ASSYST @ ISCA 2023

Accelerating Attention Based Models via HW-SW Co-Design using Fine-Grained Sparsification.

Abhimanyu Bambhaniya¹, Amir Yazdanbakhsh², Suvinay Subramanian³, and Tushar Krishna¹

¹Georgia Institute of Technology

²Google

³Google Deepmind

Email: <u>abambhaniya3@gatech.edu</u>

- Motivation
- <u>Fine-Grained Sparsification (FiGS)</u>
- FIGS Engine
- Evaluation

Motivation

<u>Fine-Grained Sparsification (FiGS)</u>

FIGS Engine

Evaluation

Motivation

- Attention based models are becoming a significant portion of real-world workloads.
- Size of these models is growing at alarming pace.
- We need solution that can help run these models effectively.
- Sparsity is realistic solution that has shown significant promise.
- Nvidia came out with GPU's supporting 2:4 structured sparse workloads, giving path to N:M structured sparse matrices.
- Finding an optimal training recipe to train model with N:M is still an open research question and many people are working on it.

Motivation

- Growing on Nvidia's approach, current SOTA N:M accelerators support high degree of sparsity.
- But supporting these N:M structured sparse matrices, requires higher BW.
- This results in higher area of interconnect, which makes up a significant area of modern chips.

Contributions

Here are the contributions we make in this work:

- 1. Introduce a new training recipe, FiGS, that helps train models to gain better accuracy compared to current SOTA recipes.
- 2. A sparse architecture to accelerate variable N:M networks at lower input bandwidth requirement compared to current SOTA sparse architectures.

Motivation

<u>Fine-Grained Sparsification (FiGS)</u>

FIGS Engine

Evaluation

<u>Fine-Grained Sparsification (FiGS)</u>

Training Recipe:

- Derivative of base N:M sparsity
- Intuition: Same # of non-0s in a row.
- Helps the gradients gather locally before pruning which helps achieve better accuracy.
- Fig shows the training schedule for reaching 1:4. Each step would be a subset of the previous sparsification N:M, i.e.1:4 ∈ 2:8 ∈ 4:16 ∈ 8:32.

Motivation

<u>Fine-Grained Sparsification (FiGS)</u>

FIGS Engine

Evaluation

- A MAC PE is composed of β MAC units that share the input swap reg. It generates β separate partial sums.
- A Swap Reg handles input values coming in from east. They register these inputs and send them to next swap reg.
 - Each swap reg can be connected to α more swap regs in the vertical direction.
 - They can exchange the data among the swap regs for getting correct activation value.

FIGS Engine Architecture

FIGS Engine Dataflow

Motivation

<u>Fine-Grained Sparsification (FiGS)</u>

FIGS Engine

Evaluation

<u>Fine-Grained Sparsification</u> (FiGS) Evalution

Technique	Target Sparsity	ViT	Swin-V2	T5X-Base
Dense	-	76.39	83.45	86.2
SR-STE	1:8 (FF)	77.87	81.44	-
FIGS		78.17	81.47	-
SR-STE	1:16 (FF)	75.64	80.15	-
FIGS		76.87	80.27	_
SR-STE	1:32 (FF)	73.06	78.97	79.4
FIGS		74.91	79.28	79.3
SR-STE	1:8 (FF+QK)	75.53	81.22	75.8
FIGS		76.33	81.44	76.8

FiGS Engine Performance Analysis

• Overall, compared to the state-of-the- art (SOTA) sparse matrix engines, a FIGS engine can provide upto 2.4x and 4.4x speedup when the network are trained to sparsity of 1:2 and 1:4 respectively.

Future Works

- Investigate the efficacy of FIGS-Train in other models.
- Try to extend the uarch to support more kind of sparsity techniques.
- Get performance, area, energy, analysis of FIGS uarch understand its feasibility in realistic implementations.

Conclusion

- We introduce a new training recipe, FiGS that help us train model to better accuracy compared to SOTA training recipe for N:M structured sparse.
- We introduce a new flexible engine that support various N:M ratios at lower BW compared to SOTA N:M sparse engines.

Question? Please send me an email: abambhaniya3@gatech.edu

Thank you for listening!

If you are interested, please check out our paper here \bigcirc

