MD3R: Minimizing Data Distribution Discrepancies to Tackle
Inconsistencies in Multilingual Query-Code Retrieval

Aofan Liu'?, Yuguo Yin?, Hongjian Xing?, Zhen Li*, and Yiyan Qi =

!nternational Digital Economy Academy (IDEA)

2School of Electronic and Computer Engineering, Peking University

3The Hong Kong Polytechnic University

Abstract

Multilingual Code Retrieval (MLCR) is a
critical task for supporting modern software de-
velopment workflows that increasingly involve
multiple programming languages. While ex-
isting methods have shown progress, MLCR
still faces two core challenges: firstly, the data
distribution discrepancy caused by training on
single query-monolingual code pairs leads to in-
consistency in cross-lingual retrieval; secondly,
the data scarcity of certain languages in specific
domains limits the effectiveness of consistent
representation learning. To address these is-
sues, we first analyze the inconsistency from
two perspectives: modality alignment direction
error and model weight error. We derive an
upper bound for the weight error to quantify
the impact of inconsistency and find that this
upper bound primarily stems from data distri-
bution discrepancies during the training pro-
cess. Based on this theoretical analysis, we pro-
pose a novel Cross-lingual Consistent MLCR
scheme call MD3R (Minimizing Data Distribu-
tion Discrepancies in Retrieval). Our scheme
employs tailored contrastive learning strate-
gies, including co-anchor contrastive learn-
ing (CACL) and 1-to-k contrastive learn-
ing (KCL), aimed at mitigating the impact of
data distribution bias, thereby enhancing cross-
lingual embedding alignment and retrieval con-
sistency. In the widely used CodeSearch-
Net benchmark, our method achieves break-
throughs in both retrieval recall and consistency
metrics across six mainstream programming
languages, including python, attaining state-of-
the-art performance.

1 Introduction

The continuous advancement of programming tech-
nologies and the flourishing development of the
open-source community have driven significant
changes in software development. Previously, the
environment followed an earlier paradigm based
on single programming languages. Now, it is a

Figure 1: The training performance on the dataset D, corre-
sponding to the vector direction g (c1), is worse than on the

intermediate dataset D, where gg(cm) = M

Here, g4(c1) and g4(c2) are the vector forms of embeddmgs
and D,, and Dy correspond to the respective datasets.

complex paradigm that involves collaborative work
across multiple programming languages (Li et al.,
2024). An increasing number of software projects
integrate disparate programming languages, pre-
senting developers with challenges in searching,
understanding, reusing, and modifying code across
language boundaries (Allal et al., 2023).

For instance, within a typical project, backend
logic may be implemented in Java, the frontend
interactive interface constructed using Vue, while
foundational service modules and even machine
learning components might be authored in Python
or C++. In such multilingual, heterogeneous en-
vironments, developers frequently need to retrieve
functionally analogous code snippets across lin-
guistic divides to enhance development efficiency
and mitigate code redundancy.

As shown in Fig. 1, although existing MLCR
schemes are inherently multilingual, the alignment
process becomes more complex when handling

multiple languages simultaneously. The ideal align-
ment process in the MLCR task should ensure pre-
cise semantic correspondence between the query
and the multilingual programming code tokens,
thereby facilitating the selection of the best match.
However, current schemes arbitrarily pair query
with instances of only one programming language
during each epoch, which impairs the establish-
ment of effective co-alignment across all languages.
This leads to inconsistencies in the modality match-
ing of multilingual code and query in existing
schemes: query-code instances exhibit inconsis-
tent similarity rankings across languages, and it
is difficult to obtain the same retrieval results in
different languages.

To address the pervasive inconsistency issues in
MLCR systems, we conduct a detailed analysis of
inconsistency from two perspectives: modal align-
ment directional error and weight error. We further
derived an theoretical upper bound for weight er-
ror to quantify the degree of inconsistency during
model inference. Through theoretical analysis of
the upper bound on weight error, we identify that
the inconsistency primarily stems from data distri-
bution Discrepancies introduced by random sam-
pling in the training processes of existing schemes.

In response to this identified root cause, we in-
troduce a novel scheme, MD3R, specifically engi-
neered to mitigate the inconsistency arising from
data distribution issues. Within the MD3R scheme,
we explore two distinct training strategies tailored
for different application scenarios: one prioritiz-
ing high performance and the other prioritizing
low computational overhead. For scenarios de-
manding high performance, we design 1-to-K Con-
trastive Learning (KCL). KCL functions by sub-
stantially mitigating intra-epoch data distribution
error, thereby reducing the disparity between the
empirically learned model parameters and the theo-
retically optimal weights. This mechanism facili-
tates enhanced multilingual query-code alignment
fidelity, leading to a marked improvement in re-
trieval performance, specifically in terms of recall
and consistency. Conversely, for scenarios prior-
itizing low computational overhead, query-code
Co-Anchor Contrastive Learning (CACL) is uti-
lized. CACL refines the alignment process by es-
tablishing code and query as co-anchors for other
languages, rectifying potential deviations in align-
ment direction and further ameliorating overall
data distribution discrepancies. Crucially, CACL
achieves these benefits, contributing to improved

consistency and recall, while imposing only ap-
proximately 10% additional computational over-
head (memory and time).

Our Contribution are as follows:

1. We derive a theoretical upper bound for
weight error. Our analysis further reveals
that discrepancies in training data distribution
serve as the key factor contributing to the in-
consistencies observed in existing ML-CLAP
methods.

