
Towards Data-Agnostic Pruning At Initialization:
What Makes a Good Sparse Mask?

Hoang Pham1, The-Anh Ta2, Shiwei Liu3,6, Lichuan Xiang4, Dung D. Le5,
Hongkai Wen4, Long Tran-Thanh4

1 FPT Software AI Center, 2 CSIRO’s Data61, 3 University of Texas at Austin,
4 University of Warwick, 5 VinUniversity 6 Eindhoven University of Technology

hoang.pv1602@gmail.com, theanh.ta@csiro.au,
{L.Xiang.2, Hongkai.Wen, Long.Tran-Thanh}@warwick.ac.uk
dung.ld@vinuni.edu.vn, shiwei.liu@austin.utexas.edu

Abstract

Pruning at initialization (PaI) aims to remove weights of neural networks before
training in pursuit of training efficiency besides the inference. While off-the-shelf
PaI methods manage to find trainable subnetworks that outperform random prun-
ing, their performance in terms of both accuracy and computational reduction is
far from satisfactory compared to post-training pruning and the understanding
of PaI is missing. For instance, recent studies show that existing PaI methods
only able to find good layerwise sparsities not weights, as the discovered sub-
networks are surprisingly resilient against layerwise random mask shuffling and
weight re-initialization. In this paper, we study PaI from a brand-new perspective
– the topology of subnetworks. In particular, we propose a principled framework
for analyzing the performance of PaI methods with two quantities, namely, the
number of effective paths and effective nodes. These quantities allow for a more
comprehensive understanding of PaI methods, giving us an accurate assessment
of different subnetworks at initialization. We systematically analyze the behavior
of various PaI methods through our framework and observe a guiding principle
for constructing effective subnetworks: at a specific sparsity, the top-performing
subnetwork always presents a good balance between the number of effective nodes
and the number of effective paths. Inspired by this observation, we present a novel
data-agnostic pruning method by solving a multi-objective optimization problem.
By conducting extensive experiments across different architectures and datasets,
our results demonstrate that our approach outperforms state-of-the-art PaI methods
while it is able to discover subnetworks that have much lower inference FLOPs (up
to 3.4×). Code is available at: https://github.com/pvh1602/NPB.

1 Introduction

Deep neural networks have achieved state-of-the-art performance in a wide range of machine learning
applications [3, 13, 39, 38]. However, the huge computational resource requirements limit their
applications, especially in edge computing and other future smart cyber-physical systems [23, 48, 37,
47, 2]. To overcome this issue, a number of approaches have been proposed to reduce the size of deep
neural networks without compromising performance, among which pruning has received voluminous
attention [10, 24, 8]. Traditional pruning approaches mainly focus on accelerating inference, which
usually require a pre-trained dense network [33, 20, 31].

As large language models (LLMs) [3, 43, 44] continue to gain popularity, endeavors start to explore
the possibility to prune models before training while matching the dense performance. Lottery Ticket

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/pvh1602/NPB

Hypothesis (LTH) [15, 4, 5] provides empirical evidence for this research goal by discovering sparse
subnetworks that can be trained from scratch to the comparable performance of the dense network.
However, LTH typically involves the costly iterative pruning and re-training process, whose overall
cost is much more than training a dense network.

This issue raises an intriguing research question: How to identify sparse, trainable subnetworks
at initialization without pre-training? Specifically, a successful pruning before training method
can significantly reduce both the cost of memory and runtime, without sacrificing performance
much [46]. This would make neural networks applicable even in scenarios with scarce computing
resources [1, 47]. As such, many methods for PaI have been proposed [26, 42, 9, 45, 1, 29]. While
these methods are based on a number of intuitions (e.g., leveraging the gradient information [26, 45]),
they typically measure the importance of network parameters. Their performance in terms of both
accuracy and computational reduction is far from satisfactory compared to post-training pruning and
the understanding of PaI is missing. More recently, Frankle et al. [17], Su et al. [40] observe a rather
surprising phenomenon: for PaI methods, layerwise shuffling connections of pruned networks does
not reduce the network’s performance, which suggests that layerwise sparsity ratios might be more
important than weight-level importance scores. This indicates that in searching for good subnetworks
at initialization, the topology of subnetworks, particularly, the number of input-output paths and
active nodes, plays a vital role and should be investigated more extensively.

In this paper, we first present a counter-argument against the previous findings: while Frankle et al.
[17] show that PaI methods are insensitive to random shuffling, we find this is not true in the extreme
sparsity regime (> 99%), as the number of effective paths heavily suffers from random shuffling. In
layerwise shuffling experiments (see Section 3.3), shuffling connections results in more effective
nodes but substantially fewer input-output paths. In normal sparsity levels, shuffling weights in
regular sparsities can maintain and even increase effective parameters [17] and the number of activated
nodes [36]. This increases representation capacity and performance of the subnetwork. However, at
extremely sparse levels, shuffling still preserves roughly the same number of effective nodes, but the
performance of shuffled subnetworks drops significantly compared to their unshuffled counterparts.
This is because random weight shuffling damages effective paths and hampers information flow
within the subnetwork. These findings suggest that separately considering effective paths or nodes is
insufficient to fully capture the behavior of subnetworks generated by PaI methods.

9.25 9.30 9.35 9.40 9.45 9.50 9.55
The number of effective nodes (ln scale)

35

40

45

50

55

Th
e

nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

Architectures with parameters 2150k-2450k

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

Figure 1: The accuracy of architectures in NAS-
Bench-Macro benchmark along with the number
of effective nodes and paths.

To underscore the critical importance of nodes
and paths in designing network architecture, we
conduct an analysis of their quantities in the
context of Neural Architecture Search (NAS).
For instance, Figure 1 illustrates the relation-
ship between candidate’s performance, nodes
and paths in NAS-Bench-Macro [41] which has
6, 561 models (more in Section 3.4). To ensure
fairness in terms of model size, we compare
networks with similar number of parameters
(i.e., in a range of 300k parameters in Figure 1).
Remarkably, architectures exhibiting a higher
number of input-output paths and active neurons
concurrently yield superior performance. This
highlights the crucial role of simultaneously con-
sidering both node and path in the successful
design of networks at initialization.

To improve upon the current understanding of PaI methods, we introduce a novel framework from
the perspective of subnetwork topology to provide a more accurate and comprehensive explanation
of the performance of different approaches. In particular, we propose the joint usage of both the
number of input-output paths (a.k.a. effective paths) and activated (i.e., effective) nodes to interpret
behaviors of different PaI methods in a more comprehensive way (see Section 3.3 for more details).
Inspired by the guiding principle observed through our framework, we further introduce NPB, a novel
pruning at initialization by solving a node-path balancing objective. We show that NPB outperforms
state-of-the-art PaI methods in almost all settings, while achiveing much lower inference FLOPs. In
summary, our main contributions are:

2

• We propose a unified effect node-path perspective to understand the behavior of PaI, particu-
larly considering metrics of effective nodes and paths as proxies for the performance of PaI
methods (Section 3). We revisit the layerwise shuffling sanity check on PaI methods and
provide unified explanations for their behaviors based on these metrics in a wide range of
sparsities (Section 3.3).

• We discover a new relation between the proposed metrics and the performance of sub-
networks, termed the Node-Path Balancing Principle, that suggests a non-trivial balance
between nodes and paths is necessary for optimal performance of PaI (Section 4).

• We present a novel data-agnostic pruner, NPB, by solving a multi-objective optimization
problem to give a proof-of-concept for our principle. With extensive experiments, we show
that NPB outperforms the best state-of-the-art PaI methods, PHEW, on 11 out of 12 settings
while ours produces more efficient subnetworks with much fewer inference FLOPs (up to
3.4×) and faster in pruning time than PHEW (up to 14.5×) (Section 5).

