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A. Supplementary Videos001

Please watch our attached video for a brief summary of the002
paper and more results. We include more generated results003
and 360-degree rendering videos from our reconstructed004
and generated 3D structures to show their 3D consistency.005

B. Social Impact006

Our main contribution is Lightplane Splatter and Renderer,007
a pair of 3D components which could be used to signifi-008
cantly scale the mapping between 2D images and neural 3D009
fields. Beyond their integral role in our versatile pipeline for010
3D reconstruction and generation, single scene optimiza-011
tion, and LRM with Lightplane, these components can also012
function as highly scalable plug-ins for various 3D applica-013
tions. We earnestly hope that they will be instrumental in014
advancing future research.015

Based on Lightplane Splatter and Renderer, we have es-016
tablished a comprehensive framework for 3D reconstruc-017
tion and generation. Similar to many other generative mod-018
els [5, 13, 23], it is important to note that the results gener-019
ated by this framework have the potential to be used in the020
creation of synthetic media.021

C. Limitations & Discussions022

Our motivation of introducing contract coordinates [2] is023
to assist the model in differentiating between foreground024
and background elements, thereby enhancing the quality of025
foreground generation and reconstruction. Although con-026
tract coordinates could represent unbounded scenes, our027
main focus is still on foreground objects, and reconstructing028
or generating unbounded backgrounds is beyond the scope029
of this paper. Therefore, we only sample limited points030
in unbounded regions, which leads to floaters, blurriness031
and clear artifacts in the background, as can be observed in032
videos. Also, generating diverse and realistic backgrounds033
is a challenging task and we leave it as a promising future034
direction.035

Lightplane introduces a versatile approach for scaling036
the mapping between 2D and 3D in neural 3D fields, de-037
signed to be compatible with arbitrary 3D hash represen-038

tations with differentiable sampling functions. While our 039
validation of this design has focused on voxel and triplane 040
models, its adaptability should allow for easy generalization 041
to other 3D hash representations, such as Hash Table [1] or 042
HexPlane [3, 8]. We pick voxel grids and triplanes as their 043
structures are easy to be processed by the existing neural 044
networks while designing neural networks to process some 045
other 3D hash structures like hash tables is still an open 046
question. Developing neural networks to support other 3D 047
hash structures is a promising direction to explore while be- 048
yond the scope of this paper. 049

Lightplane significantly solves the memory bottlenecks 050
in neural 3D fields, making rendering and splatting a large 051
number of images possible in the current 3D pipelines. Al- 052
though Lightplane has comparable speed to existing meth- 053
ods, rendering and splatting a large number of images is still 054
time-consuming, which may limit its utilization in real ap- 055
plications. For example, doing a forward and backward pass 056
on 512 × 512 rendered images takes around 5 seconds for 057
each iteration. For Renderer, the spent time grows linearly 058
to the ray numbers when ray numbers are huge. Reducing 059
the required time for large ray numbers would be a promis- 060
ing direction. 061

Sadly, we observe a performance gap between different 062
3D hash representations (i.e., voxel grids and triplanes) in 063
the versatile 3D reconstruction and generation framework. 064
Without loss of generalization, we use 3D UNet to pro- 065
cess voxel grids and 2D UNet to process Triplane. Three 066
planes (XY, YZ, ZX) are concatenated into a single wide 067
feature map and fed to 2DUNet. The self-attention mecha- 068
nism is then applied across all patches from the three planes, 069
making this network an extension of our 3DUNet designed 070
for voxel grids. However, we observed that this neural net- 071
work configuration does not yield flawless results. In 3D re- 072
construction tasks, the images rendered at novel viewpoints 073
exhibit slight misalignments with the ground-truth images. 074
For generative tasks, while the network can produce real- 075
istic samples, it occasionally generates flawed outputs that 076
significantly impact the Fidelity (FID) and Kernel Inception 077
Distance (KID) scores. Developing a more efficacious neu- 078
ral network model for TriPlane processing [1, 4, 24], which 079
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could effectively communicate features from three planes,080
presents a promising avenue for future research.081

D. Lightplane Details082

D.1. Implementation Details083

Starting from a zero-initialized hash θ, Splatter is done by084
accumulating vij to the hash cell (i.e. voxel grids or tri-085
planes) that contain xij , using the same trilinear/bilinear086
weights used in the Renderer operator to sample θ. After087
accumulating over all M rays, each hash cell is normal-088
ized by the sum of all splatting bi/trilinear weights landing089
in the cell. The normalization operation employed in our090
method, analogous to average pooling, averages the infor-091
mation splatted at identical positions in the hash θ. This092
process guarantees that the magnitudes of the splatted fea-093
tures are comparable to those of the input view features, a094
factor that is beneficial for the learning process.095

