the NTU RGB+D 60 dataset under the 55/5
split setting, as shown in Fig. 5. It shows that SMIE is deficient in
recognizing skeleton actions with subtle differences, such as writ-
ing and reading. These skeleton actions throughout the body only
have differences in the hand because the appearance and environ-
ment information are dropped. In contrast, our method STAR can
distinguish these highly similar skeleton actions based on the prior
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(a) SMIE (Coarse-grained)
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(b) STAR (Fine-grained)

Figure 5: Confusion matrices for unknown categories on the
cross-subject task of NTU RGB+D 60 under the 55/5 split
setting. (a) represents the confusion matrix of SMIE [35]
method. (b) represents the confusion matrix of STAR (our
method).

knowledge learned from the known categories, showing the neces-
sity of aligning the skeleton and semantic spaces at the fine-grained
level.

5 CONCLUSION
In this paper, we propose a novel method via Side information and
dual-prompTs learning for zero-shot skeleton Action Recognition
(STAR). Firstly, our STAR decomposes the skeleton sequence into
several topology-based human parts for alignment at the fine-
grained level with the introduced side information concerning
multi-part descriptions of human body movements. Secondly, the
visual-attribute and the sematic-part prompts are designed to im-
prove the inter-class compactness in the skeleton space and intra-
class separability in the semantic space. Extensive experiments on
three popular datasets demonstrate the superiority of our approach,
especially in recognizing highly similar actions.
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