2 Related Work

Neural Network Pruning. Neural network pruning methods [25, 21, 20, 12, 32] traditionally focus
on pruning trained models based on pre-defined criteria, and then resulting subnetworks will be
fine-tuned to converge. Recently, [15, 16, 4, 5] empirically show the existence of randomly initialized
subnetworks (lottery tickets) which when trained from scratch or in early training iterations, that
can achieve competitive performance with their dense counterparts. Unfortunately, finding lottery
tickets is computationally expensive due to the train and prune cycle [16, 15]. Gradual pruning
methods [49, 18] interleave the pruning and training, which are usually cheaper than pruning after
training, but the network still needs to be trained to choose the ideal sparse subnetwork. Other
methods [6, 7] apply one-shot pruning during training to further reduce the computational cost.
Dynamic sparse training [30, 14, 28, 27], on the other hand, start with a (random) sparse network and
update network connectivity during training. While pruning before training methods [26, 45, 36, 42, 1]
determine subnetworks by the network initialization, gradient information, and network topology.
However, experimental results done by Frankle et al. [17], Su et al. [40] show that current criteria of
PaI methods may not be sufficient to obtain a subnetwork with good performance.

Pruning and Network Shape. Since PaI methods do not utilize training data [42, 36] or use only
negligible portions of data [26, 45] to obtain gradient information without training, the configuration
of nodes and connections is an essential source of information for optimizing the performance of
pruned networks. It turns out that some PaI methods implicitly optimize certain aspects of network
shape. In particular, SynFlow [42] preserves the number of input-output paths as synaptic strength,
but often creates more isolated neurons in pruned networks. The works of Patil and Dovrolis [36]
and Gebhart et al. [19] aim to preserve proxies in terms of path kernels which are also directly related
to the shape of subnetworks. Furthermore, while PHEW [36] additionally implements random walks
to increase the number of effective nodes, it unintentionally decreases the number of input-output
paths. Our new point of view on node-path balancing would be helpful to systematically optimize
network configuration for better performance. Other works also consider the number of effective
nodes and effective paths to capture the capacity of pruned subnetworks [45, 34] where these numbers
are considered separately.

3 Methodology

3.1 Pruning at Initialization Methods

Given a L layer neural network, we denote w = (w1, . . . ,wL) as the set of vectorized weights. Pruning
generates binary mask vectors mℓ ∈ {0, 1}dℓ (dℓ is the number of connections in layer ℓ) yielding
sparse neural networks with sparse weights mℓ ⊙ wℓ - the elementwise product of masks and weights.
Sparsity is defined as the fraction of weights being removed: s = 1 −

∑
mℓ∑
dℓ
∈ [0, 1].

A pruning method usually consists of two operations: score and remove, where score takes as input
weights of the network and outputs an important score for each weight: zℓ = score(wℓ) ∈ Rℓ; then
remove takes as input the scores z = (z1, . . . , zL) and the sparsity s, and outputs the masks mℓ with

3

overall sparsity s. Pruning can be done in one-shot or iteratively. For one-shot pruning, we only
generate the scores once, then prune the network up to sparsity s. For iterative pruning, we repeat the
processes of the score, then prune from sparsity s(t−1)/T to st/T repeatedly T times.

Random. This method assigns each connection with a random score from a uniform distribution
U(0, 1). Random pruning empirically prunes each layer to target sparsity s [29].

SNIP. SNIP was introduced by Lee et al. [26] with the pruning objective of reducing connection
sensitivity to the training loss. One passes a mini-batch of data through the network and computes
the score z for weight w of SNIP as z = |w ⊙ ∇wL|.

Iterative SNIP. This is an iterative variant of SNIP [9] with the same important score. But, iterative
SNIP gradually prunes the remaining weights with lowest scores from sparsity s

t−1
T to sparsity s

t
T

iteratively T times for t = 1, 2, . . . ,T .

SynFlow. SynFlow [42] is an iterative and data-agnostic PaI method. The pruning objective of
SynFlow is to make the network remains connected until the most extreme possible sparsity. The
weight scores are computed as follows. One first replaces all weights in the network by their absolute
values. Then, an 1 input tensor is passed through the network, and one computes the sum of the logits
as R = 1⊤(

∏L
ℓ=1 |wℓ |)1. Finally, the score of weight w is computed as z = |w ⊙ ∇wR|. SynFlow prunes

the network iteratively T times.

PHEW. PHEW [36] is also an iterative and data-independent PaI method. It selects a set of input-
output paths to be preserved. These paths are chosen through random walks, biased towards higher-
weight magnitudes. The selection starts with a unit that is selected through round robin procedure.
This process continues until the subnetwork achieves the predefined sparsity.

ERK. Erdős-Rényi (ER) first used by Mocanu et al. [30] to sparsify Multilayer Perceptron (MLP)
networks using a random topology that allocates higher sparsity to larger layers. Evci et al. [14]
extends ER to a convolutional version called Erdős-Rényi-Kernel (ERK) which scales the sparsity of
the convolutional layer in proportion to the number of neurons/channels in a layer.

3.2 Metric Definition

3
2
4

1

7
6
8

5
0 0 0
0 0 0

00 1 0
0 1 1

0
5

4
8

2 1 0 0
0 1 0
0 0 0

0 0 0
0 0 0

00 0 0
0 0 0

00 0 0
0 0 0
0 0 0

c
b
d

a

0
0
0

0

Figure 2: An example of effective paths and effective nodes.

In a sparse network, it is intuitively clear that one should arrange the connections into a configuration
neither too thin nor too spread-out to have good information propagation during training. For a better
measurement, we propose using two metrics to evaluate the quality of subnetworks. Please refer to
Appendix B for detailed discussions and Python code for calculating the metrics.

Effective Path. We define a path to be effective if it connects an input node to an output node without
interruption (see Figure 2). Metrics based on paths are mentioned in [42, 19] as l1 and l2 path norms,
respectively. In this paper, we only take into account the number of paths.

Effective Node/Channel. A node/channel is effective if at least one effective path goes through
it (demonstrated as the right part in Figure 2). This concept is also considered in [36, 17]. For
convolutional layers, we consider a kernel as a connection, and a channel as a node, and then convert
the convolutional layer into a fully connected layer (see the left part in Figure 2).

3.3 Layerwise Shuffling Phenomenon

In this section, we investigate the intriguing phenomenon that layer-wise reshuffling the subnetwork
found by PaI methods still produces competitive accuracy [17, 40]. Based on metrics, we provide a

4

SN
IP

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Sy
nF

lo
w

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

0.2

0.4

0.6

0.8
Ef

fe
ct

iv
e

pa
th

 ra
tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

PH
E

W

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
Sparsity (%)

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68.38 90.00 96.84 99.00 99.44 99.68 99.82 99.90
Sparsity (%)

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Figure 3: Layerwise shuffling results on various sparse subnetworks of ResNet20 produced by SNIP,
SynFlow, and PHEW on CIFAR-10.

new way to understand why reshuffling subnetworks work and when they fail. We first use three PaI
methods, i.e., SNIP [26], SynFlow [42], and PHEW [36], to find the subnetworks. Then, we randomly
shuffle the pruning mask ml. All the subnetworks (both unmodified and shuffled) are trained in the
same setting. Finally, we compute the ratio of the number of active paths and nodes after and before
pruning and visualize the average scores in Figure 3.

In SNIP and SynFlow, the number of effective nodes drops significantly as sparsity increases (blue
lines in second columns in Figure 3). After reshuffling, the connections are distributed uniformly in
each layer leading to wider subnetworks while the number of effective paths decreases. In contrast,
PHEW focuses on increasing the number of effective nodes by gradually adding new paths such that
the network is as wide as possible. Consequently, reshuffling hurts the concrete network configuration
and then reduces both the number of effective nodes and effective paths as sparsity is higher.

At sparsity levels below 99%, layerwise shuffled subnetworks demonstrate competitive performance
or even better than unmodified counterparts, especially with SynFlow and SNIP. In addition to
effective connection preservation as discussed in prior work [17], the representation capacity of
shuffled sparse networks is enhanced with SynFlow and SNIP, attributed to the increase in the number
of effective nodes [35] while maintaining considerable input-output paths. In more details, Figure 3
shows that these two metrics for SynFlow and SNIP shuffled versions closely resemble to unmodified
subnetworks of PHEW with corresponding sparsities.

However, when the network becomes more sparse, the number of input-output paths decreases
substantially (along with the reduction of effective parameters see Appendix D). Even though
layerwisely shuffled networks become wider, the limited number of effective paths damages the
information flows in the subnetworks. These explain why the accuracy of shuffled subnetworks is
reduced significantly compared to the unmodified ones in intensive sparsities.