2. To address the inconsistency problem, we pro-
poses the MD3R framework, which minimize
data distribution discrepancies to improve the
consistency of multilingual query-code re-
trieval performance. The MD3R framework
contains two training strategies: KCL (suit
for retrieval performance-first scenarios) and
CACL (suit for training overhead-first scenar-
108).

3. Experiments conducted on the ChatGPT-
translated CodeSearchNet datasets demon-
strate that both CACL and KCL can effec-
tively enhance the performance and consis-
tency of multilingual query-code retrieval. No-
tably, KCL achieved leading results in both
monolingual MLCR and multilingual MLCR
tasks.

2 Related Work

Research concerning code retrieval falls into two
principal areas: monolingual and multilingual
model development. Recently, how to more ac-
curately understand the developer’s search intent
within a specific programming context has also
become a new research focus.

Monolingual Code Retrieval Methods Re-
search on monolingual code retrieval has explored
diverse approaches to identifying relevant code
within a single programming language. One stream
of research has focused on query enhancement,
aiming to enrich user queries with additional se-
mantic information to improve matching accuracy
(Lemos et al., 2014; Lv et al., 2015; Zhang et al.,
2017; Arakelyan et al., 2022). Another significant
direction involves multi-perspective modeling of
the code, which leverages structural code features
from Abstract Syntax Trees (ASTs), Control Flow
Graphs (CFGs), and Data Flow Graphs (DFGs) to
better capture code semantics (Kim et al., 2010;

Chen and Zhou, 2018; Zubkov et al., 2022). Fur-
thermore, multitask learning has been employed to
enhance retrieval capabilities by designing auxil-
iary tasks, such as annotation generation and code
generation (Yao et al., 2019; Ye et al., 2020; Feng
et al., 2020). More recently, addressing limitations
of prior methods, Dong et al. (Dong et al., 2025)
emphasized programming context (e.g., existing
code) for understanding search intent. They intro-
duced the CodeSearchNet-C dataset and ConCR
framework, using Context Walking (CW) and a
Context Hierarchical Encoder (CHE) to model con-
text and developer habits, thus improving intent
understanding.

Multilingual Code Retrieval Methods The
growing prevalence of multilingual software
projects has sparked an increasing demand for
code retrieval systems that can operate across dif-
ferent programming languages. One method em-
ploys knowledge distillation, the idea is to first
train a monolingual teacher model, and then use
this monolingual teacher model to guide the train-
ing of a multilingual student model (Li et al.,
2022). Another approach involves using compilers
like LLVM to pre-generate a consistent intermedi-
ate representation (IR) for each programming lan-
guage, which can obtain a unified representation
across languages (Lattner and Adve, 2004; Puri
et al., 2021). However, these methods often over-
look modeling the specialties among programming
languages, leading to suboptimal performance in
scenarios with sparse programming language data,
and a struggle to identify language intent from lin-
guistic features within user queries. To address
these issues, Li et al. (Li et al., 2024) proposed the
CONSIDER framework, which models pairwise
and global commonalities to enhance representa-
tion and uses a novel Confusion-Matrix-Guided
Sampling Algorithm in contrastive learning to cap-
ture language specialties, thereby improving the
discernment of query intent.

3 Problem Formulation and Definition

MLCR is a significant and challenging cross-modal
retrieval task that aims to bridge the gap between
natural language and code in different program-
ming languages. This requires understanding the
intent of a natural language query and aligning it
with the semantics of code in various programming
languages.

3.1 Formal Description of MLCR

MLCR aims to retrieve semantically relevant code
snippets from a dataset containing code in mul-
tiple programming languages, based on a given
natural language query. We formally define
the multilingual code search dataset as D =
{(gi,cin,- -, cix) Y|, where N is the size of the
dataset, K is the total number of programming
languages, ¢; is the natural language query corre-
sponding to the i-th data instance, and c;;, is the
code snippet in the k-th programming language
associated with query ¢; in the ¢-th data instance.

We typically use a natural language query en-
coder fy(-) and a multilingual code encoder gy ()
to embed queries and code into a shared joint vec-
tor space. Ideally, for related query ¢; and code c;z,
their distance in the embedding space should be
small (or similarity should be high).

Borrowing the idea of contrastive learning, the
ideal query-code alignment probability distribution
can be expressed as:

exp(s(fo(gi), gs(cix))/T)
S Y exp(s(fo(q)), g96(cin))/7)

(g, cir) = , (D

where s(-) denotes the similarity function between
query and code embeddings (e.g., cosine similar-
ity), and 7 is the temperature parameter.

The optimization objective for learning the ideal
embedding space is to minimize the negative log-
likelihood:

min
0,9 £

7

K
> pis i) By e [~ log plais cin)]- - (2)
1 k=1

N

However, in the training of practical MLCR mod-
els, due to limitations in computational resources
or training strategies, it may not be feasible to pro-
cess code from all languages simultaneously within
each training batch (Monteiro et al., 2023). A com-
mon simplification is to randomly select code from
one programming language for each query in each
batch for training. For each epoch e, a set of lan-
guage is randomly selected: @ = {q1,...,qn},
where ¢; < {1,..., K}. At this point, the proba-
bility distribution used in training becomes:

exp(s(fo(qi); 9¢(¢ia;))/T)
S0y exp(s(fo(a7), 96 (¢ig;))/T)

Pe(Gis Cig;) =)

and the corresponding optimization function is:
N

min D pe(ds, Cia) Bas,eiq,) [~ 108 e (gi, cia)] - ()
=1

Since the distribution used in training p.,(g;, ¢iq,)
is not the same as the ideal distribution p(g;, ¢;x),
this can lead to the learned model failing to fully
capture the alignment between natural language
queries and code in all programming languages,
thereby introducing problems.

