A Proof

Theorem 2. In deterministic environments, all agents will converge to the optimal policies, if each
agent i performs Q-learning on the transition function s = arg max,, ¢ N(S’ai)Qfs(s,).

Proof. According to Theorem 1, we know that if each agent ¢ performs Q-learning on ideal transition
function, all agents will converge to the global optimal policies. Therefore, to prove Theorem 2 is
to prove that s"* = arg max,, ¢ Ns,ai) @5 (8, §') is a transition function under one of the optimal
conditional joint policies of other agents w* (s, a;). Since

Q(S7 a’) = Q(S7 ag, a’—i) = 7”(8, sl) + ,ymaXQ(S/? a'/)a
(l/
where s’ is the deterministic next state of a_; when given s and a;, according to (10), we have
Qs a,a:) = 1(s,5') + ymaxQ(s', @') = (s, ') + maxQi*(s', ") = Q3(s,).

Thus, maxy Q55(s, s’) = max,_, Q(s,a;,a_;), which means Q°(s,) = Q(s,a;, (s, a;)).
Therefore, when there are multiple s™ = arg max, ¢ zr(s,q,) @5 (8, 8'), any one of them is an ideal

transition function under one of the optimal conditional joint policies of other agents, and Theorem 2
holds. O

1= Peny (5" |s,00,7 ,(5,a4))
1- "/Penv(/*lsyaiyﬂii(saai)))

Theorem 3. || Q5" — Q]| < =

H , where AT = 7' max — Tmin-
oo

Proof.
I - @il

= i |3 P (55,50 o(5,00)) [(s,) + y max Q117(ag] — (s, 5") — y max Qu(s,)
1 Qg s ai a
< max Z Pen (8']s,ai, 75 ,(s,a:)) (s, s") —r(s,s™)|

S (ll /)
#s'

+ Z Peny (5'|s,ai, 72 (s, ai)) mafoto(s/,ag)fm:f;LXQi(s/*,a,'L-)

s/ F#s!* a’L @5

+ Y Penv (8|5, ai, w24 (s, ai)) max |Q:"°(s™, ai) — Qi(s"™, a3)|

1

< max (1 — Penv (™5, ai, w2;(s,a:))) (Ar + WIA_%) + Y Penv (8" [s, a5, 755 (s,a:)) ||Q5" —

5,04
Therefore, we have

Ar

1— Peny (3/*|57 Qi 71'*_1-(5, az))
1- 'YPenv (S/*|S7 iy ﬂ-ii(S? al)))

I — @

oo

O

The bound in Theorem 3 show that ; of 12Q is closer to the true value if the transition probability
of s* is higher in stochastic environments. Since we sample transitions from D; to update f; by
maximizing (12):

Es,ai,s’vai [AQ?(S’ fi(37 az)) - (fi(sa ai) - 8,)2])

the second term makes the predicted next state f;(s, a;) be close to the high-frequency next states
given s and a; in replay buffer D;, which means that the transition probability of the predicted next
state P,y (fi(s, a;)ls, a;, ™ (s, ai)) would not be too small. Thus, @Q; of 12Q will be close to the
true value and the worst cases where the predicted next states have very small transition probabilities
can be avoided according to our implementation (12). That is the reason why I2Q can be successfully
applied in stochastic environments, as shown in Figure 8 and Figure 10.

14

Theorem 4. Q9(s,a;) is the value function learned on the ideal transition function s'° =
f2(s,ai), Qi(s,a;) is the value function learned on the modeled ideal transition function s’ =

fi(s,a;), considering the continues state space, —Qill < TJWG f? = fillo» where

9Q; (s a) BT(S s') | when fz(s aZ) is close to fo(s az)

G = max g | [, 7 = max ¢ |

Proof.
197 — Qill

— max [r(s, 5'°) + ymax Q7 (s"*, a}) — r(s,s) — ymax Qi(s',)
a.
7,

i

< max|r(s,s") —r(s,s")| + v |max Qf (s", a;) — max Qi(s', a;)
s,a) 7

i

lo
= max M(s' — 5 4 o(s' — 5"
s,a s’o

0Q;(s'°, al)

S/O

+ v (S/ _ S/O) _ 0(5/ _ 5/0)]

3Qz(a)

max Q¢ (5", a}) — max[Qi(s"*, a) -
a

i i

Or(s,s’)
s’

< max
s,s’

=7Q7F = Qillo + (T +YG) 7 = fill oo + oI f7 = fill)-

Omiting the remainder term, we have

Q7 — Qill o <

max |s" — s'°| + ymax [Qf (s, a:) — Qi(s, as)| + ymax | —"—
s,a; s,a

T+7G

O

Theorem 4 shows that the difference between ideal values)¢ and learned values (); is bounded by
the error of modeled transition function. As shown in Figure 5, the learned values of 12Q are very
close to the ideal values, because 12Q accurately models the ideal transition function.