These observations indicate that increasing the number of active paths or nodes alone might not be
sufficient in the design of PaI methods. We hypothesize that to have good subnetworks, the number
of effective paths and effective nodes should be concurrently considered. If we balance these two
metrics well, the performance after the training of subnetworks will be enhanced.

3.4 NAS Observations

Our research delves into the fundamental aspects of network architecture design by investigating
the interplay between nodes and paths. Going beyond the realm of pruning literature, we conduct
an analysis of node and path metrics in the NAS benchmark. It is noteworthy that networks in
NAS are dense networks. In particular, we focus on NAS-Bench-Macro [41], a macro benchmark
comprising 8 searching layers. Each layer offers three candidate blocks, resulting in a staggering
6,561 distinct networks with parameter counts ranging from 300k to 3M. To ensure a fair comparison

5

among candidates, we specifically consider networks with similar parameter counts within the 300k
range. We compute metrics across four different parameter ranges and visualize them in Figure 4.

8.6 8.8 9.0

20

25

30

35

40

#E
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

#parameters 650k-950k

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

8.8 8.9 9.0 9.1
20

25

30

35

40

45

#parameters 950k-1250k

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

8.8 8.9 9.0 9.1 9.2 9.3
#Effective nodes (ln scale)

25

30

35

40

45

50

#E
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

#parameters 1250k-1550k

80
82
84
86
88
90
92

Te
st

 A
cc

ur
ac

y

9.3 9.4 9.5
#Effective nodes (ln scale)

35

40

45

50

55

#parameters 2150k-2450k

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

Figure 4: The accuracy of network candidates
in NAS-Bench-Macro benchmark along with the
number of activated nodes and paths in different
parameter ranges.

In the context of NAS, it’s important to consider
that other aspects beyond node-path balance can
contribute to final classification accuracy. For
instance, in the case of NAS-Bench-Macro, net-
works with similar node-path balance but vary-
ing classification accuracies can be affected by
other architectural configurations, such as differ-
ences in pooling layers, kernel sizes, and expan-
sion ratios in the MobileNet-v2 block. These
architectural variances often result in different
numbers of parameters, influencing the overall
network performance. However, in the sparse
neural network context, pruning methods focus
on maintaining the same network structure while
pruning connections within the network based
on specific sparsities. Consequently, our exper-
iments did not explore other architectural ele-
ments beyond node and path balance. In general,
we can see that networks with larger numbers of nodes and paths tend to exhibit higher performance.
Our findings unveil a strong correlation between the two metrics (node, path) and the final performance
of network candidates, both playing pivotal roles in achieving superior performance. This highlights
the critical significance of both nodes and paths in the initial stages of designing subnetworks that
yield exceptional results.

4 Node-Path Balancing Principle

4.1 Node-Path Balancing Principle

From observations in Section 3.3 and NAS observations in Section 3.4, both effective paths and
nodes have shown their critical roles in the performance of subnetworks. We now formally state the
Node-Path Balancing Principle (NPB): The combination of both the numbers of effective nodes and
effective paths is a proxy for the potential performance of subnetworks under pruning. A pruning
at initialization method which produces pruned subnetworks with too many effective paths (resp.
effective nodes) will have less than necessary the number of effective nodes (resp. effective paths)
and consequentially has suboptimal performance. It is necessary to balance the number of effective
nodes and effective paths for better performance of pruned subnetworks.

4.2 Proposed Method: NPB

Building upon the aforementioned principle, we elegantly transform the pruning problem into a
multi-objective optimization problem. Specifically, our objective is to maximize both the number of
effective nodes and effective paths concurrently given an architecture and desired sparsity ratio. We
formulate this intriguing problem as follows:

Given an architecture A with parameter W ∈ RN where N is the total number of parameters and
sparsity ratio s. Denote fp as the total number of input-output paths, fn as the number of activated
nodes, and consider the mask for parameter M = {0, 1}N as variable to solve.

Maximize
M

α fn + (1 − α) fp

s.t ||M||1 ≤ N(1 − s)

where α is a coefficient. Solving node-path balancing objective globally over the whole neural
networks is a non-trivial problem. We sidestep this challenging issue by solving a sequence of
easy problems to obtain good approximated solutions. In particular, we propose an approximation
for solving this problem by doing layer by layer through convex optimization. The approximation
problem is solved efficiently via the available convex optimization library.

6

To be simple, we consider a linear layer as an example, in which, v denotes the node, l is the layer
index, m(l) ∈ Rh(l)×h(l+1)

is the mask for layer l in which h(l) the number of neurons in layer l. We denote
P(v(l)

i) as the number of path go to node vi in layer l (e.g., at input layer P(v(0)
i) = 1). We formulate

the pruning problem in layer l as an optimization problem in which we maximize the number of paths
from input to layer l + 1 f (l+1)

p and the total activated nodes f (l+1)
n in two layers l and l + 1. For brevity,

we denote them as fp and fn. We set m(l) as:

m(l)
i j =

{
0 if pruned
1 if not pruned

The number of paths to v(l+1)
j in layer l+1 is sum of all paths to nodes in layer l connecting to v(l+1)

j

P(v(l+1)
j) =

h(l)∑
i

m(l)
i j P(v(l)

i)

Then the total number of effective paths to layer l + 1 is:

fp(m) =
h(l+1)∑

j

P(v(l+1)
j) (1)

A node vi in layer l is activated if and only if there are paths pass through it and edges connect from it
to nodes in layer l + 1, which is formulated as below:

P(v(l)
i)

h(l+1)∑
j

m(l)
i j ≥ 1⇔ min(P(v(l)

i)
h(l+1)∑

j

m(l)
i j ; 1) = 1

And a node v j in layer l + 1 is effective when there exist attached nodes in layer l that connect to it,
h(l)∑

i

m(l)
i j P(v(l)

i) ≥ 1⇔ min(
h(l)∑

i

m(l)
i j P(v(l)

i); 1) = 1

The layer-wise objective for the node becomes:

fn(m) =
h(l)∑
i

min(P(v(l)
i)

h(l+1)∑
j

m(l)
i j ; 1) +

h(l+1)∑
j

min(
h(l)∑
i

m(l)
i j P(v(l)

i); 1) (2)

In convolution layers with a kernel of height h and width w, we let the variable mi j have the value
from 0 to hw representing this kernel. After solving m, in each kernel, we assign |mi j| parameters to
entries whose initialized weights have the highest magnitude.

Along with two objectives, we also consider a regularization term which aims to encourage activating
as many kernels as possible in each layer. Besides, since we optimize the node and path per layer, the
solution will not be the global one. We can view the regularizer as an adjustment term, which moves
the local solution around to figure out the better ones.

R =
∑

i

∑
j

min(m(l)
i j − 1; 0) (3)

From Equations 1, 2, and 3 the final objective becomes:

Maximize
m(l)

α fn + (1 − α) fp + βR (4)

s.t ||m(l)||1 ≤ N(l)(1 − s(l)) (5)

where α is a coefficient to control the balance, β is a hyperparameter, and the constraint is the number
of unpruned parameters that satisfies the sparsity. To ensure the same scale between elements in the
main objective function, we normalize the number of paths, nodes, and the regularizer in each layer
with their maximum possible values, respectively. Note that, optimizing nodes is much easier than
paths so we select small values of alpha which can be prior knowledge. In particular, in Section 5, we
fix α = 0.01 and β = 1 to all settings. We optimize 1 the network structure sequentially layer by layer
from input to output in which the layer-wise sparsity level is found by ERK method [14, 29]. We
describe our method in Algorithm 1 and the pseudo code for optimizer in Appendix C.