3.2 Analysis of the Inconsistency Issue

We found that training models with existing ap-
proaches can lead to cross-language inconsistency
issues. Specifically, for the same natural language
query, the retrieval rank of relevant code snippets
in different programming languages may show sig-
nificant variations.

To address the inconsistency issue, we analyze
its causes from the perspectives of modality align-
ment direction error and weight error. We further
derive the upper bound of error between the model
weights and the optimal weights, the analytical
findings are as follows:

3.2.1

[Optimal direction of modality alignment] Given
the query embedding fy(¢) and the multilingual
embedding of K code {gy(c1),...,94(cK)}, the
optimal alignment direction for the query embed-
ding fp(q) is the arithmetic mean of all language
text embeddings.

Modality Alignment Direction Error

Proof. The total distance between the code embed-
ding and each language embedding needs to be
minimized so that the embedding space for dif-
ferent languages is similar to the code embedding
and consistent cross-lingual retrieval results are
achieved. The loss function to obtain the minimiza-
tion of the total distance is shown below:

K
£=>"1folq) = golck)|*. ®)
k=1

Take the partial derivative of the loss function L
and take 0,

oL K
ST = 2o 2o(a) = geler)) =0
X (6)
fola) = %2945((31@).
k=1

It’s obvious that the loss function £ takes the
minimum value when the alignment direction of
the query is the arithmetic mean of {ci,...,cx},
allowing the model to achieve the most consistent
retrieval in theory. O

The existing scheme randomly selects a code
snippet and query, and this random selection leads
to the alignment direction deviating from the op-
timal one, which results in differences in the de-
gree of alignment between different programming
languages and query, and ultimately triggers the
inconsistency problem.

3.2.2 Weight Error

To investigate the upper limit of weight devia-
tion, we consider stochastic gradient descent (SGD)
as the foundational optimization framework for
heuristic examination and derives a weight error
upper bound.

[Weight error upper bound] Let T represent
the fixed number of training iterations per epoch.
The modified data distribution generated through
randomized language sampling under the existing
MLCR scheme is designated as p; in epoch 4, while
p signifies the native data distribution. We define
w_. - as the parameter vector obtained at the 7-th it-
eration during the e-th epoch under p., contrasting
with w’;. derived from training with the original
distribution p. Under the premise that the gradi-
ent operator Vy, E(, y[log p(g,)] satisfies A o)
Lipschitz (Bethune et al., 2024), the subsequent
inequality establishes the upper bound for weight
error:

Iwer = wipll <0 0> lIpi(g,¢) — p(g,)]
i (g,0)
ir-1
x (Z al gmaz(Wir—1-3)) (1)

=T
Gmaz(W) = max(q,c) | ‘VWE(q,c) [log (g,)]ll, (8)

ai=14+n Z pi(q,) A(g,0)-)

(g,¢)

The model weight w comprises two components:
query encoder weight 6 and multilingual code en-
coder weight ¢. We adopt (g, c) as a shorthand
notation for all query-code pairs within a train-
ing batch at step T', where code ¢ may appear in
arbitrary languages. The term 3, . [Ip(q, ¢) —
(g, ¢)|| denotes batch-level distribution discrep-
ancy at training epoch .

Conceptually, the weight error originates
from data distribution divergence discrepancies
> (g0 |IP(@, ¢) — (g, c)|| in each epoch 4. Given

the amplification factor a > 1, both error compo-
nents demonstrate epoch-/step-dependent accumu-
lation. Notably, this discrepancy magnitude fur-
ther correlates with hyperparameters including the
learning rate 7, the total training steps 7', and the
supremum gradient g,,qz (Wer—1—;). The detailed
proof of formula (7) is shown in Appendix.

4 Proposed Multilingual Code Retrieval
Scheme

Addressing the inconsistencies observed in existing
MLCR methods when matching similar instances
across different languages, which we attribute to
data distribution biases caused by random language
sampling during training, we propose a unified
MLCR framework. This framework includes two
training strategies designed to mitigate these biases
and enhance embedding alignment and retrieval
consistency. Fig. 2 clearly highlights the key dif-
ferences by contrasting traditional alignment with
our proposed KCL and CACL methods.

4.1 1-to-K Contrastive Learning (KCL)

The basic idea behind using 1-to-K contrastive
learning is that instead of randomly sampling lan-
guages for each code snippet, the original dataset is
directly used to train the MLCR model. Theoreti-
cally, such a method will make the data error equal
to 0, better align the embedding space of code and
multilingual text, and improve consistency and re-
call. The loss function £§, of proposed 1-to-K
contrastive learning method in MLCR is shown
below:

Lrat = garge (L + L) (10)

where Efj denotes the contrastive learning loss

function from multilingual code to query, and L%Zlc
denotes the contrastive learning loss function from
query to multilingual code. K is the number of
languages and N is the number of data instances.
In practical MLCR applications, supporting more
languages amplifies these overheads compared to

existing schemes (Wang et al., 2023).

c2q __
‘Ckcl -

log eXp Jo(d:), go(cir))/T) ,
;; > = 16Xp(s(fo(qi), 9¢(cix))/T)
(11)

2 . .
where £Zc‘f denotes the contrastive learning loss

function from multilingual code to query.

