
Accommodating Picky Customers: Regret Bound and
Exploration Complexity for Multi-Objective

Reinforcement Learning

Jingfeng Wu
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218
uuujf@jhu.edu

Vladimir Braverman
Department of Computer Science

Johns Hopkins University
Baltimore, MD 21218
vova@cs.jhu.edu

Lin F. Yang
Department of Electrical and Computer Engineering

University of California, Los Angeles
Los Angeles, CA 90095
linyang@ee.ucla.edu

Abstract

In this paper we consider multi-objective reinforcement learning where the objec-
tives are balanced using preferences. In practice, the preferences are often given
in an adversarial manner, e.g., customers can be picky in many applications. We
formalize this problem as an episodic learning problem on a Markov decision pro-
cess, where transitions are unknown and a reward function is the inner product of a
preference vector with pre-specified multi-objective reward functions. We consider
two settings. In the online setting, the agent receives a (adversarial) preference
every episode and proposes policies to interact with the environment. We provide
a model-based algorithm that achieves a nearly minimax optimal regret bound
Õ
(√

min{d, S} ·H2SAK
)
, where d is the number of objectives, S is the number

of states, A is the number of actions, H is the length of the horizon, and K is the
number of episodes. Furthermore, we consider preference-free exploration, i.e.,
the agent first interacts with the environment without specifying any preference
and then is able to accommodate arbitrary preference vector up to ε error. Our
proposed algorithm is provably efficient with a nearly optimal trajectory complexity
Õ
(
min{d, S} ·H3SA/ε2

)
. This result partly resolves an open problem raised by

Jin et al. [2020].

1 Introduction

In single-objective reinforcement learning (RL), a scalar reward is pre-specified and an agent learns
a policy to maximize the long-term cumulative reward [Sutton and Barto, 2018]. However, in many
real-world applications, we need to optimize multiple objectives for the same (unknown) environment,
even when these objectives are possibly contradicting [Roijers et al., 2013]. For example, in an
autonomous driving application, each passenger may have a different preference of driving styles:
some of the passengers prefer a very steady riding experience while other passengers enjoy the
fast acceleration of the car. Therefore, traditional single-objective RL approach may fail to be
applied in such scenarios. One way to tackle this issue is the multi-objective reinforcement learning
(MORL) [Roijers et al., 2013, Yang et al., 2019, Natarajan and Tadepalli, 2005, Abels et al., 2018]

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

method, which models the multiple objectives by a vectorized reward, and an additional preference
vector to specify the relative importance of each objective. The agent of MORL needs to find policies
to optimize the cumulative preference-weighted rewards.

If the preference vector is fixed or drawn from a fixed distribution, MORL is no more challenging
than single-objective RL, as we can predict the objective to be optimized and apply (variants of)
single-objective RL algorithms (e.g., [Azar et al., 2017]). However, more often in practice, the
preference vector (under which the weighted objective needs to be optimized) is:

(i) adversarially provided,
(ii) or even not available in the learning phase.

Once more taking the autonomous driving application as example: (i) the intelligent system needs to
adapt driving configurations to accommodate every customer, even though the next customer can
have picky preference that is unpredictable; (ii) when the intelligent system is under development,
the future customer cannot be known in advance, nonetheless, when the system is deployed, it has
to be capable to accommodate any potential customer who rides the car. Such MORL examples
are common, to name a few beyond the autonomous driving one: medical treatment must take
care of every patient even in very rare health conditions; an education system should accommodate
every student according to his/her own characteristics; and emergency response systems have to
be responsible in all extreme cases. Due to these exclusive challenges that have not appeared in
single-objective RL, new sample-efficient algorithms for MORL need to be developed, as well as
their theoretical grounds need to be established.

In this work, we study provable sample-efficient algorithms for MORL that resolve the aforemen-
tioned issues. Specifically, we consider MORL on a finite-horizon Markov decision process (MDP)
with an unknown transition kernel, S states, A actions, H steps, and d reward functions that represent
the d difference objectives. We investigate MORL problems in two paradigms: (i) online MORL
(where the preferences are adversarially presented), and (ii) preference-free exploration (where the
preferences are not available in the learning/exploration phase). The two settings and our contributions
are explained respectively in the following.

Setting (i): Online MORL. We first consider an online learning problem to capture the challenge
that preference vectors could be adversarially provided in MORL. In the beginning of each episode,
the MORL agent is provided (potentially adversarially) with a preference vector, and the agent
interacts with the unknown environment to collect data and rewards (that is specified by the provided
preference). The performance of an algorithm is measured by the regret, i.e., the difference between
the rewards collected by the agent and those would be collected by a theoretically optimal agent (who
could use varying policies that adapt to the preferences). This setting generalizes the classical online
single-objective RL problem [Azar et al., 2017] (where d = 1).

Contribution (i). For online MORL, we provide a provably efficient algorithm with a regret upper
bound Õ

(√
min{d, S} ·H2SAK

)
1, where K is the number of episodes for interacting with the en-

vironment. Furthermore, we show an information-theoretic lower bound Ω
(√

min{d, S} ·H2SAK
)

for online MORL. These bounds together show that, ignoring logarithmic factors, our algorithm
resolves the online MORL problems optimally.

Setting (ii): Preference-Free Exploration. We further consider an unsupervised MORL problem to
capture the issue that preferences could be hard to obtain in the training phase. The MORL agent
first interacts with the unknown environment in the absence of preference vectors; afterwards, the
agent is required to use the collected data to compute near-optimal policies for an arbitrarily specified
preference vector. The performance is measured by the sample complexity, i.e., the minimum amount
of trajectories that an MORL agent needs to collect during exploration in order to be near-optimal
during planning. This setting extends the recent proposed reward-free exploration problem [Jin et al.,
2020] to MORL.

Contribution (ii). For preference-free exploration, we show that a simple variant of the proposed
online algorithm can achieve nearly optimal sample complexity. In particular, the algorithm achieves
a sample complexity upper bound Õ

(
min{d, S} ·H3SA/ε2

)
where ε is the tolerance of the planning

error; and we also show a sample complexity lower bound, Ω
(
min{d, S} ·H2SA/ε2

)
, for any

1We use Õ(·) to hide (potential) polylogarithmic factors in O(·), i.e., Õ(n) := O(n logk n) for sufficiently
large n and some absolute constant k > 0.

2

algorithm. These bounds suggest that our algorithm is optimal in terms of d, S, A, ε up to logarithmic
factors. It is also worth noting that our results for preference-free exploration partly answer an open
question raised by Jin et al. [2020]: reward-free RL is easier when the unknown reward functions
enjoy low-dimensional representations (as in MORL).

Paper Layout. The remaining paper is organized as follows: the preliminaries are summarized
in Section 2; then in Section 3, we formally introduce the problem of online MORL, our algorithm
and its regret upper and lower bounds; then in Section 4, we turn to study the preference-free
exploration problem in MORL, where we present an exploration algorithm with sample complexity
analysis (with both upper bound and lower bound), and compare our results with existing results for
related problems; finally, the related literature is reviewed in Section 5 and the paper is concluded by
Section 6.

2 Preliminaries

We specify a finite-horizon Markov decision process (MDP) by a tuple of (S,A, H,P, r,W). S
is a finite state set where |S| = S. A is a finite action set where |A| = A. H is the length of the
horizon. P(· | x, a) is a stationary, unknown transition probability to a new state for taking action a
at state x. r = {r1, . . . , rH}, where rh : S ×A → [0, 1]d represents a d-dimensional vector rewards
function that captures the d objectives2. W :=

{
w ∈ [0, 1]d, ‖w‖1 = 1

}
specifies the set of all

possible preference vectors3, where each preference vector w ∈ W induces a scalar reward function
by4 rh(·, ·) = 〈w, rh(·, ·)〉 for h = 1, . . . ,H . A policy is represented by π := {π1, . . . , πH}, where
each πh(·) maps a state to a distribution over the action set. Fixing a policy π, we will consider the
following generalized Q-value function and generalized value function:

Qπh(x, a;w) := E
[∑H

j=h〈w, rj(xj , aj)〉
∣∣xh = x, ah = a

]
, V πh (x;w) := Qπh(x, πh(x);w),

where xj ∼ P (· | xj−1, aj−1) and aj ∼ πj(xj) for j > h. Note that compared with the typical
Q-value function (or the value function) used in single-objective RL, here the generalized Q-value
function (or the generalized value function) takes the preference vector as an additional input,
besides the state-action pair. Fixing a preference w ∈ W , the optimal policy under w is defined as
π∗w := arg maxπ V

π
1 (x1;w). For simplicity, we denote

Q∗h(x, a;w) := Q
π∗w
h (x, a;w), V ∗h (x;w) := V

π∗w
h (x;w) = max

a
Q∗h(x, a;w).

The following abbreviation is adopted for simplicity:

PV πh |x,a,w :=
∑
y∈SP(y|x, a)V πh (y;w),

and similar abbreviations will be adopted for variants of probability transition (e.g., the empirical
transition probability) and variants of value function (e.g., the estimated value function). Finally, we
remark that the following Bellman equations hold for the generalized Q-value functions{
Qπh(x, a;w) = 〈w, rh(x, a)〉+ PV πh+1

∣∣
x,a,w

,

V πh (x;w) = Qπh(x, πh(x);w);

{
Q∗h(x, a;w) = 〈w, rh(x, a)〉+ PV ∗h+1

∣∣
x,a,w

,

V ∗h (x;w) = maxaQ
∗
h(x, a;w).

With the above preparations, we are ready to discuss our algorithms and theory for online MORL
(Section 3) and preference-free exploration (Section 4).

3 Online MORL

Problem Setups. The online setting captures the first difficulty in MORL, where the preference
vectors can be adversarially provided to the MORL agent. Formally, the MORL agent interacts with

2For the sake of presentation, we discuss bounded deterministic reward functions in this work. The techniques
can be readily extended to stochastic reward settings.