1We use the default mixed integer programming solver in CVXPY library

7

Algorithm 1 Node-Path Balancing Pruner
1: Inputs: Final sparsity s, weights w0 = 1, balancing coefficient α, and hyperparameter β
2: Obtain layer-wise sparsity s(l) by using ERK method
3: Define unit input x = 1⇒ P(0) = 1
4: for l = 0, . . . , L do
5: m(l) ← optimize(m(l), s(l), P(l)) # solve Eq.4
6: Set w(l)

0 = m(l)

7: Extract layer l + 1 output when put x to the network with w0 to obtain P(l+1)

8: end for
9: Return: Mask M

5 Evaluation

5.1 Experimental Settings

We conduct experiments on three standard datasets: CIFAR-10, CIFAR-100, and Tiny-Imagenet.
Following [42], we use ResNet-20 for CIFAR-10, VGG-19 for CIFAR-100, and a variant ResNet-18
with 18 layers for Tiny-Imagenet. We treat weights of all convolutional and linear layers as prunable,
but we do not prune biases and weights in batch normalization layers. We run five seeds with
experiments on CIFAR-10, CIFAR-100, and three seeds on Tiny-Imagenet. The average results are
used for visualizations. Since the number of active paths is orders of magnitude larger than that of
active nodes, and both numbers are of exponential scales, we take logarithm base 10 of the number of
active paths, and logarithm base e (natural logarithm) of the number of active nodes to visualize the
results. To ensure the fair comparison between NPB and other baselines, we fix α = 0.01 and β = 1
in NPB for all settings. More details on our experimental setting are in Appendix A.

R
es

N
et

20
on

C
IF

A
R

-1
0

6.20 6.25 6.30 6.35 6.40 6.45 6.50 6.55 6.60
Number of effective nodes (ln scale)

38

39

40

41

42

43

44

45

46

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

88.03

87.8888.64
88.17

90.38

90.69

Sparsity 68.38%

5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6
Number of effective nodes (ln scale)

28

30

32

34

36

38

40

42

84.65

84.02

84.9484.22

87.41
87.61

Sparsity 90.00%

5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6
Number of effective nodes (ln scale)

18

20

22

24

26

28

30

32

34

36

67.56

76.72
78.22

77.05

81.0580.55

Sparsity 96.84%

4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6
Number of effective nodes (ln scale)

10

15

20

25

30

35.99

62.43

66.05
64.95

70.44
70.7

Sparsity 99.00%

V
G

G
19

on
C

IF
A

R
-1

00

8.40 8.45 8.50 8.55 8.60 8.65 8.70
Number of effective nodes (ln scale)

46

47

48

49

50

51

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

70.92

71.3171.63
72.84

73.18

74.05

Sparsity 68.38%

7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7
Number of effective nodes (ln scale)

38

40

42

44

46

48

68.14

70.65

69.18
70.86

70.7
71.76

Sparsity 90.00%

7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8
Number of effective nodes (ln scale)

28

30

32

34

36

38

40

42

44

61.55

67.82

66.98 67.72

68.18
68.87

Sparsity 96.84%

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75
Number of effective nodes (ln scale)

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

55.74

61.77

62.11
63.13

64.43

64.82

Sparsity 99.00%

R
es

N
et

18
on

Ti
ny

-I
m

ag
en

et

8.0 8.1 8.2 8.3 8.4
Number of effective nodes (ln scale)

48

49

50

51

52

53

54

55

56

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

56.78

56.99
56.71

56.73

58.09

58.39

Sparsity 68.38%

Random SNIP SynFlow Iter-SNIP PHEW NPB

7.6 7.8 8.0 8.2 8.4
Number of effective nodes (ln scale)

38

40

42

44

46

48

50

52

54

55.32

53.43
54.6853.6

55.93

56.82

Sparsity 90.00%

7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4
Number of effective nodes (ln scale)

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

42.77

48.77
49.0348.55

50.8151.37

Sparsity 96.84%

6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50
Number of effective nodes (ln scale)

20

25

30

35

40

45

33.02

36.02

39.79
36.42

40.54

41.05

Sparsity 99.00%

Figure 5: The number of effective paths (log scale), nodes (ln scale), and the corresponding accuracy
of different PaI methods on three datasets in different sparsity levels. Best accuracy is in blue.

5.2 Comparison with PaI Methods

Figure 5 shows the experimental results for different PaI methods: Random, SNIP, Iter-SNIP, SynFlow,
PHEW, and our NPB, with different sparsities on three settings: VGG-19 on CIFAR-100, ResNet-
20 on CIFAR-10, and ResNet-18 on Tiny-Imagenet. Overall, our method NPB shows significant
improvements on standard PaI methods, both data-dependent like Iter-SNIP, SNIP (improve up to

8

14%) and data-independent like SynFlow (increase up to 7%) in all three settings. Notably, NPB
achieves better results than state-of-the-art PaI method PHEW in almost all settings (11 out of 12
settings). Importantly, we set the same alpha and beta hyperparameters for NPB across all three
settings, thereby eliminating the need for extensive hyperparameter search. This demonstrates the
robustness and generalizability of our method, making it easily applicable to various settings with
consistently high performance. Ablation studies on alpha and beta can be found in Appendix G.

We discuss the experimental results from the point of view of the Node-Path Balancing principle
and network shape optimization. In Figure 5, SynFlow and Iter-SNIP produce sparse networks with
large number of input-output paths, which results from iterative pruning procedures. These methods
gradually remove nodes of low connection degree, which makes the subnetworks become narrower
while maintaining the high number of paths. As a consequence of a very high number of input-output
paths, the width of resulting subnetworks is significantly reduced, limiting the representation capacity
of the subnetworks [35, 36], leading to suboptimality.

Random pruning is a PaI method which produces subnetworks with the very high number of active
nodes. On average, it distributes parameters uniformly to all layers and kernels, creating subnetworks
of large width yet a low number of active paths. At sparsities below 90%, with an adequate number
of input-output paths, subnetworks of Random pruning still perform well and are even competitive
with more sophisticated PaI methods. This phenomenon is exhibited clearly in experiments on
the more complex dataset Tiny-Imagenet. However, when sparsity increases over 90%, Random
pruning creates a huge number of ineffective paths and parameters. Consequently, the performance
of subnetworks drops significantly. We again observe the necessity to balance the optimization of the
number of nodes and paths.

In Figure 5, our method NPB and PHEW produce sparse networks which, in visualization, lie in
specific areas which have higher paths than Random and greater nodes than SynFlow, or Iter-SNIP. We
call these are balancing regions. Subnetworks in these regions have broader widths and considerably
many paths, which provides good representation capacity and preserves the information flow of the
network. These two factors together contribute to better training of pruned subnetworks leading to
superior performance. This illustrates the effectiveness of our principle.

One drawback of one-shot pruning methods like SNIP is creating a large number of ineffective
parameters, which decreases the capacity and performance of subnetworks. Although our method
is also one-shot, it efficiently distributes the parameters by direct optimization. Consequently, NPB
enjoys a better node-path balancing level and better performance (up to 14%) compared to SNIP.

Results of all settings in Figure 5 provide evidence to support our Node-Path Balancing principle
and the existence of a specific balancing region between nodes and paths at given sparsity levels.
Particularly, we posit that when the number of active neurons and input-output paths of a sparse
network fall within this balancing range, it will probably have a good performance after training.

5.3 Pruning Time and FLOPs Reduction

Table 1: Accuracy, pruning time (in seconds) and FLOPs of subnetworks for different pruning
methods and compression ratios on Resnet18 - Tiny-ImageNet.

Accuracy (%) Pruning time (seconds) FLOPs (108)

Sparsity (%) 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00

SNIP 56.99 53.43 48.77 36.02 5.14 4.95 5.55 5.64 11.35 5.77 3.04 1.55
Iter-SNIP 56.73 53.60 48.55 36.42 229.16 235.34 233.19 231.23 10.73 7.05 3.98 1.97
SynFlow 56.71 54.68 49.03 39.79 108.17 96.18 91.15 92.60 14.71 8.91 4.24 1.50
PHEW 58.09 55.93 50.81 40.54 5511.20 1342.03 471.23 324.78 14.29 8.35 3.92 1.50
NPB 58.39 56.82 51.37 41.05 380.52 375.65 384.32 387.89 14.37 5.21 1.74 0.59

Since NPB optimizes layer by layer, the complexity of NPB depends on network architecture (i.e., the
number of layers and the size of each layer). With large layers, we sidestep the time-consuming issues
by making a further step where we divide the layer into chunks with the same sparsity constraint.
In particular, we split nodes in the next layer into equal parts while the input node is fixed. Then,
optimizing chunks in a layer can be solved in parallel. Thank to the available convex optimization
libraries we can find subnetworks more efficiently and quickly. We have computed the pruning time
of our proposed method and compared it with other PaI methods in Table 1. Our pruning time is not

9

significantly slow compared to those iterative approaches (e.g., Iter-SNIP, SynFlow) while it is much
faster (up to 14.5×) than PHEW in lower sparsity levels.