In the actual implementation, we execute the splatting096
process twice within the Splatter kernel. Initially, we splat097
the features of the input image into θ. Subsequently, a sec-098
ond set of weight maps is created, matching the spatial di-099
mensions of the input image features, but with a feature100
of a single-scale: 1 These weight maps are then splatted101
into θweight. During the second splatting process within the102
Splatter kernel, we deactivate the Multilayer Perceptrons103
(MLPs) and suspend sampling from prior hash representa-104
tions. This modification is implemented because our objec-105
tive is to tally the frequency and weights of points being106
splatted into the same position within the hash representa-107
tions, instead of learning to regress features. Finally, we get108
θ/θweight.109

Performing the splatting operation twice inevitably re-110
sults in additional time and memory overhead. In practice,111
θweight is relatively lightweight while θ is more memory-112
intensive. This is because they have the same spatial shape113
while θweight has a feature dimension of only 1. The nor-114
malization step θ/θweight, which is implemented in Py-115
Torch, will cache the heavy θ, thereby increasing memory116
usage. We manually cache θweight to normalize gradients117
during backpropagation.118

Algorithm 1 Lightplane Splatter for Triplane

Input: Prior (=input) 3D structure θ̂, rays r, pixel features v
Output: Target 3D hash θ (zero-initialized)

for i in range(num rays): ▷ Parallel spawned kernels
for j in range(num ray points): ▷ Ray-marching inside the kernel
xij ← get 3d ray point(ri, j) ▷ Get j-th 3D point on i-th ray
hθ̂(xij)← sample(xij , θ̂) ▷ Sample from input θ̂
ṽij ← gs(vi, hθ̂(xij), direnc(ri)) ▷ Eq(2): MLP gs calcs ṽij

θ ← splat(xij , ṽij , θ) ▷ Splat and update θ

Algorithm 2 Splatting point to XY Plane: splat(x,v, θXY )

Input: x=(x, y, z) ∈ [0, X]×[0, Y ]×[0, Z], feature v, 2D plane θXY

xf=⌊x⌋;xc=1 + xf ; yf=⌊y⌋; yc=1 + yf ▷ Ceiling, floor coords
w00, w01, w10, w11=bilinear weights(x, y, xf , xc, yf , yc)
θXY (xf , yf )+=w00v; θXY (xc, yf )+=w10v
θXY (xf , yc)+=w01v; θXY (xc, yc)+=w11v

Experimental Details. We use 160 × 160 × 160 voxel 119
grids and 160 × 160 triplanes in our model. The input im- 120
ages are processed using a VAE-encoder [21] trained on the 121
ImageNet dataset [7] and are converted into 32-dimensional 122
feature vectors. Both the Splatter and Renderer components 123
are equipped with 3-layer MLPs with a width of 64. Re- 124
garding training, we conduct 1000 iterations per epoch. The 125
generative model is trained over 100 epochs, taking approx- 126
imately 4 days, while the reconstruction model undergoes 127
150 epochs of training, lasting around 6 days, on a setup of 128
16 A100 GPUs, processing the entire Co3Dv2 dataset. 129

For Splatter, we sample 160 points along the ray. For 130
Renderer, we sample 384 points along the ray, rendering 131
256 × 256 images. Instead of using original contract coor- 132
dinates [2], we use a slightly different version which maps 133
unbounded scenes into a [−1, 1] cube. 134

CC(x) = 0.5∗

{
a ∗ x ∥x∥ ≤ 1(
(2− a) ∗ (1− 1

∥x∥ ) + a
)(

x
∥x∥

)
∥x∥ > 1

(1) 135
We introduce a scale a to control the ratio between fore- 136

ground and background regions, where the foreground re- 137
gions are mapped to [−a/2, a/2]. As we are using explicit 138
3D hash, mapping foreground regions into larger regions 139
would be helpful to represent details. When a = 1, it be- 140
comes the normal contract coordinates. We convert X,Y, Z 141
axes into contract coordinates independently. 142