3The condition that w ∈ [0, 1]d is only assumed for convenience. Our results naturally generalize to
preference vectors that are entry-wisely bounded by absolute constants.

4The linear scalarization method can be generalized. See more discussions in Section 3.2, Remark 2.

3

an unknown environment through Protocol 1: at the beginning of the k-th episode, an adversary
selects a preference vector wk and reveals it to the agent; then starting from a fixed initial state5 x1,
the agent draws a trajectory from the environment by recursively taking an action and observing a
new state, and collects rewards from the trajectory, where the rewards are scalarized from the vector
rewards by the given preference. The agent’s goal is to find the policies that maximize the cumulative
rewards. Its performance will be measured by the following regret: suppose the MORL agent has
interacted with the environment through Protocol 1 for K episodes, where the provided preferences
are {wk}Kk=1 and the adopted policies are {πk}Kk=1 correspondingly, we consider the regret of the
collected rewards (in expectation) competing with the theoretically maximum collected rewards (in
expectation):

regret(K) :=
∑K
k=1V

∗
1 (x1;wk)− V πk

1 (x1;wk). (1)
Clearly, the regret (1) is always non-negative, and a smaller regret implies a better online performance.
We would like to highlight that the regret (1) allows the theoretically optimal agent to adopt varying
policies that adapt to the preferences.

Protocol 1 Environment Interaction Protocol
Require: MDP(S,A, H,P, r,W) and online agent

1: agent observes (S,A, H, r,W)
2: for episode k = 1, 2, . . . ,K do
3: agent receives an initial state xk1 = x1, and a preference wk (from an adversary)
4: for step h = 1, 2, . . . ,H do
5: agent chooses an action akh, and collects reward 〈wk, rh(xkh, a

k
h)〉

6: agent transits to a new state xkh+1 ∼ P(· | xkh, akh)
7: end for
8: end for

0 1000 2000 3000 4000 5000
number of episodes

0

100

200

300

400

500

600

to
ta

l r
eg

re
t

MO-UCBVI
Best stationary policy

Figure 1: A regret comparison of MO-UCBVI vs.
the best-in-hindsight policy in a simulated ran-
dom multi-objective MDP. Note that the best-in-
hindsight policy is the optimal policy for single-
objective RL. The plots show that the best-in-
hindsight policy will incur linear regret in online
MORL, and the proposed MO-UCBVI achieves sub-
linear regret as predicted by Theorem 1. See Ap-
pendix A for details.

Connections to Online Single-Objective RL.
The online regret minimization problems are well
investigated in the context of single-objective RL
(see, e.g., [Azar et al., 2017, Jin et al., 2018]). In
both online single-objective RL and our studied on-
line MORL, it is typical to assume that the transition
probability P is the only unknown information about
the environment since estimating a stochastic reward
is relatively easy (see, e.g., [Azar et al., 2017, Jin
et al., 2018]). In particular, single-objective RL is a
special case of MORL in the online setting, where
the preference is fixed during the entire learning pro-
cess (i.e., wk := w for all k) — therefore an online
MORL algorithm naturally applies to single-objective
RL. However, the reverse is not true as that in MORL
the preference vectors can change over time and are
potentially adversarial.

Comparison with Single-Objective Stochastic
and Adversarial Reward Setting. The essential
difficulty of MORL is further reflected in the regret
(1). Specifically, the regret (1) compares the perfor-
mance of the agent’s policies to a sequence of optimal policy under each given preference, which
could vary over time. However, in online single-objective RL, either with known/stochastic re-
wards [Azar et al., 2017, Jin et al., 2018] or adversarial rewards [Rosenberg and Mansour, 2019, Jin
et al., 2019], the benchmark policy is supposed to be fixed over time (the best policy in the hindsight).
This difference suggests that online MORL could be more challenging than online single-objective
RL, as a harder performance measurement is adopted. More specifically, when measured by regret

5Without loss of generality, we fix the initial state; otherwise we may as well consider an MDP with an
external initial state x0 with zero reward for all actions, and a transition P0(· | x0, a) = P0(·) for all action a.
This is equivalent to our setting by letting the horizon length H be H + 1.

4

(1), existing algorithms for single-objective RL (e.g., [Azar et al., 2017]) easily suffer a ∝ Θ(K)
regret when the sequence of preferences is adversarially designed; in contrast, we will show an
MORL algorithm that experiences at most ∝ Õ(

√
K) regret under any sequence of preferences. A

numerical simulation of this issue is presented in Figure 1.

3.1 A Sample-Efficient Online Algorithm

In this part we introduce an algorithm for online MORL, called multi-objective upper confidence
bound value iteration (MO-UCBVI). A simplified verison of MO-UCBVI is presented as Algorithm 1,
and a more advanced version (Algorithm 4) can be found in Appendix B. Our algorithm is inspired
by UCBVI [Azar et al., 2017] that achieves minimax regret bound in online single-objective RL.

Algorithm 1 MO-UCBVI
1: initialize historyH0 = ∅
2: for episode k = 1, 2, . . . ,K do
3: Nk(x, a), P̂k(y | x, a)← Empi-Prob(Hk−1)

4: compute bonus bk(x, a) := c ·
√

min{d,S}H2ι
Nk(x,a)

, where ι = log(HSAK/δ) and c is a constant

5: receive a preference wk

6: {Qkh(x, a;wk)}Hh=1 ← UCB-Q-Value(P̂k, wk, bk)
7: receive initial state xk1 = x1

8: for step h = 1, 2, . . . ,H do
9: take action akh = arg maxaQ

k
h(xkh, a;wk), and obtain a new state xkh+1

10: end for
11: update historyHk = Hk−1 ∪ {xkh, akh}Hh=1
12: end for

13: Function Empi-Prob
14: Require: historyHk−1

15: for (x, a, y) ∈ S ×A× S do
16: Nk(x, a, y) := #{(x, a, y) ∈ Hk−1}, and Nk(x, a) :=

∑
y N

k(x, a, y)

17: if Nk(x, a) > 0 then
18: P̂k(y | x, a) = Nk(x, a, y)/Nk(x, a)
19: else
20: P̂k(y | x, a) = 1/S
21: end if
22: end for
23: return Nk(x, a) and P̂k(y | x, a)

24: Function UCB-Q-Value
25: Require: empirical transition P̂k, preference wk, and bonus bk(x, a)
26: set V kH+1(x;wk) = 0
27: for step h = H,H − 1, . . . , 1 do
28: for (x, a) ∈ S ×A do
29: Qkh(x, a;wk) = min

{
H, 〈wk, rh(x, a)〉+ bk(x, a) + P̂khV

k
h+1

∣∣
x,a,wk

}
30: V kh (x;wk) = maxa∈AQ

k
h(x, a;wk)

31: end for
32: end for
33: return

{
Qkh(x, a;wk)

}H
h=1

In Algorithm 1, the agent interacts with the environment according to Protocol 1, and use an optimistic
policy to explore the unknown environment and collect rewards. The optimistic policy is a greedy
policy with respect to an optimistic estimation to the value function, UCB-Q-Value (lines 6 and 9).
Specifically, UCB-Q-Value is constructed to maximize the cumulative reward, which is scalarized
by the current preference, through dynamic programming over an empirical transition probability
(line 24). The empirical transition probability is inferred from the data collected so far (lines 3 and

5

13), which might not be accurate if a state-action pair has not yet been visited for sufficient times. To
mitigate this inaccuracy, UCB-Q-Value utilizes an extra exploration bonus (lines 4 and 29) so that: (i)
UCB-Q-Value never under-estimates the optimal true value function, for whatever preference vector
(and with high probability); and (ii) the added bonus shrinks quickly enough (as the corresponding
state-action pair continuously being visited) so that the over-estimation is under control. The overall
consequence is that: MO-UCBVI explores the environment via a sequence of optimistic policies, in
order to collect rewards under a sequence of adversarially provided preferences; since the policies
are optimistic for any preference, the incurred regret would not exceed the total amount of added
bonus; and since the bonus decays fast, their sum up would be sublinear (with respect to the number
of episodes played). Therefore MO-UCBVI only suffers a sublinear regret, even when the preferences
are adversarially presented. The above intuition is formalized in the next part.

3.2 Theoretical Analysis

The next two theorems justify regret upper bounds for MO-UCBVI and a regret lower bound for online
MORL problems, respectively.
Theorem 1 (Regret bounds for MO-UCBVI). Suppose K is sufficiently large. Then for any sequence
of the incoming preferences {wk}Kk=1, with probability at least 1− δ:
• the regret (1) of MO-UCBVI (see Algorithm 1) satisfies

regret(K) ≤ O
(√

min{d, S} ·H3SAK log(HSAK/δ)
)
;

• and the regret (1) of a Bernstein-variant MO-UCBVI (see Algorithm 4 in Appendix B) satisfies

regret(K) ≤ O
(√

min{d, S} ·H2SAK log2(HSAK/δ)
)
.