B Additional Results

B.1 Hyperparameter \

In Section 4.2, we have shown the effectiveness of A. Here, we further discuss the cases where
A = 0. When A\ = 0, 12Q degenerates into a popular model-based method MBPO [9]. In existing
model-based methods, the modeled transition functions follow the transition probabilities in the
replay buffer, which are non-stationary and outdated, so existing model-based methods also face
the non-stationary problem. As shown in Figure 7 and Figure 11, 12Q outperforms 12Q with A = 0,
which verifies the effectiveness of the proposed objective function of the transition function f; in 12Q.

— 12Q
o —— 12Qw/ A =0

rewar

Rewa

reward
W

— 12Q — 1Q — 12Q
— 2Qw/A=0 — 2Qw/A=0 . — 2Qw/A=0
(a) 2 x 3 HalfCheetah b) 2|4 HalfCheetah (©)2 x 4 Ant (d) 6/2 Ant

Figure 11: Learning curves with A = 0.

B.2 Two Update Rules

We propose two update rules for @;: rule 1 (14) and rule 2 (15). Figure 12 shows that the two rules
achieve similar performance, especially in the tasks with long horizons where the reward of one
timestep is insignificant compared with the cumulated return value. We use rule 2 in differential
games and use rule 1 in SMAC and Multi-Agent MuJoCo.

15

\max|s -5 ’+o(

/
s — S8

/0)

— rule1
rule 2

0 " BRSNS oo anant
/ @ /_/’/\v\/'\/‘ NAROSAR " /\,
1] | |

. w] | — kel § rle 1
rule 2 |

eward
—
reward

W

rule 2
P R B L .
timestep

(2) MPE, N = 2 (b) MPE, N =3 (c) 2|4 HalfCheetah (d)2 x 4 Ant

Figure 12: Learning curves of two update rules.
B.3 Independent PPO

Independent PPO (IPPO) [4] is a strong on-policy decentralized MARL baseline. However, it is not
fair to compare off-policy algorithms with on-policy algorithms, since on-policy algorithms do not
use old data, which makes them weaker on sample efficiency [1], as shown in Figure 13.

— 12Q
— IPPO

Reward
Reward
Reward
W

— q — M
— IPPO — PO
T

— IPPO

210 3x10 20 a1 Ax0 025 % 10° 025 107
timestep timestep timesteps timesteps

(a) MPE, N =2 (b) MPE, N =3 (c) 2|4 HalfCheetah (d) 2 x 4 Ant
Figure 13: Learning curves of IPPO.

B.4 Scalability

We test I2Q on 6-agent Walker and 8-agent Ant with full observation setting, the results are shown

in Figure 14. Taking state information as input, IDDPG is strong enough, but 12Q can still obtain
performance gain on 8-agent Ant.

— 12Q
m{ —— IDDPG

reward
reward

[T (BT
timesteps timesteps

(a) 6 x 1 Walker (b) 8 x 1 Ant
Figure 14: Learning curves on Multi-Agent MuJoCo.

B.5 Multiple Optimal Joint Policies

In Section 3.4, we have analyzed that I2Q can easily solve the task with multiple optimal joint policies.
Here, we give another way to solve this problem. When agent ¢ selects one of the optimal independent
action, the neighboring state set A/ (s, a;) contains one of the optimal next states, which have the
max Q%(s, s’). The union of the neighboring state sets N;N'(s, a;) is a singleton set, which contains
the next state of the joint action. If each (s, a;) contains different optimal next states, the union
M;N (s, a;) might contain none of the optimal ones. We let each agent independently and randomly

initialize a same fixed noise function 7)(s), using the same random seed, as a partial order, and makes
decisions by the partial order

argmax,;n(s™), s =argmaxy ey q.n@i(s;s).

Thus, each A/ (s, a;) will contain the optimal next state with the max 7 value, which is the next state
of the joint action. Thus, the agents are coordinated by 7. Since the noise function 7 is randomly

initialized, it is a small probability event to find multiple next states with the same 7 value. We could
also adopt other partial orders, e.g., [; norm of s’.

16

We test 12Q on a one-stage matrix game with two optimal joint policies (1,2) and (2, 1), as shown in
Figure 15. If the agents independently select actions, they might choose the miscoordinated joint
policies (1,1) and (2,2). IQL learns the suboptimal policy (1, 1), but 12Q agents always select
coordinated actions, though the value gap between the optimal policy and suboptimal policy is so
small.

M AD | 4@ | 4B

AM 9.99 | 10 0 .
A?) 10 0

3 — 12Q
A®) 0 0 0 -

05 %10
timestep

warc

(=]

(a) matrix game (b) learning curves

Figure 15: Learning curves on a one-stage matrix game with multiple optimal joint policies.

