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A. Supplementary Videos

Please watch our attached video for a brief summary of the
paper and more results. We include more generated results
and 360-degree rendering videos from our reconstructed
and generated 3D structures to show their 3D consistency.

B. Social Impact

Our main contribution is Lightplane Splatter and Renderer,
a pair of 3D components which could be used to signifi-
cantly scale the mapping between 2D images and neural 3D
fields. Beyond their integral role in our versatile pipeline for
3D reconstruction and generation, single scene optimiza-
tion, and LRM with Lightplane, these components can also
function as highly scalable plug-ins for various 3D applica-
tions. We earnestly hope that they will be instrumental in
advancing future research.

Based on Lightplane Splatter and Renderer, we have es-
tablished a comprehensive framework for 3D reconstruc-
tion and generation. Similar to many other generative mod-
els [5, 13, 23], it is important to note that the results gener-
ated by this framework have the potential to be used in the
creation of synthetic media.

C. Limitations & Discussions

Our motivation of introducing contract coordinates [2] is
to assist the model in differentiating between foreground
and background elements, thereby enhancing the quality of
foreground generation and reconstruction. Although con-
tract coordinates could represent unbounded scenes, our
main focus is still on foreground objects, and reconstructing
or generating unbounded backgrounds is beyond the scope
of this paper. Therefore, we only sample limited points
in unbounded regions, which leads to floaters, blurriness
and clear artifacts in the background, as can be observed in
videos. Also, generating diverse and realistic backgrounds
is a challenging task and we leave it as a promising future
direction.

Lightplane introduces a versatile approach for scaling
the mapping between 2D and 3D in neural 3D fields, de-
signed to be compatible with arbitrary 3D hash represen-

tations with differentiable sampling functions. While our
validation of this design has focused on voxel and triplane
models, its adaptability should allow for easy generalization
to other 3D hash representations, such as Hash Table [1] or
HexPlane [3, 8]. We pick voxel grids and triplanes as their
structures are easy to be processed by the existing neural
networks while designing neural networks to process some
other 3D hash structures like hash tables is still an open
question. Developing neural networks to support other 3D
hash structures is a promising direction to explore while be-
yond the scope of this paper.

Lightplane significantly solves the memory bottlenecks
in neural 3D fields, making rendering and splatting a large
number of images possible in the current 3D pipelines. Al-
though Lightplane has comparable speed to existing meth-
ods, rendering and splatting a large number of images is still
time-consuming, which may limit its utilization in real ap-
plications. For example, doing a forward and backward pass
on 512 x 512 rendered images takes around 5 seconds for
each iteration. For Renderer, the spent time grows linearly
to the ray numbers when ray numbers are huge. Reducing
the required time for large ray numbers would be a promis-
ing direction.

Sadly, we observe a performance gap between different
3D hash representations (i.e., voxel grids and triplanes) in
the versatile 3D reconstruction and generation framework.
Without loss of generalization, we use 3D UNet to pro-
cess voxel grids and 2D UNet to process Triplane. Three
planes (XY, YZ, ZX) are concatenated into a single wide
feature map and fed to 2DUNet. The self-attention mecha-
nism is then applied across all patches from the three planes,
making this network an extension of our 3DUNet designed
for voxel grids. However, we observed that this neural net-
work configuration does not yield flawless results. In 3D re-
construction tasks, the images rendered at novel viewpoints
exhibit slight misalignments with the ground-truth images.
For generative tasks, while the network can produce real-
istic samples, it occasionally generates flawed outputs that
significantly impact the Fidelity (FID) and Kernel Inception
Distance (KID) scores. Developing a more efficacious neu-
ral network model for TriPlane processing [1, 4, 24], which
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could effectively communicate features from three planes,
presents a promising avenue for future research.

D. Lightplane Details
D.1. Implementation Details

Starting from a zero-initialized hash 6, Splatter is done by
accumulating v;; to the hash cell (i.e. voxel grids or tri-
planes) that contain x;;, using the same trilinear/bilinear
weights used in the Renderer operator to sample . After
accumulating over all M rays, each hash cell is normal-
ized by the sum of all splatting bi/trilinear weights landing
in the cell. The normalization operation employed in our
method, analogous to average pooling, averages the infor-
mation splatted at identical positions in the hash 6. This
process guarantees that the magnitudes of the splatted fea-
tures are comparable to those of the input view features, a
factor that is beneficial for the learning process.