Besides pruning time, we find that the FLOPs reduction of subnetwork after pruning is more important
in the context of pruning before training. We have measured FLOPs of subnetworks produced by
different methods in Table 1. The result indicates that our NPB can produce subnetworks with lower
FLOPs than other baselines while NPB outperforms PaI methods. More details are in Appendix E.

6 Conclusion

In this paper, we present a novel framework for studying PaI methods that systematically employs
the configuration of pruned subnetworks based on two different metrics: the number of effective
paths and the number of effective nodes. Through our framework, we discover a new relationship
between these metrics, called the Node-Path Balancing Principle, which provides guidance for
understanding and optimizing PaI methods. Our framework offers unified explanations for the
intriguing layerwise connection reshuffling phenomenon [40, 17] of subnetworks produced by PaI
methods in normal pruning sparsity regime, as well as the failure of this phenomenon in extreme
sparsity levels. Furthermore, we propose a novel pruning method based on optimization approach,
namely NPB, that demonstrates the potential of balancing the numbers of effective paths and nodes
to improve the performance of PaI methods. Extensive experiments conducted on various model
architectures and datasets show that NPB outperforms the best baseline, PHEW, on almost settings
while ours produces more efficient subnetworks with much fewer inference FLOPs and faster in
pruning time then PHEW. Our new perspective on the configuration of subnetworks, in terms of
effective nodes and effective paths, provides new insights into the working mechanism of PaI methods
and opens new research directions on neural network pruning methods, as well as designs of sparse
neural network.

Acknowledgement

Part of this work was done while Hoang Pham was visiting University of Warwick. Dung D. Le was
funded by Vingroup Innovation Foundation (VINIF) under project code VINIF.2022.DA00087.

References
[1] M. Alizadeh, S. A. Tailor, L. M. Zintgraf, J. van Amersfoort, S. Farquhar, N. D. Lane, and

Y. Gal. Prospect pruning: Finding trainable weights at initialization using meta-gradients. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=AIgn9uwfcD1.

[2] P. Bithika, B. Arindam, K. Sudeshna, M. Pabitra, and B. Biswajit. A study on the ramanujan
graph property of winning lottery tickets. In International Conference on Machine Learning,
volume 162, pages 17186–17201, 2022.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[4] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin. The lottery ticket
hypothesis for pre-trained bert networks. Advances in neural information processing systems,
33:15834–15846, 2020.

[5] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang. The lottery tickets
hypothesis for supervised and self-supervised pre-training in computer vision models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16306–16316, 2021.

[6] T. Chen, B. Ji, T. DING, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi, S. Yi, and X. Tu. Only
train once: A one-shot neural network training and pruning framework. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=p5rMPjrcCZq.

10

https://openreview.net/forum?id=AIgn9uwfcD1
https://openreview.net/forum?id=AIgn9uwfcD1
https://openreview.net/forum?id=p5rMPjrcCZq

[7] T. Chen, L. Liang, T. DING, Z. Zhu, and I. Zharkov. OTOv2: Automatic, generic, user-
friendly. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=7ynoX1ojPMt.

[8] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine,
35(1):126–136, 2018.

[9] P. de Jorge, A. Sanyal, H. Behl, P. Torr, G. Rogez, and P. K. Dokania. Progressive skeletonization:
Trimming more fat from a network at initialization. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=9GsFOUyUPi.

[10] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and hardware acceleration for
neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

[11] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[12] X. Dong, S. Chen, and S. Pan. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

[14] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning, pages 2943–2952. PMLR, 2020.

[15] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[16] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269. PMLR,
2020.

[17] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Pruning neural networks at initialization:
Why are we missing the mark? In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Ig-VyQc-MLK.

[18] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[19] T. Gebhart, U. Saxena, and P. Schrater. A unified paths perspective for pruning at initialization.
ArXiv, abs/2101.10552, 2021.

[20] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

[21] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning.
In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[23] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[24] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(1),
jan 2021.

[25] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

11

https://openreview.net/forum?id=7ynoX1ojPMt
https://openreview.net/forum?id=9GsFOUyUPi
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Ig-VyQc-MLK

[26] N. Lee, T. Ajanthan, and P. Torr. Snip: Single-shot network pruning based on connection
sensitivity. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=B1VZqjAcYX.

[27] S. Liu, T. Chen, X. Chen, Z. Atashgahi, L. Yin, H. Kou, L. Shen, M. Pechenizkiy, Z. Wang,
and D. C. Mocanu. Sparse training via boosting pruning plasticity with neuroregeneration.
Advances in Neural Information Processing Systems, 34:9908–9922, 2021.

[28] S. Liu, L. Yin, D. C. Mocanu, and M. Pechenizkiy. Do we actually need dense over-
parameterization? in-time over-parameterization in sparse training. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 6989–7000. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/liu21y.html.

[29] S. Liu, T. Chen, X. Chen, L. Shen, D. C. Mocanu, Z. Wang, and M. Pechenizkiy. The
unreasonable effectiveness of random pruning: Return of the most naive baseline for sparse
training. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=VBZJ_3tz-t.

[30] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Liotta. Scalable training
of artificial neural networks with adaptive sparse connectivity inspired by network science.
Nature communications, 9(1):1–12, 2018.

[31] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[32] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks
for resource efficient inference. In International Conference on Learning Representations, 2017.
URL https://openreview.net/forum?id=SJGCiw5gl.

[33] M. C. Mozer and P. Smolensky. Using relevance to reduce network size automatically. Connec-
tion Science, 1(1):3–16, 1989.

[34] S. M. Naji, A. Abtahi, and F. Marvasti. Efficient sparse artificial neural networks. ArXiv,
abs/2103.07674, 2021.

[35] Q. Nguyen, M. C. Mukkamala, and M. Hein. Neural networks should be wide enough to
learn disconnected decision regions. In International conference on machine learning, pages
3740–3749. PMLR, 2018.

[36] S. M. Patil and C. Dovrolis. Phew: Constructing sparse networks that learn fast and generalize
well without training data. In International Conference on Machine Learning, pages 8432–8442.
PMLR, 2021.

[37] I. Price and J. Tanner. Dense for the price of sparse: Improved performance of sparsely
initialized networks via a subspace offset. In International Conference on Machine Learning,
pages 8620–8629. PMLR, 2021.

[38] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[39] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning, pages
8821–8831. PMLR, 2021.

[40] J. Su, Y. Chen, T. Cai, T. Wu, R. Gao, L. Wang, and J. D. Lee. Sanity-checking pruning methods:
Random tickets can win the jackpot. Advances in Neural Information Processing Systems, 33:
20390–20401, 2020.

[41] X. Su, T. Huang, Y. Li, S. You, F. Wang, C. Qian, C. Zhang, and C. Xu. Prioritized architecture
sampling with monto-carlo tree search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10968–10977, 2021.

12

https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://proceedings.mlr.press/v139/liu21y.html
https://openreview.net/forum?id=VBZJ_3tz-t
https://openreview.net/forum?id=VBZJ_3tz-t
https://openreview.net/forum?id=SJGCiw5gl

[42] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Pruning neural networks without any data
by iteratively conserving synaptic flow. Advances in Neural Information Processing Systems,
33:6377–6389, 2020.

[43] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez,
and R. Stojnic. Galactica: A large language model for science. arXiv preprint arXiv:2211.09085,
2022.

[44] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[45] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SkgsACVKPH.

[46] H. Wang, C. Qin, Y. Bai, Y. Zhang, and Y. Fu. Recent advances on neural network pruning
at initialization. In L. D. Raedt, editor, Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 5638–
5645. ijcai.org, 2022. doi: 10.24963/ijcai.2022/786. URL https://doi.org/10.24963/
ijcai.2022/786.