Theorem 2 (A regret lower bound for MORL). There exist some absolute constants c,K0 > 0, such
that for any K > K0, any MORL algorithm that runs K episodes, there is a set of MOMDPs and a
sequence of (necessarily adversarially chosen) preferences vectors such that

E[regret(K)] ≥ c ·
√

min {d, S} ·H2SAK,

where the expectation is taken with respect to the randomness of choosing MOMDPs and the
randomness of the algorithm for collecting dataset.
Remark 1. When d = 1, MORL recovers the single-objective RL setting, and Theorem 1 recovers
existing nearly minimax regret bounds for single-objective RL [Azar et al., 2017, Zanette and
Brunskill, 2019]. Moreover, the lower bound in Theorem 2 implies that our upper bound in Theorem 1
is tight ignoring logarithm terms. Interestingly, the lower bound suggests MORL with d > 2 is truly
harder than single objective RL (corresponding to d = 1) as the sequence of preferences can be
adversarially chosen.
Remark 2. Theorem 1 (as well as our other theorems) applies to general scalarization methods besides
the linear one as adopted by Algorithm 1 and many other MORL papers [Yang et al., 2019, Roijers
et al., 2013, Natarajan and Tadepalli, 2005, Abels et al., 2018]. In particular, our results apply to
scalarization functions rh(·, ·) = f(rh(·, ·);w) that are (1) deterministic, (2) Lipschitz continuous
for w, and (3) bounded between [0, 1] (which can be relaxed). This will be clear from proofs in
Appendix B, where we treat the potentially adversarially given preferences by a covering argument
and union bound, and these techniques are not dedicated to linear scalarization function and can be
easily extended to more general cases.

The proof of Theorem 1 leverages standard analysis procedures for single-objective RL [Azar et al.,
2017, Zanette and Brunskill, 2019], and a covering argument with an union bound to tackle the
challenge of adversarial preferences. Th rigorous proof is included in Appendix B.

Specifying an adversarial process of providing preferences is the key challenge for proving Theorem 2.
To handle this issue, we use reduction techniques and utilize a lower bound that we will show shortly
for preference-free exploration problems. We refer the readers to Theorem 4 and Appendix E for
more details.

4 Preference-Free Exploration

Problem Setups. Preference-free exploration (PFE) captures the second difficulty in MORL: the
preference vector might not be observable when the agent explores the environment. Specifically, PFE

6

consists of an exploration phase and a planning phase. Similarly as in the online setting, the transition
probability is hidden from the MORL agent. In the exploration phase, the agent interacts with the
unknown environment to collect samples, however the agent has no information about the preference
vectors at this point. Afterwards PFE switches to the planning phase, where the agent is prohibited to
obtain new data, and is required to compute near-optimal policy for any preference-weighted reward
functions. Since this task is no longer in an online fashion, we turn to measure the performance of a
PFE algorithm by the minimum number of required trajectories (in the exploration phase) so that the
algorithm can behave near-optimally in the planning phase. This is made formal as follows: a PFE
algorithm is called (ε, δ)-PAC (Probably Approximately Correct), if

P
{
∀w ∈ W, V ∗1 (x1;w)− V πw

1 (x1;w) ≤ ε
}
≥ 1− δ,

where πw is the policy outputted by the PFE algorithm for input preference w, then the sample
complexity of a PFE algorithm is defined by the least amount of trajectories it needs to collect in the
exploration phase for being (ε, δ)-PAC in the planning phase.

Connections to Reward-Free Exploration. PFE problem is a natural extension to the recent
proposed reward-free exploration (RFE) problem [Jin et al., 2020, Kaufmann et al., 2020, Wang et al.,
2020, Ménard et al., 2020, Zhang et al., 2020b]. Both problems consist of an exploration phase and a
planning phase; the difference is in the planning phase: in RFE, the agent needs to be able to compute
near-optimal policies for all reward functions, while in PFE, the agent only needs to achieve that for
all preference-weighted reward functions, i.e., the reward functions that can be represented as the
inner product of a d-dimensional preference vectors and the d-dimensional vector rewards functions
(i.e., the d objectives in MORL). A PFE problem reduces to a RFE problem if d = SA such that
every reward function can be represented as a preference-weighted reward function. However, if
d� SA, it is conjectured by Jin et al. [2020] that PFE can be solved with a much smaller sample
complexity than RFE. Indeed, in the following part we show an algorithm that improves a ∝ Õ(S2)

dependence for RFE to ∝ Õ(min{d, S} · S) dependence for PFE, in terms of sample complexity.

4.1 A Sample-Efficient Exploration Algorithm

We now present a simple variant of MO-UCBVI that is sample-efficient for PFE. The algorithm is
called preference-free upper confidence bound exploration (PF-UCB), and is discussed separately as
in the exploration phase (Algorithm 2) and in the planning phase (Algorithm 3) in below.

Algorithm 2 PF-UCB (Exploration)
1: initialize historyH0 = ∅
2: for episode k = 1, 2, . . . ,K do
3: Nk(x, a), P̂k(y | x, a)← Empi-Prob(Hk−1)

4: compute bonus ck(x, a) := H2S
2Nk(x,a)

+ 2bk(x, a) for bk(x, a) defined in Algorithms 1 or 3

5: {Qkh(x, a)}Hh=1 ← UCB-Q-Value(P̂k, w = 0, ck)
6: receive initial state xk1 = x1

7: for step h = 1, 2, . . . ,H do
8: take action akh = arg maxaQ

k

h(xkh, a), and obtain a new state xkh+1
9: end for

10: update historyHk = Hk−1 ∪ {xkh, akh}Hh=1
11: end for

Algorithm 2 presents our PFE algorithm in the exploration phase. Indeed, Algorithm 2 is a modified
MO-UCBVI (Algorithm 1) by setting the preference to be zero (Algorithm 2, line 5), and slightly
enlarging the exploration bonus (Algorithm 2, line 4). The intention of an increased exploration
bonus will be made clear later when we discuss the planning phase. With a zero preference vector, the
UCB-Q-Value in Algorithm 2 will identify a trajectory along which the cumulative bonus (instead of
the cumulative rewards) is maximized (with respect to the empirical transition probability). Also note
that the bonus function (Algorithm 2, line 4) is negatively correlated with the number of visits to a
state-action pair. Hence the greedy policy with respect to the zero-preference UCB-Q-Value tends
to visit the state-actions pairs that are associated with large bonus, i.e., those that have been visited

7

Algorithm 3 PF-UCB (Planning)
Require: historyHK , preference vector w

1: for k = 1, 2, . . . ,K do
2: Nk(x, a), P̂k(y|x, a)← Empi-Prob(Hk−1)

3: compute bonus bk(x, a) := c ·
√

min{d,S}H2ι
Nk(x,a)

where ι = log(HSAK/δ) and c is a constant

4: {Qkh(·, ·;w)}Hh=1 ← UCB-Q-Value(P̂k, w, bk)
5: infer greedy policy πkh(x) = arg maxaQ

k
h(x, a;w)

6: end for
7: return π drawn uniformly from {πk}Kk=1

for less times. In sum, Algorithm 2 explores the unknown environment “uniformly”, without the
guidance of preference vectors.

Then Algorithm 3 shows our PFE algorithm in the planning phase. Given any preference vector,
Algorithm 3 computes a sequence of optimistically estimated value functions based on the data
collected from the exploration phase, and then outputs a greedy policy with respect to a randomly
drawn optimistic value estimation. Note that the bonus in Algorithm 3 is set as the one in Algorithm
1, and recall that the bonus in Algorithm 2 is an enlarged one. The relatively large bonus in the
exploration phase guarantees that the regret in the planning phase never exceeds that in the exploration
phase. On the other hand, based on Theorem 1 for MO-UCBVI (Algorithm 1), we have already known
that the exploration algorithm (Algorithm 2), a modified Algorithm 1, suffers at most Õ(

√
K) regret,

hence the planning algorithm (Algorithm 3) experiences at most Õ(1/
√
K) error. The next part

rigorously justifies these discussions.

4.2 Theoretic Analysis

We first provide Theorem 3 to justify the trajectory complexity of Algorithms 2 and 3 in the PFE
setting; then we present Theorem 4 that gives an information-theoretic lower bound on the trajectory
complexity for any PFE algorithm.
Theorem 3 (A trajectory complexity of PF-UCB). Suppose ε > 0 is sufficiently small. Then for
PF-UCB (Algorithm 2) run for

K = O
(
min{d, S} ·H3SAι/ε2

)
, where ι := log(HSA/(δε)),

episodes, PF-UCB (Algorithm 3) is (ε, δ)-PAC.

Theorem 4 (A lower bound for PFE). There exist absolute constants c, ε0 > 0, such that for any
0 < ε < ε0, there exists a set of MOMDPs such that any PFE algorithm that is (ε, 0.1)-PAC on them,
it needs to collect at least

K ≥ Ω
(
min {d, S} ·H2SA/ε2

)
trajectories in expectation (with respect to the randomness of choosing MOMDPs and the exploration
algorithm).

Remark 3. According to Theorems 3 and 4, the trajectory complexity of PF-UCB is optimal for
d, S,A, ε ignoring logarithmic factors, but is an H factor loose compared with the lower bound. This
is because the current Algorithm 2 utilizes a preference-independent, Hoeffding-type bonus since
the preference vector is not available during exploration. We leave it as an open problem to further
remove this gap about H .

Proof Sketch of Theorem 3. Theorem 3 is obtained in three procedures. (1) We first observe the
total regret incurred by Algorithm 2 is Õ

(√
min {d, S}H3SAK

)
according to Theorem 1. (2) Then

utilizing the enlarged exploration bonus, we show that in each episode, the planning error is at most
constant times of the incurred exploration error. (3) Thus the averaged planning error is at most
Õ
(√

min {d, S}H3SA/K
)

as claimed. A complete proof is deferred to Appendix C.

Note that the second argument is motivated by [Zhang et al., 2020a, Wang et al., 2020]. However in
their original paper, a brute-force union bound over all possible value functions are required to obtain
similar effect, due to the limitation of model-free algorithm [Zhang et al., 2020a] (see Appendix F

8

for more details) or linear function approximation [Wang et al., 2020]. This will cause a loose,
∝ Õ(S2) complexity in the obtained bound. Different from their approach, we carefully manipulate
a lower order term to avoid union bounding all value functions during the second argument. As a
consequence we obtain a near-tight ∝ Õ(min{d, S} · S) dependence in the final bound. We believe
this observation has broader application in the analysis of similar RL problems.