K N
ﬁzilc = — Z Z log
k=1 i=1

exp(s(ge(cir), fo(qi))/T)
S exp(s(gg(cir), folg;))/T)

where Eﬁf denotes the contrastive learning loss
function from multilingual query to code. K is
the number of languages and N is the number of
data instances. In practical MLCR applications,
supporting more languages amplifies these over-
heads compared to existing schemes. To address
this, we further propose CACL, which improves re-
trieval consistency and recall without significantly
increasing overhead.

However, KCL requires simultaneous process-
ing of code and query in multiple languages during
training, which substantially increases GPU mem-
ory usage and training time overhead, particularly
in scenarios supporting a larger number of code
languages.

(12)

4.2 Query-Code Co-Anchor Contrastive
Learning (CACL)

To reduce the weighting error with as little increase
in training time and GPU memory consumption as
possible, we propose query-code co-anchor con-
trastive learning (CACL). During the training pro-
cess, each data takes its code snippet, text, and
query in other random languages and does con-
trastive learning with each other. For each epoch,
given a set of random numbers @ = {q1,...qn },
q; <+ {1,...K}, get the triplet of the training data
(¢is qi1, Qig;), Where ¢; denotes i-th code snippet,
¢;1 denotes the query in a primary language (e.g.,
Python), and ¢; denotes the query of i-th language.
We have the training loss L., shown below:
£cacl =

1
7(£Cq1l +£¢and _‘_quqrand)' (13)

6N cac cacl cacl

The loss function L., consists of three com-
ponents L02 | Lo0rand £l drand “A]] three compo-
nents are based on the following general contrastive

learning loss formulation:

Zlo
_Zl g

uz; Uz)/T

1eXP((ug, v Uj

EC(] _ eXp

cacl —

/7)

exp vz,uz)/T

)
)
)
/7))

T
Traditional Alignment ! our KCL] Our CACL
] 0
) i
i: | @ Balance javascript
i i 03
b :E % 0,2 const 1st =
i i
0) update
0 0)
i 0
| python] u | python] | javascript] | python]:: | python] Python Java PHP python
] e refer [, 2 | 1
u std::reverse(|1 std::reverse(
1st.reverse() I | 1st.reverse() 000 | const Ist = 1st,begin(), |u 1st.reverse() 6 2 1st,begin(),
i Ist.reverse() || "1o¢' end()); |§ 1 |45 1st.end());
" "

_ [

¢ —

Figure 2: Comparison of different alignment strategies for retrieving code snippets based on the natural language
query "Reverse a list". (a) Traditional alignment typically finds corresponding code in only a single programming
language (e.g., Python). (b) Our proposed KCL (1-to-K Contrastive Learning) method can use embedding relevant
code from multiple programming languages (e.g., Python, Javascript), but may be limited by the distribution of
languages in the corpus and resource limit. (c) Our further proposed CACL (Query-Code Co-Anchor Contrastive
Learning) method, by incorporating balance weights for the multilingual codebase and an iterative update mechanism,

and referring to inter-language similarities.

where u; and v; represent input embeddings
from different modalities or languages. The three
components are defined as follows:

* Code-Primary Query Alignment (L%): u; =

fo(ci) represents code embeddings, and v; =
9¢(gi1) represents primary language query
embeddings.

e Code-Multilingual ~ Query Alignment
(Lolrandy: ;= fg(c;) represents code
embeddings, and v; = g¢¢(qi,) represents
query embeddings in a randomly selected

language.

* Primary Query-Multilingual Query Align-
ment (LI Dend): u; = g4(gi1) represents pri-
mary language query embeddings, and v; =
94(iq;) represents query embeddings in a ran-

domly selected language.

The effectiveness of query-code CACL can be ex-
plained from two perspectives:

* Modality Alignment: From the perspec-
tive of modality alignment, the loss func-
tion LI %end in CACL brings embeddings
of the primary language query and other lan-
guages closer, reducing the distance between
the code embeddings g4(c1), g4(c2) and the
mean 3g4(c1) + go(c2) and minimizing the
deviation in the modality alignment direction
of code and query.

* Data Distribution Error: From the perspec-
tive of data distribution error 3 . . |[p(c, ¢)—
pL(c,q)|| in an adapted Eq. (5), CACL’s

loss functions L2}, LIand ensures that the
model learns more pairs of code-queries in
an epoch. The query in them also contains a
large percentage of high-quality primary lan-
guage text. It makes the data distribution in
CACL closer to the original one, and reduces

the weight error of the model.

Note that in CACL, the number of queries used
for training in each epoch does not increase with
the number of languages, which effectively reduces
both GPU memory and time overhead in Multilin-
gual Query-Code scenarios with a large number
of languages. Our experimental results aim to il-
lustrate that CACL approximates the training time
and explicit memory overhead of existing Multi-
lingual Query-Code schemes, yet achieves recall
and consistency metrics close to those of 1-to-K
comparative learning.

S Experiment

5.1 Experiment Setup

Dataset To evaluate the performance of our
model in a multilingual environment, we used the
CodeSearchNet dataset (Husain et al., 2019), a
widely used dataset that collects code snippets and
their related queries in six different programming
languages (including Go, Python, Java, JavaScript,
Ruby and PHP) from GitHub. More information
about CodeSearchNet can be found in Appendix B
and Table 4.