[47] G. Yuan, X. Ma, W. Niu, Z. Li, Z. Kong, N. Liu, Y. Gong, Z. Zhan, C. He, Q. Jin, et al. Mest:
Accurate and fast memory-economic sparse training framework on the edge. Advances in
Neural Information Processing Systems, 34:20838–20850, 2021.

[48] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang. Improving neural network quantization
without retraining using outlier channel splitting. In International conference on machine
learning, pages 7543–7552. PMLR, 2019.

[49] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

13

https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://doi.org/10.24963/ijcai.2022/786
https://doi.org/10.24963/ijcai.2022/786

A Experiment details

In this section, along with pruning at initialization (PaI) methods in the main text, we provide
experimental results with GraSP [45]. In particular, GraSP is another gradient-based pruning PaI that
aims to preserve the gradient flow of sparse networks obtained by pruning. The score z of weight w
in GraSP is computed as z = −w ⊙ (H∇wL), where H is the Hessian of the training loss after passing
a mini-batch of data through the network.

We describe our experiment settings on architectures and datasets. We use Pytorch 2 library and
conduct experiments on a single GTX 3090Ti or A100 (depend on their available). We adapt from
Tanaka et al. [42] source code 3 for SNIP, GraSP, SynFlow, and Random, and change the prune
epochs to 100 for Iterative SNIP instead of 1 in SNIP. And we use the official code 4 of Patil and
Dovrolis [36] for PHEW. For NPB method in the main experiments, we set α = 0.01 and β = 1 for
all settings.

Datasets. Our main experiments are conducted with CIFAR-10, CIFAR-100, and Tiny-Imagenet
datasets, where:

• CIFAR-10 is augmented by normalizing per-channel, randomly flipping horizontally.
• CIFAR-100 is augmented by normalizing per-channel, randomly flipping horizontally.
• Tiny-ImageNet is augmented by normalizing per channel, cropping to 64x64, and randomly

flipping horizontally.

Architectures. We use three different networks:

• VGG-19 is a CIFAR-100 network used in SynFlow [42]. We choose a batch-normalization
version.

• ResNet-20 is a 20-layer CIFAR-10 version of ResNet created by [22]. This version has
added batch normalization layers before each activation function.

• ResNet-18 is a ImageNet version with 18 layers adapted from SynFlow [42]. The first
convolution has kernel size 3x3 (instead of 7x7) and max-pooling layer that follows has
been removed.

We treat all of the weights from convolutional and linear layers of these networks are prunable
parameters, but we do not prune the biases nor the weights in the batch normalization layers. The
weights in convolutional and linear layers are initialized with Kaiming normal, while biases are
initialized to be zero. We run five seeds with CIFAR experiments and three seeds with experiments
on Tiny-Imagenet.

Training details With Iterative pruning methods SNIP and SynFlow, we use 100 pruning epochs.
With methods using training data like SNIP, GraSP, and Iterative-SNIP, we randomly select 10
samples for each class, particularly, 100 data points for CIFAR-10, 1000 data points for CIFAR-100,
2000 data samples for Tiny-ImageNet. Other hyperparameters are chosen as follow:

Table 2: Summary of the architectures, datasets, and hyperparameters used in experiments.
Network Dataset Epochs Batch Optimizer Momentum LR LR Drop, Epoch Weight Decay

VGG-19 CIFAR-100 160 128 SGD 0.9 0.1 10x, [60,120] 0.0001
ResNet-20 CIFAR-10 160 128 SGD 0.9 0.1 10x, [60,120] 0.0001
ResNet-18 Tiny-ImageNet 100 128 SGD 0.9 0.01 10x, [30,60,80] 0.0001

2https://pytorch.org
3https://github.com/ganguli-lab/Synaptic-Flow
4https://github.com/ShreyasMalakarjunPatil/PHEW

14

B Effective metrics calculation

Effective path. To exactly compute the number of effective paths, we remove the batch normaliza-
tion layers, we initialize all the remaining parameters to 1. Then, we put the input vector one to the
network, and the number of effective paths is the sum of logits on the output layer R = 1⊤(

∏L
ℓ=1 |wℓ |)1.

More precisely, we face problems with pooling layers in convolutional neural networks. With max
pooling layer, we simply do not modify the output of this layer. At that time, the result is the
maximum number of paths in subnetworks. With average pooling layer, since all inputs of this layer
contribute to the output, we change the average operator to the sum operator to exactly compute the
number of effective paths. We all use ReLU activation functions in computing this metric since this
function does not affect the results of calculations.

Effective parameter. We follow [17] when identifying which is effective parameter. Similar to
computing effective paths, we make further steps. After having the sum of logits, we compute the
gradients of this sum with respect to weights ∇wR. Then, if an unpruned weight has a non-zero
gradient, it is effective and vice versa. Effective parameters are dense edges that connect two effective
nodes as visualized in Figure 2.

Effective node/channel. With fully connected layers, if all connections to one node or out of
one node are pruned, this node is pruned node. If there exist connections to a node but all of these
connections are ineffective, then this node becomes ineffective In convolutional layers, instead of
nodes, we have channels. We consider a kernel as a connection, a channel as a node, and then convert
the convolutional layer into a fully connected layer. The connection is pruned if and only if all
parameters in the corresponding kernel are removed. Finally, identifying the effective nodes/channels
is similar to the way in fully connected layers.

1 def metric_calculation(model, mask):
2 """
3 model: network architecture
4 mask: mask for subnetwork
5 """
6 n_eff_paths = 0
7 n_eff_nodes = 0
8 n_eff_params = 0
9

10 # Initialize network with pruned weight = 0 and kept weight = 1
11 for name, param in model.named_parameters():
12 param.copy_(mask[name])
13

14 x = torch.ones((1,c,h,w)) # c: channel - h: height - w: width
15 y = model(x)
16 sum_logits = y.sum()
17 n_eff_paths = sum_logits.item()
18 sum_logits.backward()
19 with torch.no_grad():
20 for name, param in model.named_parameters():
21 eff_param = torch.where(param.grad.data!=0, 1, 0)
22 n_eff_params += torch.sum(eff_param)
23

24 eff_in_node = torch.where(torch.sum(eff_param ,d=0)>0, 1, 0)
25 n_eff_nodes += torch.sum(eff_in_node)
26 # with output layer
27 eff_out_node = torch.where(y>0, 1, 0)
28 n_eff_nodes += torch.sum(eff_out_node)
29

30 return n_eff_paths , n_eff_nodes , n_eff_params

Listing 1: Metric calculation example in fully connected neural networks

15

C Layer-wise Mask Optimization

We provide the pseudo code solving the mask optimization problem based on the cvxpy library [11].
We use the default solver provided in this tool.

1 import math
2 import cvxpy as cp
3 import numpy as np
4 import torch
5

6 def optimize_layerwise(mask, inp, sparsity , alpha=0.1, beta=0.1,
max_param_per_kernel=None):

7 """
8 mask: mask of this layer
9 inp: input of this layer

10 sparsity: the sparsity of this layer
11 alpha: is the balancing coefficient
12 beta: is the regularizer coefficient
13 max_param_per_kernel: max param in a kernel
14 """
15

16 if len(mask.shape) == 4: # Convolution layer
17 C_out, C_in, K, W = mask.shape
18 max_param_per_kernel = K * W
19 P_in = torch.sum(inp, dim=(1,2)).numpy()
20 else: # Linear layer
21 C_out, C_in = mask.shape
22 max_param_per_kernel = 1
23 P_in = inp.numpy()
24

25 # Params in layer
26 n_params = int(math.ceil((1-sparsity)*mask.numel())) # This has to be

integer
27

28 # Define mask variable
29 M = cp.Variable((C_in, C_out), integer=True)
30

31 sum_in = cp.sum(M, axis=1) * P_in # P_in * \sum_{j}^{C_out} M_{ij} =>
shape: C_in

32 sum_out = cp.sum(M*P_in, axis=0) # \sum_{i}^{C_in} M_{ij} * P_in[i]
=> shape: C_out

33

34 # If eff_node_in is small which means there is a large number of
input effective node

35 sum_eff_node_in = C_in - cp.sum(cp.pos(1 - sum_in))
36 sum_eff_node_out = C_out - cp.sum(cp.pos(1 - sum_out))
37

38 # Optimize nodes
39 max_nodes = C_in + C_out
40 A = (sum_eff_node_in + sum_eff_node_out) / max_nodes # Scale to 1
41

42 # Optimize paths
43 max_path = compute_max_path(P_in, n_params, C_out,

max_param_per_kernel)
44 B = (cp.sum(P_in @ M)) / max_path
45

46 # Regulaziration
47 Reg = (n_params-cp.sum(cp.pos(1-M))) / n_params # encourage number

of edges
48

49 # Constraint the total activated params
50 constraint = [cp.sum(M) <= n_params, M <= max_param_per_kernel , M >=

0]
51

52 # Objective function

16

53 obj =cp.Maximize(alpha * A + (1-alpha) * B + beta * Reg)
54

55 # Init problem
56 prob = cp.Problem(obj, constraint)
57 prob.solve() # Solving
58

59 return M.value

Listing 2: Layer-wise mask optimization

17

D Layerwise Shuffling Experiments

With each setting, at each sparsity ratio, we seek subnetworks with 5 different seeds, and with each
seed, we randomly shuffle the subnetwork two times. In addition to effective path ratios and effective
node ratios, we compute the number of effective parameters after pruning and the actual remaining
ones, then calculate the ratio between these two values.