B.6 Discussion on D3G

D3G predicts the optimal next state s’* with the highest QSS value and decodes actions in execution by
training a inverse model a; = g(s, s"). Different from D3G, 12Q builds transition function f;(s, a;)
using QSS value and trains Q-learning on f;(s, a;). Several drawbacks limit the performance of D3G
in decentralized MARL. First, over-generalization of g(s, s"*) would lead to wrong a;. Considering
two inverse maps (s, s'') — a' and (s, s'?) — a2, where s'! and s'? are very similar but a! and a?
are very different, which is common in complex continuous environments, trained by supervised
learning, the inverse model g may mistakenly predict g(s, s'!) as the average of a' and a2, due to the
generalization of neural network on state space. Since a' and a? are very different, the prediction error
is large and leads to poor performance. Experimentally, we find it is hard to perfectly train the inverse
model g(s, s), and the prediction error of actions greatly influences the performance in practice. 12Q
could avoid this problem since it learns accurate values Q; (s, a') and Q; (s, a®) and selects the action
with the highest value. Second, as stated in the experiment section, the implementation of D3G adopts
a forward model, which requires the transition probabilities in replay buffer D; to be deterministic,
which is impossible in decentralized MARL. The motivation and implementation of 12Q are very
different from that of D3G, which makes 12Q more suitable and practical in decentralized MARL,
as shown in Figure 6 and Figure 9. The original D3G can only be used in continuous action space,
and we extend it to discrete space and compare it in SMAC. Due to the analyzed drawbacks, discrete
D3G cannot obtain a winning rate in SMAC, as shown in Table 1.

Table 1: Winning rate on SMAC.

8m 3s_vs_4z 2s3z Sm_vs_6m

12Q 89% 68% 85% 42%
discrete D3G 0 0 0 0

B.7 12Q without Forward Model

For practicability, we design an approximation of 12Q without forward model f;, which is enlightened
by implicit Q-learning[12]. Implicit Q-learning learns the optimal value without predicting next
actions, similarly, we can obtain QSS value without predicting next states. Following Implicit
Q-learning, we introduce V;(s) and utilize expectile regression. Specifically, we update Q° by
minimizing

Es,s rnm, [(Q7(5,8") — 1 — '7‘/1'(5/))2]7
update V;(s’) by minimizing expectile loss

Esonp, [L5(QF(5,8") = Vi(s)], Li(u) = |7 = L(u < 0)]u’.
Using the approximate QSS value, we have

*(s,8") = ma (s, s
Qs = s Q)

17

According to Eq 15 and the mathematical derivation between line 161 and line 162, we update
Qi(s,a;) to be Q3 (s, s™*) by minimizing

Es,ai,S’NDi [(Ql(sa ai) - maX(Qi (37 a’i)v Q;S(sv S/)))2]

Although QSS value is a biased estimation in this implementation, the implementation without
forward model is practical. We test I12Q w/o forward model in SMAC. The results are shown in
Figure 16. 12Q w/o f shows similar performance with 12Q, and does not need to learn the forward
model, thus it would be more practical in complex environments.

— 12Q
‘ o 12Qw/o f
— L
N
5o /o
— 12Q
12Q w/o f 2
— L
T PP

ST I 10
timestep timestep

(a) 283z (b) Sm_vs_6m

Figure 16: Learning curves on SMAC.

C Hyperparameters

In 2 x 3 HalfCheetah, there are two agents and each of them controls 3 joints of HalfCheetah. In 2|4
HalfCheetah, there are two agents. One of them controls 2 joints, and one of them controls 4 joints.
And so on.

In MPE-based (MIT license) differential games and Multi-Agent MuJoCo (MIT license), we adopt
the implementation of SpinningUp [1] (MIT license), the SOTA implementation of DDPG, and follow
all hyperparameters in SpinningUp. The discount factor v = 0.99, the learning rate is 0.001 with
Adam optimizer, the batch size is 100, the replay buffer contains 1 x 10 transitions, the hidden units
are 256.

In SMAC (MIT license), we adopt the implementation of PyYMARL [23] (Apache-2.0 license) and
follow all hyperparameters in PYMARL. The discount factor v = 0.99, the learning rate is 0.0005
with RMSprop optimizer, the batch size is 32 episodes, the replay buffer contains 5000 episodes, the
hidden units are 64. We adopt the version SC2.4.10.

The hyperparameter A has been fully tested in MPE-based differential games. In Multi-Agent
MuJoCo, we set A = 0.01, and in SMAC, we set A = 0.05.

The experiments are carried out on Intel i7-8700 CPU and NVIDIA GTX 1080Ti GPU. The training
of each MPE and Multi-Agent MuJoCo task could be finished in 5 hours, and the training of each
SMAC task could be finished in 20 hours.

The code is available at https://github.com/jiechuanjiang/I2Q.

18

https://github.com/jiechuanjiang/I2Q

	Introduction
	Related Work
	Method
	Preliminaries
	Ideal Transition Probabilities
	I2Q
	Assumptions

	Experiments
	Matrix Games
	MPE
	Multi-Agent MuJoCo and SMAC

	Closing Remarks
	Proof
	Additional Results
	Hyperparameter
	Two Update Rules
	Independent PPO
	Scalability
	Multiple Optimal Joint Policies
	Discussion on D3G
	I2Q without Forward Model

	Hyperparameters