Proof Sketch of Theorem 4. We next introduce the idea of constructing the hard instance that
witnesses the lower bound in Theorem 4. A basic ingredient is the hard instance given by Jin et al.
[2020]. However, this hard instance is invented for RFE, where the corresponding lower bound is
K ≥ Ω

(
H2S2A/ε2

)
. Note this lower bound cannot match the upper bound in Theorem 3 in terms

of d and S. In order to develop a dedicated lower bound for PFE, we utilize Johnson–Lindenstrauss
Lemma [Johnson and Lindenstrauss, 1984] to refine the hard instance in [Jin et al., 2020], and
successfully reduce a factor S to min {d, S} in their lower bound, which gives the result in Theorem
4. We believe that the idea to refine RL hard instance by Johnson–Lindenstrauss Lemma is of broader
interests. A rigorous proof is deferred to Appendix D.

Application in Reward-Free Exploration. By setting d = SA and allowing arbitrary reward
functions, PFE problems reduce to RFE problems. Therefore as a side product, Theorem 3 implies
the following results for RFE problems on stationary or non-stationary MDPs6:

Corollary 5. Suppose ε > 0 is sufficiently small. Consider the reward-free exploration problems on
a stationary MDP. Suppose PF-UCB (Algorithm 2) is run for

K = O
(
H3S2Aι/ε2

)
, where ι := log(HSA/(δε)),

episodes, then PF-UCB (Algorithm 3) is (ε, δ)-PAC. Moreover, if the MDP is non-stationary, the above
bound will be revised to K = O

(
H4S2Aι/ε2

)
.

Remark 4. When applied to RFE, PF-UCB matches the rate shown in [Kaufmann et al., 2020] and
improves an H factor compared with [Jin et al., 2020] (for both stationary and non-stationary MDPs),
but is anH factor loose compared with the current best rates, [Ménard et al., 2020] (for non-stationary
MDPs) and [Zhang et al., 2020b] (for stationary MDPs). However we highlight that our results are
superior in the context of PFE, since PF-UCB adapts with the structure of the rewards. In specific, if
rewards admit a d-dimensional feature for d < S, PF-UCB only needs ∝ Õ(min{d, S} · S) samples,
but the above methods must explore the whole environment with a high precision which consumes
∝ Õ(S2) samples.

Application in Task-Agnostic Exploration. PFE is also related to task-agnostic exploration
(TAE) [Zhang et al., 2020a]: in PFE, the agent needs to plan for an arbitrary reward function
from a fixed and bounded d-dimensional space; and in TAE, the agent needs to plan for N fixed
reward functions. Due to the nature of the problem setups, PFE algorithms (that do not exploit the
given reward basis r during exploration, e.g., ours) and TAE algorithms can be easily applied to
solve the other problem through a covering argument and a union bound, and with a modification of
min{d, S} ↔ log(N) in the obtained trajectory complexity bounds. For TAE on a non-stationary
MDP, Zhang et al. [2020a] show an algorithm which takes Õ

(
log(N) ·H5SA/ε2

)
episodes for

TAE7. In comparison, when applied to TAE on a non-stationary MDP, Theorem 3 implies PF-UCB
only takes Õ

(
log(N) ·H4SA/ε2

)
episodes8, which improves [Zhang et al., 2020a].

6Our considered MDP is stationary as the transition probability P is fixed (across different steps). An MDP
is called non-stationary, if the transition probability varies at different steps, i.e., replacing P by {Ph}Hh=1.

7This bound is copied from [Zhang et al., 2020a], which is erroneously stated due to a technical issue in the
proof of Lemma 2 in their original paper. The issue can be fixed by a covering argument and union bound on the
value functions, but then the obtained bound should be Õ

(
log(N)H5S2A/ε2

)
. See Appendix F for details.

8The conversion holds as follows. First set d = 1 in our algorithm to yield an algorithm for TAE with a single
agnostic task, where we have min{d, S} = 1. Then one can extend this algorithm to TAE with N agnostic
tasks using a union bound to have the algorithm succeed simultaneously for all N tasks, which adds a logN
multiplicative factor in the sample complexity bound. In this way, we obtain a TAE algorithm with a sample
complexity bound in Theorem 3 where min{d, S} is replaced with logN .

9

5 Related Works

MORL. MORL receives extensive attention from RL applications [Yang et al., 2019, Natarajan and
Tadepalli, 2005, Mossalam et al., 2016, Abels et al., 2018, Roijers et al., 2013]. However, little
theoretical results are known, especially in terms of the sample efficiency and adversarial preference
settings. A large amount of MORL works focus on identifying (a cover for) the policies belonging
to the Pareto front [Yang et al., 2019, Roijers et al., 2013, Cheung, 2019], but the correspondence
between a preference and an optimal policy is ignored. Hence they cannot “accommodate picky
customers” as our algorithms do. To our knowledge, this paper initiates the theoretical study of the
sample efficiency for MORL in the setting of adversarial preferences.

Adversarial MDP. Similarly to the online MORL problem studied in this paper, the adversarial
MDP problem [Neu et al., 2012, Rosenberg and Mansour, 2019, Jin et al., 2019] also allows the
reward function to change adversarially over time. However, we study a totally different regret (see
(1)). In the adversarial MDP problem, the regret is measured against a fixed policy that is best in the
hindsight; but in online MORL problem, we study a regret against a sequence of optimal policies
with respect to the sequence of incoming preferences, i.e., our benchmark policy may vary over time.
Therefore our regret bound for online MORL problems is orthogonal to those for adversarial MDP
problems [Neu et al., 2012, Rosenberg and Mansour, 2019, Jin et al., 2019].

Constrained MDP. In the problem of the constrained MDP, d constraints are enforced to restrict
the policy domain, and the agent aims to find a policy that belongs to the domain and maximizes
the cumulative rewards [Achiam et al., 2017, Efroni et al., 2020, El Chamie et al., 2018, Fisac et al.,
2018, Wachi and Sui, 2020, Garcıa and Fernández, 2015, Brantley et al., 2020]. Constrained MDP
is related to MORL as when the constraints are soft, they can be formulated as “objectives” with
negative weights. However, there is a fundamental difference: constrained MDP aims to optimize
only one (and known) objective, where in MORL studied in this paper, we aim to be able to find near
optimal policies for any preference-weighted objective (to accommodate picky customers).

Reward-Free Exploration. The proposed preference-free exploration problem generalizes the
problems of reward-free exploration [Jin et al., 2020]. Compared with existing works for RFE [Jin
et al., 2020, Kaufmann et al., 2020, Ménard et al., 2020, Zhang et al., 2020b], our method has the
advantage of adapting with rewards that admit low-dimensional structure — this partly answers an
open question raised by Jin et al. [2020]. We also note that Wang et al. [2020] study RFE with linear
function approximation on the value functions; in contrast our setting can be interpreted as RFE with
linear function approximation on the reward functions, which is orthogonal to their setting.

6 Conclusion

In this paper we study provably sample-efficient algorithms for multi-objective reinforcement learning
in both online and preference-free exploration settings. For both settings, sample-efficient algorithms
are proposed and their sample complexity analysis is provided; moreover, two information-theoretic
lower bounds are proved to justify the near-tightness of the proposed algorithms, respectively. Our
results extend existing theory for single-objective RL and reward-free exploration, and resolve an
open question raised by Jin et al. [2020].

Acknowledgement

This research was supported in part by NSF CAREER grant 1652257, ONR Award N00014-18-1-
2364, the Lifelong Learning Machines program from DARPA/MTO, and NSF HDR TRIPODS grant
1934979.

References
Axel Abels, Diederik M Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic

weights in multi-objective deep reinforcement learning. arXiv preprint arXiv:1809.07803, 2018.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pages 22–31. PMLR, 2017.

10

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 263–272. JMLR. org, 2017.

Kianté Brantley, Miroslav Dudik, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksan-
drs Slivkins, and Wen Sun. Constrained episodic reinforcement learning in concave-convex and
knapsack settings. arXiv preprint arXiv:2006.05051, 2020.

Wang Chi Cheung. Exploration-exploitation trade-off in reinforcement learning on online markov
decision processes with global concave rewards. arXiv preprint arXiv:1905.06466, 2019.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
for episodic reinforcement learning. arXiv preprint arXiv:1703.07710, 2017.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
arXiv preprint arXiv:2003.02189, 2020.

Mahmoud El Chamie, Yue Yu, Behçet Açıkmeşe, and Masahiro Ono. Controlled markov processes
with safety state constraints. IEEE Transactions on Automatic Control, 64(3):1003–1018, 2018.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and
Claire J Tomlin. A general safety framework for learning-based control in uncertain robotic
systems. IEEE Transactions on Automatic Control, 64(7):2737–2752, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
In Advances in Neural Information Processing Systems, pages 4863–4873, 2018.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial mdps with
bandit feedback and unknown transition, 2019.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. arXiv preprint arXiv:2002.02794, 2020.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. arXiv preprint arXiv:2006.06294, 2020.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penaliza-
tion. arXiv preprint arXiv:0907.3740, 2009.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. arXiv
preprint arXiv:2007.13442, 2020.

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

Sriraam Natarajan and Prasad Tadepalli. Dynamic preferences in multi-criteria reinforcement learning.
In Proceedings of the 22nd international conference on Machine learning, pages 601–608, 2005.

Gergely Neu, Andras Gyorgy, and Csaba Szepesvári. The adversarial stochastic shortest path problem
with unknown transition probabilities. In Artificial Intelligence and Statistics, pages 805–813,
2012.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial markov decision
processes. arXiv preprint arXiv:1905.07773, 2019.

11

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision processes.
In International Conference on Machine Learning, pages 9797–9806. PMLR, 2020.