At the same time, in order to better support mul-
tilingual retrieval tasks, we further processed the
dataset. Considering that each query in the Code-
SearchNet dataset usually corresponds to the code

Table 1: Performance Comparison of Different Frameworks and Models across Different Programming Languages

Framework Model Language Performance (MRR) ISncons1ls2tIe)r;5[y

Ruby JavaScript Go Python Java PHP Overall S¢ore (RDM)
RoBERTa(code) 46.0 46.3 82.1 54.7 56.1 52.3 56.2 0.48
Multilingual CodeBERT 50.2 50.1 83.8 59.2 59.9 55.6 59.8 0.47
& GraphCodeBERT 51.7 51.4 84.6 62.6 61.4 58.6 61.7 0.46
UnixCoder 57.1 56.8 86.4 65.3 65.6 60.3 65.3 0.44
RoBERTa(code) 453 46.5 81.6 56.0 57.7 535 56.8 0.45
Distill CodeBERT 49.8 49.1 82.2 60.9 61.8 57.1 60.2 0.44
) GraphCodeBERT 51.3 50.3 84.0 64.2 63.6 60.3 62.3 0.43
UnixCoder 58.2 58.9 88.2 67.0 67.3 61.9 65.4 0.41
RoBERTa(code) 52.6 534 87.4 60.2 62.7 59.1 62.6 0.42
CodeBERT 56.2 57.0 89.0 64.6 66.5 62.3 65.9 0.41
CONSIDER GraphCodeBERT 57.8 57.6 89.5 66.1 67.3 63.1 66.9 0.40
UnixCoder 61.6 60.9 90.2 69.7 69.9 65.0 69.6 0.38
RoBERTa(code) 70.5 (+17.9) 69.8 (+16.4) 93.1(+5.7) 75.2(+15.0) 77.4(+14.7) 73.0 (+13.9) 76.5(+13.9) 0.22
MD3R-KCL CodeBERT 74.1 (+17.9) 73.5(+16.5) 94.0 (+5.0) 78.5(+13.9) 80.1 (+13.6) 76.3 (+14.0) 79.4 (+13.5) 0.21
GraphCodeBERT 75.8 (+18.0) 75.0 (+17.4) 94.7 (+5.2) 80.1 (+14.0) 81.5(+14.2) 77.9(+14.8) 80.8 (+13.9) 0.20
UnixCoder 81.9 (+20.3) 79.9 (+19.0) 97.4(+7.2) 82.6(+12.9) 86.1(+16.2) 89.8(+24.8) 86.3 (+16.7) 0.18
RoBERTa(code) 69.0 (+16.4) 68.5 (+15.1) 92.0 (+4.6) 73.8(+13.6) 76.0 (+13.3) 71.5(+12.4) 75.0(+12.4) 0.27
MD3R-CACL CodeBERT 728 (+16.6) 722 (+15.2) 92.8(+3.8) 77.2(+12.6) 789 (+12.4) 75.0 (+12.7) 78.1 (+12.2) 0.26
) GraphCodeBERT 74.5 (+16.7) 73.8 (+16.2) 93.5(+4.0) 79.0 (+12.9) 80.4 (+13.1) 76.3 (+13.2) 79.5 (+12.6) 0.25
UnixCoder 80.5(+18.9) 785 (+17.6) 96.0 (+5.8) 81.2(+11.5) 84.7(+14.8) 87.5(+22.5) 85.0 (+15.4) 0.23

of only one specific programming language, we
performed an additional translation: we translated
the query content of each query (or its description
as a code label) into all six languages covered by
the dataset with the help of ChatGPT API. In this
way, each query has six different language ver-
sions, which greatly improves the applicability of
the dataset for cross-language code retrieval and
matching.

Evaluation Task Evaluation Tasks. Model per-
formance was assessed in both monolingual and
multilingual scenarios. In the monolingual sce-
nario, evaluations were conducted on the specific
test set for each individual language. To replicate a
real-world multilingual context, the test sets from
all languages were combined to form a single test
set for the multilingual scenario evaluation. The
mean reciprocal rank (MRR) (Hull) and Recall@K
was used as the evaluation metric for all models.
Meanwhile, to measure the dispersion or consis-
tency of retrieval result rankings across different
code language representations, a Rank Dispersion
Metric (RDM) is proposed based on Mean Variance
(Batur and Choobineh, 2010):

1
IN = g ;sz (15)
1 N K_
DM = —— W= pr,)? 16

In these formulas, NV is the total number of data
items, and K is the total number of code languages.
R}, refers to the rank of the ¢-th item under the k-th

code language, while pi g, is the mean rank of the ¢-
th item across all code languages. RDM calculates
the mean of the squared differences between each
item’s rank and its mean rank. A lower RDM value
indicates more consistent retrieval rankings across
different code languages.

Comparision Method We evaluates the pro-
posed framework, named MD3R, by contrasting
it with some established approaches for training
multilingual code retrieval models. These methods
are:

* Multilingual Training: This technique in-
volves pooling training data from various pro-
gramming languages and subsequently em-
ploying contrastive learning algorithms during
the training process.

* Knowledge Distillation: This approach, de-
tailed in a prior study (Li et al., 2022), trains
individual monolingual “teacher” models for
each programming language. Following this,
multilingual “student” models are trained
within a multilingual setting, guided by the
teacher models.