In the actual implementation, we execute the splatting
process twice within the Splatter kernel. Initially, we splat
the features of the input image into #. Subsequently, a sec-
ond set of weight maps is created, matching the spatial di-
mensions of the input image features, but with a feature
of a single-scale: 1 These weight maps are then splatted
into 0yeignt. During the second splatting process within the
Splatter kernel, we deactivate the Multilayer Perceptrons
(MLPs) and suspend sampling from prior hash representa-
tions. This modification is implemented because our objec-
tive is to tally the frequency and weights of points being
splatted into the same position within the hash representa-
tions, instead of learning to regress features. Finally, we get
9/ aweight-

Performing the splatting operation twice inevitably re-
sults in additional time and memory overhead. In practice,
Oweignt is relatively lightweight while € is more memory-
intensive. This is because they have the same spatial shape
while 6,cign: has a feature dimension of only 1. The nor-
malization step 6/60,cight, Which is implemented in Py-
Torch, will cache the heavy 6, thereby increasing memory
usage. We manually cache 0,,¢;4n+ to normalize gradients
during backpropagation.

Algorithm 1 Lightplane Splatter for Triplane

Input: Prior (=input) 3D structure 0, rays 7, pixel features v
Output: Target 3D hash 6 (zero-initialized)
for ¢ in range(num_rays):
for j in range(num_ray_points):
x;; < get3d_ray_point(r;, j)
hg(@ij) < sample(;, 0)
Vij < 0s (’Ui, hé (:Bz‘j), dernC(T‘i))
6 <« splat(mij, ’ZJij, 0)

> Parallel spawned kernels

> Ray-marching inside the kernel
> Get j-th 3D point on ¢-th ray

> Sample from input 6

> Eq(2): MLP g; calcs v;5

> Splat and update 6

Algorithm 2 Splatting point to XY Plane: splat(z, v, 0xy)
Input: x=(z,y, z) € [0, X]x[0, Y]X[0, Z], feature v, 2D plane 0 x y
zp=|x|;zc=1+2zsy5=|yl;ye=1+ys © Ceiling, floor coords
woo, Wo1, w10, wi1=bilinear_weights(x, y, x ¢, Tc, Y5, Ye)
Oxy (x5, yp)+=woov; Oxvy (Te,ys)+=w10v
Oxy (zf,yc)+=wo01v;0xy (Tc, Ye)+=w11v

Experimental Details. We use 160 x 160 x 160 voxel
grids and 160 x 160 triplanes in our model. The input im-
ages are processed using a VAE-encoder [21] trained on the
ImageNet dataset [7] and are converted into 32-dimensional
feature vectors. Both the Splatter and Renderer components
are equipped with 3-layer MLPs with a width of 64. Re-
garding training, we conduct 1000 iterations per epoch. The
generative model is trained over 100 epochs, taking approx-
imately 4 days, while the reconstruction model undergoes
150 epochs of training, lasting around 6 days, on a setup of
16 A100 GPUs, processing the entire Co3Dv2 dataset.

For Splatter, we sample 160 points along the ray. For
Renderer, we sample 384 points along the ray, rendering
256 x 256 images. Instead of using original contract coor-
dinates [2], we use a slightly different version which maps
unbounded scenes into a [—1, 1] cube.

a* X

CC(x) = 0.5*{

We introduce a scale a to control the ratio between fore-
ground and background regions, where the foreground re-
gions are mapped to [—a/2,a/2]. As we are using explicit
3D hash, mapping foreground regions into larger regions
would be helpful to represent details. When a = 1, it be-
comes the normal contract coordinates. We convert X, Y, Z
axes into contract coordinates independently.

D.2. Lightplane Performance Benchmark

Besides Autograd Renderer, implemented by pure Pytorch,
we additionally compare Lightplane Renderer to two base-
lines: Checkpointing and NerfAcc’s Instant-NGP, shown in
Figure 5.

Checkpointing baseline applies the checkpointing tech-
nique in Pytorch to Atugograd Renderer, which naive recal-
culates forward pass results during backward pass to save
memories. Trivially applying checkpointing on Autograd
indeed saves memories both in forward pass and backward
pass, while still requires a large amount of memories, and
cannot be used for large ray numbers.