Ruosong Wang, Simon S Du, Lin F Yang, and Ruslan Salakhutdinov. On reward-free reinforcement
learning with linear function approximation. arXiv preprint arXiv:2006.11274, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in Neural Information Processing
Systems, pages 14610–14621, 2019.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference on
Machine Learning, pages 7304–7312. PMLR, 2019.

Xuezhou Zhang, Yuzhe Ma, and Adish Singla. Task-agnostic exploration in reinforcement learning,
2020a.

Zihan Zhang, Simon S Du, and Xiangyang Ji. Nearly minimax optimal reward-free reinforcement
learning. arXiv preprint arXiv:2010.05901, 2020b.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]

12

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

0 1000 2000 3000 4000 5000
number of episodes

0

1000

2000

3000

4000

5000

to
ta

l r
eg

re
t

MO-UCBVI
Q-Learning

Figure 2: MO-UCBVI vs. Q-learning [Jin et al., 2018] in a simulated random multi-objective MDP. The plot
suggests that MO-UCBVI achieves sublinear regret but Q-learning incurs linear regret.

A Numerical Simulations

Code for simulations is available at https://github.com/uuujf/MORL.

Comparison with the Optimal Single-Objective RL Algorithm. Figure 1 shows a regret compar-
ison between the proposed MO-UCBVI and the best-in-hindsight policy. In the experiment we simulate
a random multi-objective MDP with S = 20, A = 5, H = 10, d = 15, and run the algorithms for
K = 5000 episodes. The best-in-hindsight policy refers to a policy that is fixed across episodes and
achieves maximum cumulative rewards in the whole game, i.e., arg maxπ

∑K
k=1 V

k
1 (x1;wk). Note

that the best-in-hindsight policy is the optimal policy in the single-objective RL setting; however
it could be much worse than a time-varying policy in the multi-objective RL setting. Since the
information-theoretically adversarial preferences are computationally infeasible to compute, in Figure
1 we simply use a randomly generated set of preferences, for which the “best-in-hindsight” policy
already performs poorly. In sum, the plot shows that our algorithm achieves sublinear regret in online
MORL, but the best single-objective RL algorithm will incur linear regret in online MORL.

Comparison with Q-Learning. Since MORL is connected to task-agnostic exploration [Zhang
et al., 2020a] in the exploration setting (see discussions in Section 4), it is tempted to think that
the Q-learning method studied in Jin et al. [2018], Zhang et al. [2020a] could also work in the
setting of online MORL. However this is refuted by Figure 2. We simulate a random multi-objective
MDP with S = 20, A = 5, H = 10, d = 15, and run the algorithms for K = 5000 episodes. The
Q-learning algorithm is specified by Algorithm 1 in Jin et al. [2018], excepted that the reward is now
a linear scalarization of a preference vector and a multi-objective reward vector. Figure 2 shows that
Q-learning cannot achieve a sublinear regret in the setting of online MORL.

The Effect of Number of Objectives. Figure 3 shows the performance of MO-UCBVI with different
number of objectives. In the experiment we simulate a random multi-objective MDP with S =
20, A = 5, H = 10, and number of objectives d ∈ {1, 5, 15, 20, 30}, and run MO-UCBVI for
K = 5000 episodes. As shown in Figure 3, the regret will increase as the number of objectives
increases; moreover, in all settings MO-UCBVI achieves a sublinear regret.

B Proof of Theorem 1

Our proof utilizes techniques from [Zanette and Brunskill, 2019].

Notations. For two functions f(x) ≥ 0 and g(x) ≥ 0 defined for x ∈ [0,∞), we write f(x) . g(x)
if f(x) ≤ c · g(x) for some absolute constant c > 0; we write f(x) & g(x) if g(x) . f(x);
and we write f(x) h g(x) if f(x) . g(x) . f(x). Moreover, we write f(x) = O(g(x)) if
limx→∞ f(x)/g(x) < c for some absolute constant c > 0; we write f(x) = Ω(g(x)) if g(x) =
O(f(x)); and we write f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x)). To hide

14

https://github.com/uuujf/MORL

0 1000 2000 3000 4000 5000
number of episodes

0

50

100

150

200

250

300

350

to
ta

l r
eg

re
t

d=1
d=5
d=15
d=20
d=30

Figure 3: The effect of number of objectives. The plot shows the performance of MO-UCBVI in a simulated
random multi-objective MDP with different number of objectives. The plot suggests that regret increases as
number of objectives increases, but MO-UCBVI achieves sublinear regret in all cases, as predicted by Theorem 1.

the logarithmic factors, we write f(x) = Õ(g(x)) if f(x) = O(g(x) logd x) for some absolute
constant d > 0. For a, b ∈ R, we write a ∧ b := min{a, b} and a ∨ b := max{a, b}. We will
use ι to denote a general logarithmic factor. Let πk be the planning policy at the k-th episode,
i.e., a greedy policy that maximizes Qkh(x, a). Let wkh(x, a) := P

{
(xh, ah) = (x, a) | πk,P

}
and

wk(x, a) :=
∑
h w

k
h(x, a).

B.1 Good Events and Useful Lemmas

Fix ε to be a constant to be determined later (we will set ε = 1/K). Consider the following events:

GH :=

{
∀x, a, h, k, w,

∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤ 2ε+

√
(d ∧ S)H2

2Nk(x, a)
log

6H2SAK

δε

}
, (GH)

GB̂ :=

{
∀x, a, h, k, w,

∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤
2ε+

√√√√2(d ∧ S)
∥∥V ∗h+1

∥∥2

P̂k

Nk(x, a)
log

6H2SAK

δε
+

7(d ∧ S)H

3Nk(x, a)
log

6H2SAK

δε

}
,

(GB̂)

GV :=

{
∀x, a, h, k, w,

∣∣∣‖V ∗h ‖P̂k − ‖V ∗h ‖P
∣∣
x,a,w

∣∣∣ ≤ 2ε+

√
4(d ∧ S)H2

Nk(x, a)
log

6H2SAK

δε

}
,

(GV)

GP :=

{
∀x, a, y, k,

∣∣∣P̂k(y | x, a)− P(y | x, a)
∣∣∣ ≤√

2P(y | x, a)

Nk(x, a)
log

2S2AK

δ
+

2

3Nk(x, a)
log

2S2AK

δ

}
,

(GP)

GP̂ :=

{
∀x, a, y, k,

∣∣∣P̂k(y | x, a)− P(y | x, a)
∣∣∣ ≤√

2P̂k(y | x, a)

Nk(x, a)
log

2S2AK

δ
+

7

3Nk(x, a)
log

2S2AK

δ

}
,

(GP̂)

GN :=

∀x, a, k, Nk(x, a) ≥ 1

2

∑
j<k

wj(x, a)−H log
HSA

δ

 . (GN)

15

Lemma 1 (Probability of good events.). Each of the good event holds with probability at least 1− δ.
In particular, they hold simultaneously with probability at least

P
{
GH ∩GB̂ ∩GV ∩GP ∩GP̂ ∩GN

}
≥ 1− 6δ.

Proof. We only need to prove that each of the good event holds with probability at least 1− δ.

We first show that P {GH} ≥ 1− δ by Hoeffding’s inequality and a covering argument. In particular
by Hoeffding’s inequality we have that for fixed x, a, h, k, w,∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤
√

H2

2Nk(x, a)
log

2

δ

holds with probability at least 1− δ. We first apply a covering argument for the preferences set. We
consider an ε

H -covering C for the unit ball
{
w ∈ Rd : ‖w‖1 ≤ 1

}
, then |C| ≤

(
3H
ε

)d
, and for any

w in the ball, there exists w′ ∈ C such that ‖w − w′‖1 ≤
ε
H . Then a union bound on w ∈ C and

(x, a, k, h) ∈ S ×A× [K]× [H] yields that with probability at least 1− δ, the following holds for
every (x, a, k, h, w) ∈ S ×A× [K]× [H]× C:∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤
√

dH2

2Nk(x, a)
log

6H2SAK

δε

Now consider an arbitrary w ∈ W (hence in the unit ball), let w′ ∈ C be such that ‖w − w′‖1 ≤
ε
H ,

then by Lemma 2 we have that with probability at least 1− δ,∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤ ∣∣∣∣ P̂kV ∗h+1

∣∣∣
x,a,w

− P̂kV ∗h+1

∣∣∣
x,a,w′

∣∣∣∣
+

∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w′

∣∣∣∣+
∣∣∣PV ∗h+1

∣∣
x,a,w′

− PV ∗h+1

∣∣
x,a,w

∣∣∣
≤ 2ε+

√
dH2

2Nk(x, a)
log

6H2SAK

δε

holds for every (x, a, k, h, w) ∈ S × A × [K] × [H] × W . Similarly, we can apply the above
covering argument for the value function set by considering an ε-covering C for the H-ball{
v ∈ RS : ‖v‖∞ ≤ H

}
, then |C| ≤

(
3H
ε

)S
, then we obtain that with probability at least 1− δ,∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤ 2ε+

√
SH2

2Nk(x, a)
log

6H2SAK

δε

holds for every x, a, k, h and every value functions, hence for every preference-induced value
functions. The two inequalities together show that P {GH} ≥ 1− δ.

Similarly, we can apply the covering arguments with the empirical Bernstein’s inequalities [Maurer
and Pontil, 2009] to show that P

{
GB̂
}
≥ 1− δ.

P {GV } ≥ 1− δ is proved by the covering arguments with Theorem 10 from [Maurer and Pontil,
2009].

P {GP } ≥ 1−δ andP
{
GP̂
}
≥ 1−δ are proved by Bernstein and empirical Bernstein’s inequalities

[Maurer and Pontil, 2009], respectively.

Finally, P {GN} ≥ 1− δ is due to Lemma F.4 from [Dann et al., 2017].