Similar to [17] results, the performance and the number of effective parameters of high-density
subnetworks after permuting the connections are similar to or even higher (in SNIP) than the
unmodified ones. However, when the sparsity level becomes more intensive, the configuration of
subnetworks is more concrete. Randomly rearranging connections within layers destroys this strict
structure by detaching important edges, which drastically reduces the number of effective paths. The
shuffled subnetworks lack input-output paths to transfer information during training, leading to a
drop in performance compared with unmodified ones.

SN
IP

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Sy
nF

lo
w

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

PH
E

W

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

0.2

0.4

0.6

0.8

Ef
fe

ct
iv

e
pa

th
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
no

de
 ra

tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

0.0025

0.0050

0.0075

0.0100

0.0125

Ef
fe

ct
iv

e
pa

ra
m

et
er

 ra
tio

Shuffled Layer-wise
Unmodified

68
.38

90
.00

96
.84

99
.00

99
.44

99
.68

99
.82

99
.90

Sparsity (%)

20

40

60

80

To
p-

1
Ac

cu
ra

cy
 (%

)

Shuffled Layer-wise
Unmodified

Figure 6: Layerwise shuffling results on various sparse subnetworks of ResNet20 produced SNIP,
SynFlow, and PHEW at initialization on CIFAR-10.

18

E Pruning Time and FLOPs Reductions

Since NPB optimizes layer by layer, the complexity of NPB depends on network architecture (i.e.,
the number of layers and the size of each layer). With large layers, we sidestep the time-consuming
issues by making a further step where we divide the nodes in the next layer into chunks with the
same sparsity constraint, and optimizing chunks in a layer can be solved in parallel. Particularly,
we consider layer l with mask m(l) ∈ Rh(l)×h(l+1)

in which h(l) and h(l+1) are the number of nodes in
layer l and l + 1. We divide h(l+1) nodes into K equal chunks. Instead of directly solving for m(l), we
solve K problems [m(l)

1 ,m
(l)
2 , ...,m

(l)
K] where m(l)

k ∈ R
h(l)×h(l+1)

k . Thank for available convex optimization
libraries we can find subnetworks more efficiently and quickly. We have computed the pruning time
of our proposed method and compared it with other PaI methods in Tables 3, 4, and 5.

Besides pruning time, we find that the FLOPs reduction of subnetwork after pruning is more important
in the context of pruning before training. We have measured FLOPs of subnetworks produced by
different methods in Tables 3, 4, and 5. The result indicates that our NPB can produce subnetworks
with lower FLOPs than other baselines while NPB outperforms PaI methods.

Table 3: Accuracy, pruning time (in seconds) and FLOPs of subnetworks for different pruning
methods and compression ratios on Resnet18 - Tiny-ImageNet.

Accuracy (%) Pruning time (seconds) FLOPs (108)

Sparsity (%) 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00

SNIP 56.99 53.43 48.77 36.02 5.14 4.95 5.55 5.64 11.35 5.77 3.04 1.55
Iter-SNIP 56.73 53.60 48.55 36.42 229.16 235.34 233.19 231.23 10.73 7.05 3.98 1.97
SynFlow 56.71 54.68 49.03 39.79 108.17 96.18 91.15 92.60 14.71 8.91 4.24 1.50
PHEW 58.09 55.93 50.81 40.54 5511.20 1342.03 471.23 324.78 14.29 8.35 3.92 1.50
NPB 58.39 56.82 51.37 41.05 380.52 375.65 384.32 387.89 14.37 5.21 1.74 0.59

Table 4: Accuracy, pruning time (in seconds) and FLOPs of subnetworks for different pruning
methods and compression ratios on VGG19 - CIFAR-100.

Accuracy (%) Pruning time (seconds) FLOPs (107)

Sparsity (%) 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00

SNIP 71.31 70.65 67.82 61.77 5.15 4.96 5.12 4.55 17.952 7.806 3.686 1.816
Iter-SNIP 72.84 70.86 67.72 63.13 115.91 115.52 116.83 117.60 18.465 9.479 4.951 2.529
SynFlow 71.63 69.18 66.98 62.11 96.55 100.33 101.90 104.67 22.998 12.702 6.306 2.605
PHEW 73.18 70.70 68.18 64.43 6928.59 1699.80 605.65 417.25 22.108 11.746 5.611 2.340
NPB 74.05 71.76 68.87 64.82 430.52 438.20 412.16 425.33 22.035 8.773 2.874 1.046

Table 5: Accuracy, pruning time (in seconds) and FLOPs of subnetworks for different pruning
methods and compression ratios on Resnet20 - CIFAR-10.

Accuracy (%) Pruning time (seconds) FLOPs (106)

Sparsity (%) 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00 68.38 90.00 96.84 99.00

SNIP 87.88 84.02 76,72 62.03 1.42 1.40 1.87 1.68 17,952 8.323 3.470 1.709
Iter-SNIP 88.17 84.22 77.05 64.95 58.21 54.60 52.02 57.61 18,465 9.698 4.510 2.022
SynFlow 88.64 84.94 78.22 66.05 57.46 56.24 53.43 54.13 22,998 11.549 4.263 1.633
PHEW 90.38 87.41 81.05 70.44 78.31 18.09 4.78 2.58 22,108 10.690 4.110 1.640
NPB 90.69 87.61 80.55 70.70 20.10 23.91 21.51 21.13 22,035 7.642 2.645 1.122

19

F Additional Results with PaI comparison

43.77 68.38 90.00 96.84 99.00
Sparsity

60

65

70

75

80

85

90
Ac

cu
ra

cy
 (%

)

ResNet20 on CIFAR-10

PHEW
Random
SNIP
Iter-SNIP
SynFlow
Magnitude
GraSP
NPB
LTH
Dense

43.77 68.38 90.00 96.84 99.00
Sparsity

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

ResNet18 on TinyImageNet

PHEW
Random
SNIP
Iter-SNIP
SynFlow
GraSP
NPB
LTH

Figure 7: Accuracy of subnetworks found by different PaI methods and LTH at various sparsity levels
on two settings ResNet20 on CIFAR-10 and ResNet18 on TinyImagenet.

20

G Additional Results with Ablation Studies

In this section, we conduct experiments with different balancing coefficients (alpha) and regularization
coefficients (beta) in setting ResNet18 on Tiny-Imagenet and visualize results in Figure 8. We run
NPB with alpha in {0.01, 0.05, 0.1, 0.5, 0.75, 0.9} and beta in {0.1, 0.5, 0.75, 1.0, 1.5, 2.0}. In the first
row, we visualize the performance of subnetworks generated by different alpha beta hyperparameters.
In addition, to illustrate the correlation between subnetworks of NPB and PaI methods in terms of
the number effective nodes and paths, we visualize alpha and beta subnetwork variants of NPB and
PaI methods in the second row of Figure 8. Although NPB’s variants have difference performance,
they still outperform baselines. When visualize NPB variants with different PaI methods (SynFlow,
Random, and PHEW) together, we can see that NPB variants concentrate around a specific region
near PHEW which we hypothesize as a balancing area. Besides, networks in this region show a better
results compared with SynFlow or Random, and have competitive performance with each others.
This strengthens our Node-Path Balancing Principle.