NerfAcc’s Instant-NGP is the Instant-NGP [18] imple-
mented by NerfAcc [11], which is claimed to be 1.1 x faster
than the original version of Instant-NGP, with tremendous
optimization tricks for speed. Instant-NGP combines hash
grid as 3D structures with fused MLP kernels (tiny-cuda-
dnn), which is different from our Renderer with triplanes

x|l <1

((2—a) w(1- k) +a> (u?ﬁ*u) x| > 1
(1)
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Lightplane
~—fll— Autograd - # — NerfAcc Instant-NGP

Autograd checkpointed

Lightplane
~—fll— Autograd — # —~ NerfAcc Instant-NGP

Autograd checkpointed

T T T T T T T T T T T T T T T T
s = 10 E
E A 1L i
- E E
201l e 1= F E
Q = > g ER) [ ]
£ = -~ 1E ol -
= < = ME E
[ _Ax A N 5 E
0.01 | - - I ]
H/ir' e 001 |- i
P
I I | | | | | | | | | | | | | |
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
Image size (# pixels = Image size?) Image size (# pixels = Image size?)
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Figure 3. Forward (FW) Memory.
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Figure 4. Backward (BW) Memory

Figure 5. Lightplane Renderer memory & speed benchmark showing the forward (FW and backward (BW) passes of

, compared to the Autograd renderer,

(Pytorch checkpointing on Autograd renderer), and NerfAcc Instant-

NGP (Instant-NGP [17] implemented in NerfAcc [12], which is claimed 1.1x faster than the original version) Lightplane exhibits up
to 4 orders of magnitude lower memory consumption at comparable speed. All axes are log-scaled.

as 3D structures, and its internal settings are less flexible to
change. To this end, it is hard to do a perfectly fair compari-
son. But still, we found that instant-NGP cannot work (will
crash) with large image sizes, as they heavily rely on the L2
cache of GPUs for optimal speed, which memory is very
limited and cannot support large image sizes. While their
backward pass speed is significantly faster than Lightplane
Renderer, it still cannot be extended to large output image
sizes.

Deferred-Backpropagation [26]. LightPlane allows full
forward (fw.) and backward (bw.) passes with superior
memory use and speed. Conversely, to compute the gra-
dients for image-level loss, Deferred-Backprogation first
computes the fw. on the full image in ‘inference-only*
mode, and then computes the per-pixel gradients using the
full-image losses. Given the pre-computed gradients on
the rendered images, Deferred-Backprogation sequentially
computes the memory-expensive fw. and bw. on a small
subset of rays. E.g., rendering a 128x128 image of a Tri-
plane, DB/Lightplane uses 1088MB/3MB in 0.23/0.09 sec,

Table 1. Quantitative results on NeRF Synthetic dataset [16].

Method \ PSNR?T SSIM{ LPIPSygg |
NeRF [15] 31.01 0.947 0.081
Plenoxels [25] 31.71 0.958 0.049
DVGO [22] 3195  0.957 0.053
TensoRF-CP-384 [6] | 31.56  0.949 0.076
TensoRF-VM-48 [6] | 32.39  0.957 0.057
Lightplane 32.12  0.957 0.050

giving 400x memory saving and 2.5x speed-up.

E. More Results
E.1. Single Scene Optimization

Synthetic NeRF Results. We validate the correctness of
Lightplane by overfitting on the Synthetic NeRF dataset,
shown in Table 1. As the target is to show the convergence
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of Lightplane, we don’t employ any complicated tricks to
optimize the performance and speed. Lightplane could get
promising single-scene optimization results, demonstrating
that it could be used as a reliable package in various 3D
tasks.

Adversarial Attacking on LVM (Large Vision Model).
We showcase another interesting application empowered by
our Lightplane by adversarial attacking LVM models, e.g.
CLIP [19] and BLIP2 [10] After rendering full images from
the neural 3D field overfitted on a specific scene, we feed
rendered images into CLIP model and calculate cosine sim-
ilarity between image feature vectors and target text vectors,
which similarity works as a loss to optimize the neural 3D
fields.

E.2. Multi-view LRM with Lightplane

We show more results of Multi-view LRM with Lightplane
in Figure 7 and Figure 8.