Lemma 2 (Continuity). For every h, we have |V ∗h (x;w)− V ∗h (x;w′)| ≤ (H − h+ 1) ‖w − w′‖1 .

Proof. We prove it by induction. For H + 1, we have V ∗H+1(x;w) = V ∗H+1(x;w′) = 0. Now
suppose ∣∣V ∗h+1(x;w)− V ∗h+1(x;w′)

∣∣ ≤ (H − h) ‖w − w′‖1 ,

16

and consider h. Without loss of generality, suppose V ∗h (x;w) ≥ V ∗h (x;w′). Then

|V ∗h (x;w)− V ∗h (x;w′)| = V ∗h (x;w)− V ∗h (x;w′)

= max
a

Q∗h(x, a;w)−max
a′

Q∗h(x, a;w′)

≤ Q∗h(x, a;w)−Q∗h(x, a;w′) (let a = arg max
a

Q∗h(x, a;w))

≤ |〈w − w′, rh(x, a)〉|+
∑
y∈S

P (y | x, a)
(
V ∗h+1(y;w)− V ∗h+1(y;w′)

)
≤ ‖w − w′‖1 + (H − h) ‖w − w′‖1
= (H − h+ 1) ‖w − w′‖1 .

Hence the conclusion holds.

Lemma 3 (Bounds for lower order terms). If events (GP), (GP̂) hold, then for every V1, V2 such that
0 ≤ V1(x;w) ≤ V2(x;w) ≤ H , and for every x, a, h, k, w, the following inequalities hold:

1.
∣∣∣∣ (P̂k − P)(V2 − V1)

∣∣∣
x,a,w

∣∣∣∣ ≤ 1
H P (V2 − V1)|x,a,w + 2H2Sι

Nk(x,a)
;

2.
∣∣∣∣ (P̂k − P)(V2 − V1)

∣∣∣
x,a,w

∣∣∣∣ ≤ 1
H P̂ (V2 − V1)

∣∣∣
x,a,w

+ 3H2Sι
Nk(x,a)

;

3.
∣∣∣∣ (P̂k − P)(V2 − V1)2

∣∣∣
x,a,w

∣∣∣∣ ≤ P(V2 − V1)2
∣∣
x,a,w

+ 2H2Sι
Nk(x,a)

;

4. ‖V2 − V1‖2P̂k

∣∣∣
x,a,w

≤ 2 P(V2 − V1)2
∣∣
x,a,w

+ 2H2Sι
Nk(x,a)

;

Proof. For simplicity in this proof we denote p(y) := P(y | x, a) and p̂(y) := P̂k(y | x, a).

For the first inequality,∣∣∣∣ (P̂k − P)(V2 − V1)
∣∣∣
x,a,w

∣∣∣∣ ≤∑
y∈S

∣∣p̂k(y)− p(y)
∣∣ (V2(y;w)− V1(y;w))

≤
∑
y∈S

(√
2p(y)ι

Nk(x, a)
+

2ι

3Nk(x, a)

)
(V2(y;w)− V1(y;w)) (since (GP) holds)

≤
∑
y∈S

(
p(y)

H
+

Hι

2Nk(x, a)
+

2ι

3Nk(x, a)

)
(V2(y;w)− V1(y;w)) (use

√
ab ≤ 1

2
(a+ b))

≤
∑
y∈S

p(y)

H
(V2(y;w)− V1(y;w)) +

2H2Sι

Nk(x, a)

=
1

H
P (V2 − V1)|x,a,w +

2H2Sι

Nk(x, a)
.

The second inequality is proved in a same way as the first one, except that in the second step we use
event (GP̂) instead of (GP).

17

For the third inequality,∣∣∣∣ (P̂k − P)(V2 − V1)2
∣∣∣
x,a,w

∣∣∣∣ ≤∑
y

|p̂(y)− p(y)| (V2(y;w)− V1(y;w))2

≤
∑
y

(√
2p(y)ι

Nk(x, a)
+

2ι

3Nk(x, a)

)
(V2(y;w)− V1(y;w))2 (by (GP))

≤
∑
y

(
p(y) +

ι

2Nk(x, a)
+

2ι

3Nk(x, a)

)
(V2(y;w)− V1(y;w))2 (use

√
ab ≤ a/2 + b/2)

≤ P(V2 − V1)2
∣∣
x,a,w

+
2H2Sι

Nk(x, a)
.

For the fourth inequality, notice the following

‖V2 − V1‖2P̂k ≤ P̂k(V2 − V1)2 ≤ P(V2 − V1)2 + (P̂k − P)(V2 − V1)2,

and use the third inequality.

B.2 Proof of the Hoeffding Variant.

In this part, we follow notations in Algorithm 1 and prove the first claim in Theorem 1.

Bonus. We set the bonus function in Algorithm 1 to be

bk(x, a) := 2ε+

√
(d ∧ S)H2ι

2Nk(x, a)
, ι := log

6H2SAK

δε
(2)

where ε will be set as ε = 1/K.

Lemma 4 (Optimistic value function estimation). If event (GH) holds, then V ∗h (x;w) ≤ V kh (x;w).

Proof. We prove the lemma by induction over h ∈ [H]. ForH+1, V kH+1(x;w) = V ∗H+1(x;w) = 0.

Now suppose V kh+1(x;w) ≥ V ∗h+1(x;w) holds for all (x, k, w) ∈ S × [K]×W , and consider h. Let
a = arg maxaQ

∗
h(x, a;w), then by definition we have

V ∗h (x;w) = Q∗h(x, a;w) = 〈w, rh(x, a)〉+ PV ∗h+1

∣∣
x,a,w

,

V kh (x;w) ≥ Qkh(x, a;w) = H ∧
(
bk(x, a) + 〈w, rh(x, a)〉+ P̂kV kh+1

∣∣∣
x,a,w

)
.

If Qkh(x, a;w) = H , then V kh (x;w) ≥ H ≥ V ∗h (x;w); otherwise we have

V kh (x;w)− V ∗h (x;w) ≥ bk(x, a) + P̂kV kh+1

∣∣∣
x,a,w

− PV ∗h+1

∣∣
x,a;w

≥ bk(x, a) + P̂kV ∗h+1

∣∣∣
x,a,w

− PV ∗h+1

∣∣
x,a;w

(by induction hypothesis)

≥ 0, (by (GH))

which completes the induction and finishes the proof.

Lemma 5 (Per-episode regret decomposition). If events (GH), (GP) hold, then for every k, it holds:

V ∗1 (x1;wk)− V π
k

1 (x1;wk) . EP,πk

H∑
h=1

H ∧

(
ε+

√
(d ∧ S)H2ι

Nk(x, a)
+

H2Sι

Nk(xh, ah)

)
.

Proof. We first note the following recursion,

V kh (x;w)− V π
k

h (x;w) = Qkh(x, a;w)−Qπ
k

h (x, a;w) (set a = πkh(x))

18

≤ bk + P̂kV kh+1 − PV π
k

h+1

∣∣∣
x,a,w

= bk + (P̂k − P)V ∗h+1 + (P̂k − P)(V kh+1 − V ∗h+1) + P(V kh+1 − V π
k

h+1)
∣∣∣
x,a,w

≤ 2bk + (P̂k − P)(V kh+1 − V ∗h+1) + P(V kh+1 − V π
k

h+1)
∣∣∣
x,a,w

(by (GH))

≤ 2bk +
2H2Sι

Nk
+

(
1 +

1

H

)
P(V kh+1 − V π

k

h+1)

∣∣∣∣
x,a,w

(by Lemma 3),

and by solving the recursion and noting that (1 + 1/H)H ≤ e we have

V k1 (x1;wk)− V π
k

1 (x1;wk) ≤ e · EP,πk

H∑
h=1

(
2bk(xh, ah) +

2H2Sι

Nk(xh, ah)

)

. EP,πk

H∑
h=1

(
ε+

√
(d ∧ S)H2ι

Nk(x, a)
+

H2Sι

Nk(xh, ah)

)
.

The claim is proved by using Lemma 4 and noting that the value functions are bounded by H .

Now we are ready to prove the first part of Theorem 1.
Theorem 6 (Restatement of Theorem 1, Hoeffding part). Consider Algorithm 1 with bonus function
(2) and ε = 1/K, then for any sequence of the incoming preferences

{
w1, w2, . . . , wK

}
, the

regret (1) of Algorithm 1 is bounded by

regret(K) .
√

(d ∧ S) ·H3SAK · log(HSAK/δ) +H2S2A log2(HSAK/δ)

with probability at least 1− δ.

Proof. First by Lemma 5 we have

regret(K) =

K∑
k=1

V ∗1 (x1;wk)− V π
k

1 (x1;wk)

.
K∑
k=1

H∑
h=1

∑
x,a

wkh(x, a) ·H ∧

(
ε+

H2Sι

Nk(x, a)
+

√
(d ∧ S)H2ι

Nk(x, a)

)

.
K∑
k=1

H∑
h=1

∑
x,a/∈Lk

wkh(x, a) ·H

︸ ︷︷ ︸
(i)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) · ε

︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) · HSι

Nk(x, a)︸ ︷︷ ︸
(iii)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) ·

√
(d ∧ S)H2ι

Nk(x, a)︸ ︷︷ ︸
(iv)

,

where we set
Lk :=

{
(x, a) :

∑
j<k

wj(x, a) ≥ 2Hι
}
. (3)

We next bound each terms separately.

Term (i). By (3) we have that (i) =
∑K
k=1

∑
x,a/∈Lk wk(x, a) ·H . H2SAι.

Term (ii). By definition we have that (ii) =
∑K
k=1

∑
x,a∈Lk wk(x, a) · ε . HSAKε.