D.2. Lightplane Performance Benchmark 143

Besides Autograd Renderer, implemented by pure Pytorch, 144
we additionally compare Lightplane Renderer to two base- 145
lines: Checkpointing and NerfAcc’s Instant-NGP, shown in 146
Figure 5. 147

Checkpointing baseline applies the checkpointing tech- 148
nique in Pytorch to Atugograd Renderer, which naıve recal- 149
culates forward pass results during backward pass to save 150
memories. Trivially applying checkpointing on Autograd 151
indeed saves memories both in forward pass and backward 152
pass, while still requires a large amount of memories, and 153
cannot be used for large ray numbers. 154

NerfAcc’s Instant-NGP is the Instant-NGP [18] imple- 155
mented by NerfAcc [11], which is claimed to be 1.1× faster 156
than the original version of Instant-NGP, with tremendous 157
optimization tricks for speed. Instant-NGP combines hash 158
grid as 3D structures with fused MLP kernels (tiny-cuda- 159
dnn), which is different from our Renderer with triplanes 160
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Figure 1. Forward (FW) Time.
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Figure 2. Backward (BW) Time
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Figure 3. Forward (FW) Memory.
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Figure 4. Backward (BW) Memory

Figure 5. Lightplane Renderer memory & speed benchmark showing the forward (FW and backward (BW) passes of Lightplane
Renderer, compared to the Autograd renderer, Checkpointing (Pytorch checkpointing on Autograd renderer), and NerfAcc Instant-
NGP (Instant-NGP [17] implemented in NerfAcc [12], which is claimed 1.1× faster than the original version) Lightplane exhibits up
to 4 orders of magnitude lower memory consumption at comparable speed. All axes are log-scaled.

as 3D structures, and its internal settings are less flexible to161
change. To this end, it is hard to do a perfectly fair compari-162
son. But still, we found that instant-NGP cannot work (will163
crash) with large image sizes, as they heavily rely on the L2164
cache of GPUs for optimal speed, which memory is very165
limited and cannot support large image sizes. While their166
backward pass speed is significantly faster than Lightplane167
Renderer, it still cannot be extended to large output image168
sizes.169

Deferred-Backpropagation [26]. LightPlane allows full170
forward (fw.) and backward (bw.) passes with superior171
memory use and speed. Conversely, to compute the gra-172
dients for image-level loss, Deferred-Backprogation first173
computes the fw. on the full image in ‘inference-only‘174
mode, and then computes the per-pixel gradients using the175
full-image losses. Given the pre-computed gradients on176
the rendered images, Deferred-Backprogation sequentially177
computes the memory-expensive fw. and bw. on a small178
subset of rays. E.g., rendering a 128×128 image of a Tri-179
plane, DB/Lightplane uses 1088MB/3MB in 0.23/0.09 sec,180

Table 1. Quantitative results on NeRF Synthetic dataset [16].

Method PSNR↑ SSIM↑ LPIPSVGG ↓
NeRF [15] 31.01 0.947 0.081
Plenoxels [25] 31.71 0.958 0.049
DVGO [22] 31.95 0.957 0.053
TensoRF-CP-384 [6] 31.56 0.949 0.076
TensoRF-VM-48 [6] 32.39 0.957 0.057
Lightplane 32.12 0.957 0.050

giving 400×memory saving and 2.5× speed-up. 181

E. More Results 182

E.1. Single Scene Optimization 183

Synthetic NeRF Results. We validate the correctness of 184
Lightplane by overfitting on the Synthetic NeRF dataset, 185
shown in Table 1. As the target is to show the convergence 186
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of Lightplane, we don’t employ any complicated tricks to187
optimize the performance and speed. Lightplane could get188
promising single-scene optimization results, demonstrating189
that it could be used as a reliable package in various 3D190
tasks.191

Adversarial Attacking on LVM (Large Vision Model).192
We showcase another interesting application empowered by193
our Lightplane by adversarial attacking LVM models, e.g.194
CLIP [19] and BLIP2 [10] After rendering full images from195
the neural 3D field overfitted on a specific scene, we feed196
rendered images into CLIP model and calculate cosine sim-197
ilarity between image feature vectors and target text vectors,198
which similarity works as a loss to optimize the neural 3D199
fields.200

E.2. Multi-view LRM with Lightplane201

We show more results of Multi-view LRM with Lightplane202
in Figure 7 and Figure 8.203