* CONSIDER: The CommONalities and Spe-
clalties Driven Multilingual CodE Retrieval
Framework, proposed in (Li et al., 2024),
addresses data scarcity and language confu-
sion in multilingual code retrieval. It en-
hances language representations by modeling
commonalities and extracts specific features

Table 2: Experimental Evaluation Results Summary

Category MRR Recall@1 Recall@5 Recall@10 Recall@20 Recall@50 Recall@100
Overall 0.8630 0.8030 0.9357 0.9603 0.9747 0.9873 0.9923
g0 0.9736 0.9580 0.9920 0.9960 0.9980 1.0000 1.0000
java 0.8612 0.7920 0.9440 0.9680 0.9800 0.9920 0.9940
javascript 0.7990 0.7280 0.8820 0.9180 0.9460 0.9760 0.9840
php 0.8983 0.8400 0.9680 0.9900 0.9960 0.9980 0.9980
python 0.8265 0.7580 0.9140 0.9460 0.9660 0.9800 0.9880
ruby 0.8193 0.7420 0.9140 0.9440 0.9620 0.9780 0.9900

using a novel negative sampling algorithm,
demonstrating benefits in both multilingual
and monolingual scenarios.

Overall Result Our experimental evaluations
highlight the significant capabilities of the MD3R
framework. The comparative analysis in Table 1
reveals that MD3R, encompassing its KCL and
CACL variants, consistently surpasses existing
multilingual training methods, knowledge distil-
lation (Distill), and the CONSIDER framework
across various base models and all six program-
ming languages, both in retrieval performance and
in achieving substantially better cross-lingual con-
sistency via lower Rank Dispersion Metric (RDM)
scores; the MD3R-KCL strategy with UnixCoder
notably achieved an overall performance of 86.3
and an RDM of 0.18 in these comparisons. Com-
plementing these findings, Table 2 quantifies the
retrieval efficacy of a prominent MD3R configu-
ration, demonstrating an overall Mean Reciprocal
Rank (MRR) of 0.8630, a Recall@1 of 0.8030, and
a Recall@100 of 0.9923, thereby illustrating the
framework’s capacity for both precise and compre-
hensive code retrieval.

5.2 Ablation Study

To understand the contribution of different com-
ponents within the proposed MD3R framework,
an ablation study was conducted. This study sys-
tematically evaluates the impact of key elements,
particularly the tailored contrastive learning strate-
gies KCL and CACL, and the individual loss com-
ponents within CACL, on the overall multilingual
query-code retrieval performance. The evaluation
metric used is the Overall Mean Reciprocal Rank
(MRR).

Table 3 presents the results of this ablation study,
comparing the performance of a baseline model,
the full MD3R framework with both KCL and
CACL, and variations of the MD3R-CACL model
where specific loss components are removed or
isolated.

Table 3: Ablation Study Results (Overall MRR %)

Model/Component Overall MRR (%)

Baseline (Traditional Multilingual Training) 65.0
MD3R-KCL (Full Model) 86.3
MD3R-CACL (Full Model) 85.0
MD3R-CACL without £521, 81.5
MD3R-CACL without £ orand 82.0
MD3R-CACL without £197and 80.5
MD3R-CACL with only £32%, 72.0
MD3R-CACL with only £ rand 735
MD3R-CACL with only £1%%rand 68.0

The full MD3R-KCL (86.3% Overall MRR) and
MD3R-CACL (85.0%) models substantially outper-
form the baseline (65.0%). Critically, ablating indi-
vidual components of MD3R-CACL underscores
their necessity. Removing the £%,, L¢7and or

cacl®> ~cacl

L119rand Joss terms reduces MRR to 81.5%, 82.0%,
and 80.5%, respectively. Moreover, relying solely
on any single CACL loss component results in
significantly degraded performance: L.}, alone
yields 72.0% MRR, L alone yields 73.5%,
and L% glone yields 68.0%. This analysis con-
firms that all evaluated components, particularly
the synergistic CACL loss functions, are integral to
MD3R’s effectiveness in multilingual query-code

retrieval.

6 Conclusion

To address the data inconsistency issue in Multilin-
gual Code Retrieval (MLCR), this paper proposes
the MD3R framework. Through theoretical analy-
sis and meticulously designed contrastive learning
strategies (CACL and KCL), MD3R effectively
alleviates data distribution bias and significantly
enhances cross-lingual embedding alignment and
retrieval consistency. Experiments on CodeSearch-
Net demonstrate that MD3R improves recall and
consistency across six mainstream programming
languages, with the KCL strategy showing partic-
ularly outstanding performance, achieving state-
of-the-art (SOTA) results, providing an innovative
solution for MLCR inconsistency issues.

Limitation

Although our MD3R framework and its constituent
KCL and CACL strategies demonstrated significant
effectiveness in experiments, we also recognize
certain limitations:

¢ Computational Overhead of the KCL
Method: As discussed in Section 4.1 of our
paper, the 1-to-K Contrastive Learning (KCL)
strategy, while highly effective, can increase
GPU memory usage and training time. This
overhead is amplified, particularly when sup-
porting a larger number of programming lan-
guages.

* KCL Performance Constraints: The perfor-
mance of KCL may be limited by the distri-
bution of languages within the corpus and by
available computational resources.

* CACL as a Trade-off Solution: To alleviate
some of the computational overhead associ-
ated with KCL, we proposed the Co-Anchor
Contrastive Learning (CACL) strategy (Sec-
tion 4.2 of our paper). CACL aims to improve
consistency and recall with a smaller increase
in computational overhead, though its perfor-
mance gains might be slightly less than those
of KCL.