Term (iii). The third term is bounded as follows:

(iii) =

K∑
k=1

∑
x,a

wk(x, a) · H2Sι

Nk(x, a)
· 1

∑
j<k

wj(x, a) ≥ 2Hι

 (by (3))

19

.
∑
x,a

K∑
k=1

wk(x, a) · H2Sι∑
j<k w

j(x, a)−Hι
· 1

∑
j<k

wj(x, a) ≥ 2Hι

 (by (GN))

. H2Sι · SA · ι = H2S2Aι2. (integration trick)

Term (iv). The fourth term is bounded as follows:

(iv) =

K∑
k=1

∑
x,a

wk(x, a) ·

√
(d ∧ S)H2ι

Nk(x, a)
· 1

∑
j<k

wj(x, a) ≥ 2Hι

 (by (3))

.
∑
x,a

K∑
k=1

wk(x, a) ·
√

(d ∧ S)H2ι∑
j<k w

j(x, a)−Hι
· 1

∑
j<k

wj(x, a) ≥ 2Hι

 (by (GN))

.
√

(d ∧ S)H2ι · SA ·
√
HK =

√
(d ∧ S)H3SAKι. (integration trick)

Summing up these terms, setting ε = 1/K and applying Lemma 1, we complete the proof.

Algorithm 4 MO-UCBVI (Bernstein Variant)
1: initialize historyH0 = ∅, ι = log(HSAK/δ)
2: for episode k = 1, 2, . . . ,K do
3: Nk(x, a), P̂k(y | x, a)← Empi-Prob(Hk−1)
4: receive a preference wk

5: set V kH+1(x;wk) = V kH+1(x;wk) = 0
6: for step h = H,H − 1, . . . , 1 do
7: for (x, a) ∈ S ×A do
8: compute bonus bkh(x, a) :h

√
(d∧S)ι
Nk(x,a)

·
(∥∥V kh+1

∥∥
P̂k +

∥∥∥V kh+1 − V
k
h+1

∥∥∥
P̂k

)
+ (d∧S)Hι

Nk(x,a)

9: compute bonus akh(x, a) :h
√

(d∧S)ι
Nk(x,a)

·
(∥∥∥V kh+1

∥∥∥
P̂k

+
∥∥∥V kh+1 − V

k
h+1

∥∥∥
P̂k

)
+ (d∧S)Hι

Nk(x,a)

10: Qkh(x, a;wk) = min
{
H, 〈wk, rh(x, a)〉+ bk(x, a) + P̂khV

k
h+1

∣∣
x,a,wk

}
11: V kh (x;wk) = maxa∈AQ

k
h(x, a;wk)

12: πkh(x) = arg maxaQ
k
h(x, a;wk)

13: Qk
h
(x, a;wk) = max

{
0, 〈wk, rh(x, a)〉 − ak(x, a) + P̂khV

k
h+1

∣∣
x,a,wk

}
14: V kh(x;wk) = Qk

h
(x, πkh(x);wk)

15: end for
16: end for
17: receive initial state xk1 = x1

18: for step h = 1, 2, . . . ,H do
19: take action akh = πkh(xkh), and obtain a new state xkh+1
20: end for
21: update historyHk = Hk−1 ∪ {xkh, akh}Hh=1
22: end for

B.3 Proof of Bernstein Variant

In this part, we follow notations in Algorithm 4 and prove the second claim in Theorem 1.

For a (estimated) transition kernel P and a (estimated) value function Vh(y;w), define its one-step
variance as

‖Vh‖2P
∣∣∣
x,a,w

:=
∑
y∈S

P(y | x, a)
(
Vh(y;w)− PVh|x,a,w

)2

.

Moreover, we often omit |x,a,w and simply write ‖Vh‖2P when x, a, w are clear from the context.

20

Bonus. Recall that

akh(x, a, w) := 2ε+

√
2(d ∧ S)ι

Nk(x, a)
·
(∥∥∥V kh∥∥∥

P̂k
+
∥∥∥V kh − V kh∥∥∥

P̂k

)
+

7(d ∧ S)Hι

3Nk(x, a)
,

bkh(x, a, w) := 2ε+

√
2(d ∧ S)ι

Nk(x, a)
·
(∥∥V kh ∥∥P̂k +

∥∥∥V kh − V kh∥∥∥
P̂k

)
+

7(d ∧ S)Hι

3Nk(x, a)
,

(4)

where ε is a parameter to be determined (we will set ε = 1/K).
Lemma 6 (Optimistic value estimation). Under event (GB̂), we have that for every x, a, k, h, w,

•
∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤ bkh(x, a, w) ∧ akh(x, a, w);

• V kh(x;w) ≤ V ∗h (x;w) ≤ V kh (x;w)

Proof. We prove the claims by induction. For H + 1, V ∗H+1(x, a;w) = V
k

H+1(x, a;w) =

V kH+1(x, a;w) = 0, hence the hypotheses hold. Now suppose the hypotheses hold for h + 1,
i.e., ∣∣∣∣ (P̂k − P)V ∗h+1

∣∣∣
x,a,w

∣∣∣∣ ≤ bkh(x, a, w) ∧ akh(x, a, w), (5)

V kh+1(x;w) ≤ V ∗h+1(x;w) ≤ V kh+1(x;w) (6)

and consider h. First we have the following two sets of inequalities:

V
k

h(x;w)− V ∗h (x;w) ≥ Qkh(x, a;w)−Q∗h(x, a;w) (set a = π∗h(x))

≥ bkh(x, a, w) + P̂kV
k

h+1

∣∣∣
x,a,w

− PV ∗h+1

∣∣
x,a,w

≥ bkh(x, a, w) + (P̂k − P)V ∗h+1

∣∣∣
x,a,w

(by (6))

≥ 0, (by (5))

and

V ∗h (x;w)− V kh(x;w) ≥ Q∗h(x, a;w)−Qk
h
(x, a;w) (set a = π∗h(x))

≥ akh(x, a, w) + PV ∗h+1

∣∣
x,a,w

− P̂kV kh+1

∣∣∣
x,a,w

≥ akh(x, a, w) + (P− P̂k)V ∗h+1

∣∣∣
x,a,w

(by (6))

≥ 0. (by (5))

These justify that
V kh(x;w) ≤ V ∗h (x;w) ≤ V kh(x;w). (7)

Second, the above inequalities imply that

‖V ∗h ‖P̂k ≤
∥∥∥V kh∥∥∥

P̂k
+
∥∥∥V kh − V ∗h ∥∥∥

P̂k
≤
∥∥∥V kh∥∥∥

P̂k
+
∥∥∥V kh − V kh∥∥∥

P̂k
, (8)

‖V ∗h ‖P̂k ≤
∥∥∥V kh∥∥∥

P̂k
+
∥∥∥V ∗h − V kh∥∥∥

P̂k
≤
∥∥∥V kh∥∥∥

P̂k
+
∥∥∥V kh − V kh∥∥∥

P̂k
, (9)

therefore,∣∣∣∣ (P̂k − P)V ∗h

∣∣∣
x,a,w

∣∣∣∣ ≤ 2ε+

√
2(d ∧ S)ι

Nk(x, a)
· ‖V ∗h ‖P̂k +

7(d ∧ S)Hι

3Nk(x, a)
(by (GB̂))

≤ akh−1(x, a;w) ∧ bkh−1(x, a;w). (by (8), (9) and (4))

This completes our induction.

21

Lemma 7 (Bonus upper bound). If events (GB̂), (GV) hold, then we have that

bkh ∨ akh
∣∣
x,a,w

≤ 3ε+

√
2(d ∧ S)ι

Nk

(∥∥V ∗h+1

∥∥
P

+ 2
√
P(V kh+1 − V

k
h+1)2

)
+

15HSι

Nk

∣∣∣∣∣
x,a,w

.

Proof. We first prove the bound for bkh(x, a, w). Note that∥∥V kh+1

∥∥
P̂k +

∥∥∥V kh+1 − V
k
h+1

∥∥∥
P̂k
≤
∥∥V ∗h+1

∥∥
P̂k +

∥∥V kh+1 − V ∗h+1

∥∥
P̂k +

∥∥∥V kh+1 − V
k
h+1

∥∥∥
P̂k

≤
∥∥V ∗h+1

∥∥
P̂k + 2

∥∥∥V kh+1 − V
k
h+1

∥∥∥
P̂k

(by Lemma 6)

≤ 2ε+
∥∥V ∗h+1

∥∥
P

+

√
4(d ∧ S)H2ι

Nk(x, a)
+ 2

∥∥∥V kh+1 − V
k
h+1

∥∥∥
P̂k

(by (GV))

≤ 2ε+
∥∥V ∗h+1

∥∥
P

+

√
4(d ∧ S)H2ι

Nk
+ 2

√
2P(V kh+1 − V

k
h+1)2 +

2H2Sι

Nk

∣∣∣∣∣
x,a,w

(by Lemma 3)

≤ 2ε+
∥∥V ∗h+1

∥∥
P

+ 2

√
P
(
V
k

h+1 − V
k
h+1

)2

+

√
50H2Sι

Nk

∣∣∣∣∣
x,a,w

.

Then the bound for bkh(x, a, w) is obtained by substituting the above into (4) and use√
2(d ∧ S)ι

Nk(x, a)
· 2ε ≤ ε2 +

2(d ∧ S)ι

Nk(x, a)
≤ ε+

2HSι

Nk(x, a)
.

Similarly we can obtain the bound for akh(x, a, w).

Lemma 8 (Per-episode regret decomposition). If events (GB̂), (GV), (GP) hold, then

V ∗1 (x1;wk)− V π
k

1 (x1;wk) .

EP,πk

H∑
h=1

H ∧

(
ε+

√
(d ∧ S)ι

Nk

(∥∥V ∗h+1

∥∥
P

+
√
P(V kh+1 − V

k
h+1)2

)
+
H2Sι

Nk

∣∣∣∣∣
xh,ah,wk

)
.