Rooted on the LRM [9], we plug Lightplane into the204
current system and achieve boosted performance. Specif-205
ically, after every-three transformer blocks, we use Light-206
plane Splatter to splat the input images features into the207
existing triplanes (i.e. outputs of the transformer blocks).208
Thanks to the high efficiency of Lightplane Renderer, the209
whole system is trained by LPIPS loss on the rendered and210
ground-truth images.211

E.3. 3D Reconstruction212

We show amortized 3D reconstruction results after fine-213
tuning on a single scene in Figure 9, with voxel grids (Light-214
plane-Vox) and triplanes (Lightplane-Tri) as 3D struc-215
tures. We compare them to overfitting results (training from216
scratch) using the 3D structures. Overfiting a single scene217
on Co3Dv2 dataset leads to defective 3D structures, like218
holes in depths. Initializing from the outputs of our amor-219
tized 3D reconstruction model could effectively solve this220
problem, leading to better results.221

For details, Lightplane-Vox utilizes a 1563 voxel grid222
as the 3D representation and applies a 3D-Conv UNet with223
attention-layer as the reconstructor. (Lightplane-Tri) uti-224
lizes 2562 triplanes as the 3D representations, and uses a225
2D-Conv UNet to process three triplanes. Both models take226
20 views as inputs and calculate the loss on target views for227
supervision. The entire model is trained on 16 A100 GPUs228
for 3 days with a learning rate of 1e-5. For rendering, we use229
400x400 as our target resolution, with 256 number of points230
along the ray, taking 32 additional points for contract coor-231
dinates (background). For splatting, each pixel casts 156232
points per ray, with additional 32 points for background.233

E.4. Unconditional Generation 234

We show 360-degree rendering for unconditional genera- 235
tion in Figure 10 and Figure 11. 236

We follow the exactly the same network architecture as 237
in the 3D reconstruction network, except we additionally 238
take time steps as additional inputs. We follow the standard 239
diffusion training receipts and apply 50 steps DDIM sam- 240
pling during inference. The whole generation process takes 241
less than 2 minutes. 242

E.5. Conditioned Generation 243

We show monocular 3D reconstruction with a single image 244
as input in Figure 12, and text-conditioned generation in 245
Figure 13. For text-conditioning experiments, we follow 246
CAP3D [14]: we use BLIP2 [10] to generate captions of 247
each image insides scenes and utilize LLAMA2 to output 248
the comprehensive caption for the whole scene. 249

We apply the classification-free guidance (cfg) during 250
the inference to control the quality, with the weights = 2. 251
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Fitted Attacked Fitted Attacked

Figure 6. 3D Adversarial Attacking on CLIP model. Given a fitted 3D scene (1st and 3rd column), we optimize the neural 3D fields so
that features of rendered images are aligned to a specific text description, i.e. giraffe, in CLIP’s feature space, while keeping the appearance
perceptually the same.

Input LRM LRM + LightPlane

Figure 7. Reconstruction comparison between LRM and LRM + Lightplane.
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Figure 8. Multi-view LRM with Lightplane.
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Voxel Lightplane-Vox TriPlane Lightplane-Tri NeRF [15]

0.373 / 35min 0.449 / 5min 0.492 / 27min 0.679 / 7min 0.658 / 1day

Figure 9. 3D Reconstruction with Learned Initialization. We
show rendered images (top row) and depths. Optimizing hashed
representations (Voxel, Triplane) on real scenes leads to geometric
defects. Using our models (Lightplane-Vox, Lightplane-Tri), we
first learn a reconstruction prior on CO3Dv2. We then initialize
reconstruction with a feed-forward pass accepting up to 100 source
views of a single-scene. After fine-tuning, we observe improved
quality of the reconstructed geometry (columns 3 and 4). We show
Depth Corr. (↑) and Overfitting Time (↓) below images.
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Figure 10. Unconditional 3D Generation displaying samples from our Lightplane-augmented Viewset Diffusion trained on CO3Dv2 [20].
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Figure 11. Unconditional 3D Generation displaying samples from our Lightplane-augmented Viewset Diffusion trained on CO3Dv2 [20].
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Input View Novel Views

Figure 12. Monocular 3D Reconstruction on CO3Dv2. With a single clean image as input, our model could generate realistic 3D
structures matching the input views.
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A white bowl with a blue and white fish in the center

A blue and white fire hydrant fire hydrant in a grassy area

A blue and white fire hydrant with a blue cap on the top

Figure 13. Text-Conditioned Generation on CO3Dv2. Our pipeline could generate 3D structures with text input as conditions.
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