We believe that future research can explore these
limitations, for instance, by investigating more effi-
cient contrastive learning methods or by optimiz-
ing computational resource allocation for specific
application scenarios. Despite these limitations,
our work provides an innovative solution to the in-
consistency problem in MLCR and has achieved
significant experimental results.

References

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert, and
22 others. 2023. SantaCoder: Don’t reach for the
stars! Preprint, arXiv:2301.03988.

Shushan Arakelyan, Anna Hakhverdyan, Miltiadis Al-
lamanis, Luis Garcia, Christophe Hauser, and Xiang
Ren. 2022. Ns3: Neuro-symbolic semantic code

search. Advances in Neural Information Processing
Systems, 35:10476-10491.

Demet Batur and F Fred Choobineh. 2010. Mean-
variance based ranking and selection. In Proceed-
ings of the 2010 winter simulation conference, pages
1160-1166. IEEE.

Louis Bethune, Thomas Massena, Thibaut Boissin,
Yannick Prudent, Corentin Friedrich, Franck Ma-
malet, Aurelien Bellet, Mathieu Serrurier, and
David Vigouroux. 2024. DP-SGD Without Clip-
ping: The Lipschitz Neural Network Way. Preprint,
arXiv:2305.16202.

Qingying Chen and Minghui Zhou. 2018. A neural
framework for retrieval and summarization of source
code. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineer-
ing, pages 826-831.

Yanmin Dong, Zhenya Huang, Zheng Zhang, Guanhao
Zhao, Likang Wu, Hongke Zhao, Binbin Jin, and
Qi Liu. 2025. Enhancing code search intent with
programming context exploration. In Proceedings
of the Eighteenth ACM International Conference on
Web Search and Data Mining, pages 596—605.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and 1 others. 2020. Codebert:
A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155.

David A Hull. Xerox TREC-8 Question Answering
Track Report.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and
Sunghun Kim. 2010. Towards an intelligent code
search engine. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 24, pages
1358-1363.

Chris Lattner and Vikram Adve. 2004. Llvm: A com-
pilation framework for lifelong program analysis
& transformation. In International symposium on
code generation and optimization, 2004. CGO 2004.,
pages 75-86. IEEE.

Otdvio AL Lemos, Adriano C de Paula, Felipe C
Zanichelli, and Cristina V Lopes. 2014. Thesaurus-
based automatic query expansion for interface-driven
code search. In Proceedings of the 11th working
conference on mining software repositories, pages
212-221.

Rui Li, Liyang He, Qi Liu, Yuze Zhao, Zheng Zhang,
Zhenya Huang, Yu Su, and Shijin Wang. 2024. Con-
sider: Commonalities and specialties driven multi-
lingual code retrieval framework. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 8679-8687.

https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2305.16202
https://doi.org/10.48550/arXiv.2305.16202

Wen Li, Junfei Xu, and Qi Chen. 2022. Knowledge
Distillation-Based Multilingual Code Retrieval. Al-
gorithms, 15(1):25.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang,
Dongmei Zhang, and Jianjun Zhao. 2015. Code-
how: Effective code search based on api understand-
ing and extended boolean model (e). In 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 260-270. IEEE.

Joao Monteiro, Torsten Scholak, Virendra Mehta, David
Vazquez, and Christopher Pal. 2023. Multilingual
Code Retrieval Without Paired Data: New Datasets
and Benchmarks.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
and 1 others. 2021. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks.
arXiv preprint arXiv:2105.12655.

Shangwen Wang, Mingyang Geng, Bo Lin, Zhensu Sun,
Ming Wen, Yepang Liu, Li Li, Tegawendé F. Bis-
syandé, and Xiaoguang Mao. 2023. Natural Lan-
guage to Code: How Far Are We? In Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 375-387, San Francisco
CA USA. ACM.

Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan
Sun. 2019. Coacor: Code annotation for code re-
trieval with reinforcement learning. In The world
wide web conference, pages 2203-2214.

Wei Ye, Rui Xie, Jinglei Zhang, Tianxiang Hu, Xiaoyin
Wang, and Shikun Zhang. 2020. Leveraging code
generation to improve code retrieval and summariza-
tion via dual learning. In Proceedings of The Web
Conference 2020, pages 2309-2319.

Feng Zhang, Haoran Niu, Iman Keivanloo, and Ying
Zou. 2017. Expanding queries for code search using
semantically related api class-names. IEEE Transac-
tions on Software Engineering, 44(11):1070-1082.

Maksim Zubkov, Egor Spirin, Egor Bogomolov, and
Timofey Bryksin. 2022. Evaluation of contrastive
learning with various code representations for code
clone detection. arXiv preprint arXiv:2206.08726.

A Proof of Weight Error Upper Bound

We analyze the upper bound on the weighting er-
ror heuristically based on the stochastic gradient
descent (SGD) optimization algorithm. The fol-
lowing is a detailed theoretical proof of the upper
bound on the weighting error in Eq. (7).