0.01 0.05 0.1 0.5 0.75 0.9
Alpha

0.
1

0.
5

0.
75

1.
0

1.
5

2.
0

Be
ta

58.29 57.66 58.08 58.35 58.26 58.38

58.86 57.99 57.84 58.25 58.43 58.54

58.31 58.14 58.29 57.98 58.61 58.34

58.69 58.54 58.89 58.25 58.69 58.70

57.92 58.29 58.84 58.02 58.04 57.95

58.83 58.42 58.04 58.03 58.13 58.21

Sparsity 68.38%

57.8

58.0

58.2

58.4

58.6

58.8

Ac
cu

ra
cy

0.01 0.05 0.1 0.5 0.75 0.9
Alpha

0.
1

0.
5

0.
75

1.
0

1.
5

2.
0

Be
ta

56.22 55.34 55.69 56.03 56.61 57.04

56.91 56.71 57.07 57.39 56.59 56.84

57.64 56.87 57.29 56.14 57.21 57.07

56.66 56.95 57.44 56.78 57.42 56.52

56.75 57.19 57.09 56.46 57.24 57.15

57.06 56.76 56.76 56.68 57.24 57.43

Sparsity 90.00%

55.5

56.0

56.5

57.0

57.5

Ac
cu

ra
cy

0.01 0.05 0.1 0.5 0.75 0.9
Alpha

0.
1

0.
5

0.
75

1.
0

1.
5

2.
0

Be
ta

50.44 50.16 49.09 50.84 51.92 51.55

50.60 50.52 50.55 52.34 52.17 52.07

51.45 51.26 51.19 51.32 52.36 52.14

51.12 50.94 51.74 51.76 51.87 52.48

51.24 51.93 51.47 51.50 52.17 52.02

51.08 51.50 51.62 51.77 52.08 51.81

Sparsity 96.84%

49.5

50.0

50.5

51.0

51.5

52.0

Ac
cu

ra
cy

8.22 8.24 8.26 8.28 8.30 8.32
Number of effective nodes (ln scale)

50

51

52

53

54

55

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

Sparsity 68.38%

SynFlow

PHEW

Random

NPB's variants

7.9 8.0 8.1 8.2 8.3
Number of effective nodes (ln scale)

40

42

44

46

48

50

Sparsity 90.00%

SynFlow

PHEW

Random

NPB's variants

7.4 7.6 7.8 8.0 8.2
Number of effective nodes (ln scale)

32

34

36

38

40

42

44

46
Sparsity 96.84%

SynFlow

PHEW

Random

NPB's variants

Figure 8: Ablation study on alpha and beta hyperparameter with setting ResNet18 on Tiny-Imagenet

NPB depends on the layer-wise sparsity ratios, disparate ratios guide the pruner to a diverse set of
solutions. Then, it is essential to investigate the effect of sparsity initializers on NBP’s performance.
We follow Liu et al. [29] to use ERK [14], Uniform, Magnitude ratio, SNIP ratio found by applying
SNIP [26], and GraSP ratio by using GraSP [45] as five methods to produces layer-wise sparsity
levels. Figure 9 illustrates results with these sparsity initializers for ResNet18 on Tiny-Imagenet
with different sparsity levels. With the same value of α and β, we observe that different layer-wise
sparsifiers produce different network structures and performances as well. This difference raises a
question for further work how we can specify ratios that help obtaining promising solutions.

8.0 8.2 8.4 8.6
Number of effective nodes (ln scale)

50

51

52

53

54

Nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e) 58.69

58.01

58.25

57.25

57.4

Sparsity 68.38%

ERK

GraSP ratio

SNIP ratio

Uniform

Magnitude ratio

8.125 8.150 8.175 8.200 8.225 8.250 8.275 8.300 8.325
Number of effective nodes (ln scale)

42

43

44

45

46

47
56.66

56.87

57.07

56.6

54.53

Sparsity 90.00%

ERK

GraSP ratio

SNIP ratio

Uniform

Magnitude ratio

7.8 7.9 8.0 8.1 8.2 8.3
Number of effective nodes (ln scale)

35

36

37

38

39

40

41

42

43

51.12

50.31
50.09

49.26

Sparsity 96.84%

ERK

GraSP ratio

SNIP ratio

Uniform

Figure 9: Ablation study on different layerwise sparsity initializer with setting ResNet18 on Tiny-
Imagenet

21

H NAS-Bench-Macro Experiments

NAS-Bench-Macro [41] is a macro benchmark which is used in Neural Architecture Search. It
includes 8 searching layers, each having three candidate blocks which construct 6, 561 different
networks with the parameter varying from 300k to 3M. The network structure is presented in Table 6.
The structure is inspired from MobileNetV2 search space. In particular, candidate blocks are (i)
Identity connection, (ii) MB3_K3 which is MobileNetV2 block with kernel size 3 and expansion
ratio 3, and (iii) MB6_K5 which is MobileNetV2 block with kernel size 5 and expansion ratio 6. To
make a fair comparison between candidates, we only compare networks with a similar number of
parameters (i.e., in a range of 300k parameters). Note that, each candidate here is a dense network.
We compute metrics in four different parameter ranges and visualize them in Figure 10.

Table 6: Macro structure of search space on NAS-Bench-Macro.
n input block channel stride
1 32 × 32 × 3 3 × 3 conv 32 1
2 32 × 32 × 32 Choice Block 64 2
3 16 × 16 × 64 Choice Block 128 2
3 8 × 8 × 128 Choice Block 256 2
1 4 × 4 × 256 1 × 1 conv 1280 1
1 4 × 4 × 1280 global avgpool _ _
1 1280 FC 10 _

8.0 8.1 8.2 8.3 8.4 8.5 8.6

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0
The number of parameters from 350k-650k

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

8.5 8.6 8.7 8.8 8.9 9.0

20

25

30

35

40

The number of parameters from 650k-950k

65

70

75

80

85

90
Te

st
 A

cc
ur

ac
y

8.8 8.9 9.0 9.1
20

25

30

35

40

45

Th
e

nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

The number of parameters from 950k-1250k

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

8.8 8.9 9.0 9.1 9.2 9.3

25

30

35

40

45

50

The number of parameters from 1250k-1550k

80

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

9.00 9.05 9.10 9.15 9.20 9.25 9.30 9.35 9.40

30

35

40

45

50

55

The number of parameters from 1550k-1850k

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

9.20 9.25 9.30 9.35 9.40 9.45 9.50
The number of effective nodes (ln scale)

30

35

40

45

50

55

Th
e

nu
m

be
r o

f e
ffe

ct
iv

e
pa

th
s (

lo
g

sc
al

e)

The number of parameters from 1850k-2150k

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

9.25 9.30 9.35 9.40 9.45 9.50 9.55
The number of effective nodes (ln scale)

35

40

45

50

55

The number of parameters from 2150k-2450k

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

9.45 9.50 9.55 9.60 9.65
The number of effective nodes (ln scale)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5
The number of parameters from 2450k-2750k

85

86

87

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y

9.60 9.62 9.64 9.66 9.68 9.70 9.72
44

46

48

50

52

54

56

58

The number of parameters from 2750k-3050k

87

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y

Figure 10: The accuracy of network candidates in NAS-Bench-Macro benchmark along with the
number of activated nodes and paths in different parameter ranges.

22

	Introduction
	Related Work
	Methodology
	Pruning at Initialization Methods
	Metric Definition
	Layerwise Shuffling Phenomenon
	NAS Observations

	Node-Path Balancing Principle
	Node-Path Balancing Principle
	Proposed Method: NPB

	Evaluation
	Experimental Settings
	Comparison with PaI Methods
	Pruning Time and FLOPs Reduction

	Conclusion
	Experiment details
	Effective metrics calculation
	Layer-wise Mask Optimization
	Layerwise Shuffling Experiments
	Pruning Time and FLOPs Reductions
	Additional Results with PaI comparison
	Additional Results with Ablation Studies
	NAS-Bench-Macro Experiments