Rooted on the LRM [9], we plug Lightplane into the
current system and achieve boosted performance. Specif-
ically, after every-three transformer blocks, we use Light-
plane Splatter to splat the input images features into the
existing triplanes (i.e. outputs of the transformer blocks).
Thanks to the high efficiency of Lightplane Renderer, the
whole system is trained by LPIPS loss on the rendered and
ground-truth images.

E.3. 3D Reconstruction

We show amortized 3D reconstruction results after fine-
tuning on a single scene in Figure 9, with voxel grids (Light-
plane-Vox) and triplanes (Lightplane-Tri) as 3D struc-
tures. We compare them to overfitting results (training from
scratch) using the 3D structures. Overfiting a single scene
on Co3Dv2 dataset leads to defective 3D structures, like
holes in depths. Initializing from the outputs of our amor-
tized 3D reconstruction model could effectively solve this
problem, leading to better results.

For details, Lightplane-Vox utilizes a 1563 voxel grid
as the 3D representation and applies a 3D-Conv UNet with
attention-layer as the reconstructor. (Lightplane-Tri) uti-
lizes 2562 triplanes as the 3D representations, and uses a
2D-Conv UNet to process three triplanes. Both models take
20 views as inputs and calculate the loss on target views for
supervision. The entire model is trained on 16 A100 GPUs
for 3 days with a learning rate of 1e-5. For rendering, we use
400x400 as our target resolution, with 256 number of points
along the ray, taking 32 additional points for contract coor-
dinates (background). For splatting, each pixel casts 156
points per ray, with additional 32 points for background.

E.4. Unconditional Generation

We show 360-degree rendering for unconditional genera-
tion in Figure 10 and Figure 11.

We follow the exactly the same network architecture as
in the 3D reconstruction network, except we additionally
take time steps as additional inputs. We follow the standard
diffusion training receipts and apply 50 steps DDIM sam-
pling during inference. The whole generation process takes
less than 2 minutes.

E.5. Conditioned Generation

We show monocular 3D reconstruction with a single image
as input in Figure 12, and text-conditioned generation in
Figure 13. For text-conditioning experiments, we follow
CAP3D [14]: we use BLIP2 [10] to generate captions of
each image insides scenes and utilize LLAMA?2 to output
the comprehensive caption for the whole scene.

We apply the classification-free guidance (cfg) during
the inference to control the quality, with the weights = 2.
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Fitted Attacked Fitted Attacked

Figure 6. 3D Adversarial Attacking on CLIP model. Given a fitted 3D scene (1st and 3rd column), we optimize the neural 3D fields so
that features of rendered images are aligned to a specific text description, i.e. giraffe, in CLIP’s feature space, while keeping the appearance
perceptually the same.

g I " a

Input LRM LRM + LightPlane

Figure 7. Reconstruction comparison between LRM and LRM + Lightplane.

3DV
#170



3DV 3DV

#170 #170
3DV 2025 Submission #170. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 8. Multi-view LRM with Lightplane.
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Voxel Lightplane-vox TriPlane Lighiplane-Tri NeRF [15]

|
0.373 /35min 0.449 / 5min 0.492/27min 0.679 / Tmin 0.658 / 1day

Figure 9. 3D Reconstruction with Learned Initialization. We
show rendered images (top row) and depths. Optimizing hashed
representations (Voxel, Triplane) on real scenes leads to geometric
defects. Using our models (Lightplane-Vox, Lightplane-Tr1i), we
first learn a reconstruction prior on CO3Dv2. We then initialize
reconstruction with a feed-forward pass accepting up to 100 source
views of a single-scene. After fine-tuning, we observe improved
quality of the reconstructed geometry (columns 3 and 4). We show
Depth Corr. (1) and Overfitting Time (]) below images.
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Figure 10. Unconditional 3D Generation displaying samples from our Lightplane-augmented Viewset Diffusion trained on CO3Dv2 [20].
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Figure 11. Unconditional 3D Generation displaying samples from our Lightplane-augmented Viewset Diffusion trained on CO3Dv2 [20].
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Input View Novel Views

Figure 12. Monocular 3D Reconstruction on CO3Dv2. With a single clean image as input, our model could generate realistic 3D
structures matching the input views.

10
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A blue and white fire hydrant with a blue cap on the top

Figure 13. Text-Conditioned Generation on CO3Dv2. Our pipeline could generate 3D structures with text input as conditions.
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