Proof. Based on the definition of the SGD
optimization algorithm, we have:

WeT = WeT—1 — 1) Z (g, c)vWeT—lE(‘I:C) [log (g, c)],

(g;¢)

Wor = Wer_1 =1 Y Pe(¢,0)Var Egollogp(g,).
(g,c)

a7

HWeT - W’eT”

= [[Wer—1 =1 p(@:6)Vewer s B(g,0)llogp(q; ¢)]

(a,¢)

—Wir_1+1 Y pelg;c)
(g,c)

V. Eqellogp(gc)]

<Hiwer—1 = wer |

+1ll Y P,V Eg,ellogp(g,)]

(a,¢)
- Z P(0,¢)Vwer 1 Eq,e)llog p(g; c)]l|
(a:9)
= [[wer—1 — Wil

+0ll Y P9,V Eg.ellogp(g,)]

(g,¢)

- Z piz (qv C)vWeT—l E(Qsc) [logp(q, C)}
(g;0)

+ 3 1e(8,)Vwer s Elg,e log (g,)]

(g;¢)

> 2(@:6)Vwr_, E(g.)llog p(g, 0)]]|

(g,0)
<l wer—1 — wor_i|
+0ll Y Pe(a,0)(Var . Egellogp(q,c)]
(g,¢)

- vWeT—l E(q,c) [logp(% C)D”
> (ela,e) = p(a,)

(g,¢)
<40 pe(g, Ao [Wer—1 — wir_i|
(g,¢)

+ Ngmaz(Wer—1) > |[PL(g,¢) — p(g,).

(g;0)

+n

Vwer—1E(q,e) [lOg p(q, C)]

18)

The inequality 1 and 2 hold because the Triangle

Inequality |a + b| < |a| + |b|. The inequality 3
holds because

Gmaz(Wer—1) = max [1Vwor_1 E(q,e)llog p(q, o)]l, (19)

and we assume that Vy/ = E [log p(g, ¢)]
and V., Eq ¢)[logp(g, c)] are A, o)-Lipschitz.
Gradient trimming can be used in the code imple-
mentation to a certain extent to reduce the gradient

https://doi.org/10.3390/a15010025
https://doi.org/10.3390/a15010025
https://doi.org/10.1145/3611643.3616323
https://doi.org/10.1145/3611643.3616323

change in the training process, indirectly reduce the

excessive growth of Lipschitz constant, as far as

possible to meet the Lipschitz continuity condition.
Based on Eq. (18), let

ae=(1+1Y_ Pe(,0)Ng0))s (20)

(g,¢)
we have

[wer — werl|
- ngman(wer—1) 3 lIp (@) — pla,)
(a;¢)
§a2||weT72 — Wi _al|
+1) Ipe(a;) = p(a; ©)l|(gmaz(Wer—1)
(a,¢)
+ agmax(WeT—2))

SaTHW(e—l)T - wEe—l)TH

T—1

+n Z |Ipe (g, ¢) — p(g; C)H(Z a’ gmaz (Wer—1-5))
(a,¢) j=0

e

<n > > lIpi(a,) = p(g, o)

i (a0)
tT—1]

(Y algma(Wir-1-y)).

i=-nT

2D
Thus Eq. (7) is proved successfully.

B CodeSearchNet Dataset

The distribution of data across CodeSearchNet lan-
guages for training, validation, testing, and the over-
all codebase is detailed in Table 4. It is considered
to be the largest and most widely used resource for
measuring code retrieval performance.

Table 4: CodeSearchNet Dataset Statistics

Language Training Validation Test Codebase
Ruby 2.5K 1.4K 1.2K 44K
JavaScript 5.8K 39K 33K 13.9K
Go 16.7K 7.3K 8.1K 28.1K
Python 25.2K 13.9K 149K 43.8K
Java 16.4K 5.2K 10.9K 40.3K
PHP 24.1K 13.0K 14.0K 52.7K

C Hypothesis

Our central hypothesis posits that the inconsisten-
cies observed in multilingual code retrieval predom-
inantly arise from systematic discrepancies in the
data distribution during the training phase. While
our work offers a theoretical foundation for this
claim, particularly through the analysis of modality
alignment direction errors and the derivation of up-
per bounds on weight errors, we acknowledge that

the current theoretical framework predominantly
addresses this specific dimension of data distribu-
tion. Nevertheless, other potential sources of incon-
sistency, although not explored with the same depth
in this work, merit consideration. These include the
inherent characteristics of model architectures, the
incorporation of training paradigms beyond con-
trastive learning, and the distributional differences
inherent in the code across various programming
languages. In future research, we intend to expand
upon these factors and further investigate their con-
tribution to inconsistencies.

D Related Work about Code Generation
Methods

While code generation is a distinct task, techniques
from this domain have been adapted as auxiliary
objectives to improve code retrieval. The under-
lying idea is that a model capable of generating
code from a query, or vice-versa, develops a deeper
understanding of the query-code relationship. For
instance, training models to generate natural lan-
guage summaries or documentation for code snip-
pets helps the model learn better code representa-
tions, which in turn benefits retrieval (Yao et al.,
2019; Ye et al., 2020). Similarly, training a model
to generate code snippets from natural language
queries can serve as a powerful auxiliary task. This
forces the model to learn a fine-grained mapping be-
tween natural language intent and code structures,
which can improve its ability to retrieve relevant
existing code (Husain et al., 2019). By leveraging
these generation-oriented tasks, retrieval models
can gain a more nuanced understanding of code
semantics and query intent, leading to improved
performance in finding relevant code.

	Introduction
	Related Work
	Problem Formulation and Definition
	Formal Description of MLCR
	Analysis of the Inconsistency Issue
	Modality Alignment Direction Error
	Weight Error

	Proposed Multilingual Code Retrieval Scheme
	1-to-K Contrastive Learning (KCL)
	Query-Code Co-Anchor Contrastive Learning (CACL)

	Experiment
	Experiment Setup
	Ablation Study

	Conclusion
	Proof of Weight Error Upper Bound
	CodeSearchNet Dataset
	Hypothesis
	Related Work about Code Generation Methods