Proof. We first note the following recursion,

V kh (x;w)− V π
k

h (x;w) = Qkh(x, a;w)−Qπ
k

h (x, a;w) (set a = πkh(x))

≤ bkh + P̂kV kh+1 − PV π
k

h+1

∣∣∣
x,a,w

= bkh + (P̂k − P)V ∗h+1 + (P̂k − P)(V kh+1 − V ∗h+1) + P(V kh+1 − V π
k

h+1)
∣∣∣
x,a,w

≤ 2bkh + (P̂k − P)(V kh+1 − V ∗h+1) + P(V kh+1 − V π
k

h+1)
∣∣∣
x,a,w

(by Lemma 6)

≤ 2bkh +
2H2Sι

Nk
+

(
1 +

1

H

)
P(V kh+1 − V π

k

h+1)

∣∣∣∣
x,a,w

(by Lemma 3),

and by solving the recursion and noting that (1 + 1/H)H ≤ e we have

V k1 (x1;wk)− V π
k

1 (x1;wk) ≤ e · EP,πk

H∑
h=1

(
2bkh(xh, ah) +

2H2Sι

Nk(xh, ah)

)

. EP,πk

H∑
h=1

ε+

√
(d ∧ S)ι

Nk
·
(∥∥V ∗h+1

∥∥
P

+
√
P(V kh+1 − V

k
h+1)2

)
+
H2Sι

Nk

∣∣∣∣∣
xh,ah,wk

 ,

where the last inequality is by Lemma 7. The claim is proved by using Lemma 6 and noting that the
value functions are bounded by H .

22

Lemma 9 (Lower order regrets). By setting ε = 1/K, we have that

K∑
k=1

EP,πk

[
H∑
h=1

P(V kh+1 − V
k
h+1)2

∣∣∣
xh,ah,wk

]
. H5S2Aι2.

Proof. We first note the following recursion,

V kh (x;w)− V kh(x;w) = Qkh(x, a;w)−Qk
h
(x, a;w) (set a = πkh(x))

≤ akh + bkh + P̂k(V kh+1 − V
k
h+1)

∣∣∣
x,a,w

= akh + bkh + (P̂k − P)(V kh+1 − V
k
h+1) + P(V kh+1 − V

k
h+1)

∣∣∣
x,a,w

≤ akh + bkh +
2H2Sι

Nk
+

(
1 +

1

H

)
P(V kh+1 − V

k
h+1)

∣∣∣∣
x,a,w

(by Lemma 3)

≤ 6ε+ 6H

√
2(d ∧ S)ι

Nk
+

30HSι

Nk
+

2H2Sι

Nk
+

(
1 +

1

H

)
P(V kh+1 − V

k
h+1)

∣∣∣∣∣
x,a,w

(by Lemmas 6 and 7)

≤ 6ε+

√
100H2Sι

Nk
+

32H2Sι

Nk
+

(
1 +

1

H

)
P(V kh+1 − V

k
h+1)

∣∣∣∣∣
x,a,w

,

by solving which and noting that (1 + 1/H)H ≤ e and that the value functions are bounded by H ,
we obtain that

V kh (x;w)− V kh(x;w) . EP,πk

∑
t≥h

H ∧

(
ε+

√
100H2Sι

Nk(xh, ah)
+

H2Sι

Nk(xh, ah)

)
,

therefore

(
V kh (x;w)− V kh(x;w)

)2

.

EP,πk

∑
t≥h

H ∧

(
ε+

√
H2Sι

Nk(xh, ah)
+

H2Sι

Nk(xh, ah)

)2

. H · EP,πk

∑
t≥h

(
H ∧

(
ε+

√
H2Sι

Nk(xh, ah)
+

H2Sι

Nk(xh, ah)

))2

. H · EP,πk

∑
t≥h

H2 ∧

(
ε2 +

H2Sι

Nk(xh, ah)
+

H4S2ι2

(Nk(xh, ah))
2

)
.

Then

LHS :=

K∑
k=1

EP,πk

H∑
h=1

P(V kh+1 − V
k
h+1)2

∣∣∣
xh,ah,wk

=

K∑
k=1

H∑
h=1

∑
x,a

wkh(x, a) P(V kh+1 − V
k
h+1)2

∣∣∣
x,a,wk

. H ·
K∑
k=1

H∑
h=1

∑
x,a

wkh(x, a) · EP,πk

∑
t≥h

H2 ∧

(
ε2 +

H2Sι

Nk(xh, ah)
+

H4S2ι2

(Nk(xh, ah))
2

)

. H2 ·
K∑
k=1

H∑
h=1

∑
x,a

wkh(x, a) ·H2 ∧

(
ε2 +

H2Sι

Nk(xh, ah)
+

H4S2ι2

(Nk(xh, ah))
2

)

.
∑
k,h

∑
x,a/∈Mk

wkh(x, a)H4 +
∑
k,h

∑
x,a∈Mk

wkh(x, a)
(
H2ε2 +

H4Sι

Nk(x, a)
+

H6S2ι2

(Nk(x, a))
2

)
,

23

where we set
Mk :=

{
(x, a) :

∑
j<k

wj(x, a) ≥ 2HSι
}
.

Then by (GN) and the integration tricks (see the proof of Theorem 7), we obtain

LHS . H4 · SA ·HSι+H2ε2 · SA ·HK +H4Sι · SA · ι+H6S2ι2 · SA/(HSι)
. H5S2Aι2 +H3SAKε2 . H5S2Aι2,

where the last inequality is because ε = 1/K.

Now we are ready to prove the second part of Theorem 1.
Theorem 7 (Restatement of Theorem 1, Bernstein part). Consider Algorithm 4 with bonus function
(4) and ε = 1/K, then for any sequence of the incoming preferences

{
w1, w2, . . . , wK

}
, the

regret (1) of Algorithm 4 is bounded by

regret(K) .
√

(d ∧ S)H2SAKι2 +H2.5S2Aι2, ι := log(HSAK/δ),

with probability at least 1− δ.

Proof. First by Lemma 8 we have

regret(K) =

K∑
k=1

V ∗1 (x1;wk)− V π
k

1 (x1;wk)

.
K∑
k=1

H∑
h=1

∑
x,a

wkh(x, a)H ∧
(
ε+

H2Sι

Nk
+

√
(d ∧ S)ι

Nk

(√
P(V kh+1 − V

k
h+1)2 +

∥∥V ∗h+1

∥∥
P

))

.
K∑
k=1

H∑
h=1

∑
x,a/∈Lk

wkh(x, a)H

︸ ︷︷ ︸
(i)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a)ε

︸ ︷︷ ︸
(ii)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a)
H2Sι

Nk(x, a)︸ ︷︷ ︸
(iii)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) ·

√
(d ∧ S)ι

Nk(x, a)
·
√
P(V kh+1 − V

k
h+1)2

∣∣∣∣
x,a,wk︸ ︷︷ ︸

(iv)

+

K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) ·

√
(d ∧ S)ι

Nk(x, a)
·
∥∥V ∗h+1

∥∥
P

∣∣
x,a,wk︸ ︷︷ ︸

(v)

,

where we set
Lk :=

{
(x, a) :

∑
j<k

wj(x, a) ≥ 2Hι
}
. (10)

We next bound each of these terms separately.

Term (i). By (10) we have that (i) =
∑K
k=1

∑
x,a/∈Lk wk(x, a)H . H2SAι.

Term (ii). By definition we have that (ii) =
∑K
k=1

∑
x,a∈Lk wk(x, a)ε . HSAKε.

Term (iii). The third term is bounded as follows:

(iii) =

K∑
k=1

∑
x,a

wk(x, a) · H2Sι

Nk(x, a)
· 1

∑
j<k

wj(x, a) ≥ 2Hι

 (by (10))

.
∑
x,a

K∑
k=1

wk(x, a) · H2Sι∑
j<k w

j(x, a)−Hι
· 1

∑
j<k

wj(x, a) ≥ 2Hι

 (by (GN))

. H2Sι · SA · ι = H2S2Aι2. (integration trick)

24

Term (iv). By Lemma 9 and the integration tricks, we bound the fourth term as follows:

(iv) ≤
√

(d ∧ S)ι ·

√√√√ K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a)

Nk(x, a)
·

√√√√ K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) · P(V kh+1 − V
k
h+1)2

.
√
Sι ·
√
SAι ·

√
H5S2Aι2 . H2.5S2Aι2.

Term (v). The fifth term is the leading term. We proceed to bound this term by noting

(v) ≤
K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) ·

(√
(d ∧ S)ι

Nk(x, a)
·
(∥∥∥V πk

h+1

∥∥∥
P

+
∥∥∥V ∗h+1 − V π

k

h+1

∥∥∥
P

))

≤
√

(d ∧ S)ι ·

√√√√ K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a)

Nk(x, a)
·

(√√√√√√√
K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) ·
∥∥∥V πk

h+1

∥∥∥2

P︸ ︷︷ ︸
(v1)

+

√√√√√√√
K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) ·
∥∥∥V ∗h+1 − V π

k

h+1

∥∥∥2

P︸ ︷︷ ︸
(v2)

)
,

where

(v1) =

K∑
k=1

Varπk,P

[
H∑
h=1

〈wk, rh(xh, ah)〉

]
≤ H2K

by the law of total variance and that the cumulative reward cannot exceed H , and

(v2) ≤
K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) · P(V ∗h+1 − V π
k

h+1)2
∣∣∣
x,a,wk

≤ H ·
K∑
k=1

H∑
h=1

∑
x,a∈Lk

wkh(x, a) · P(V ∗h+1 − V π
k

h+1)
∣∣∣
x,a,wk

≤ H2 ·
K∑
k=1

(
V ∗1 (x1;wk)− V π

k

1 (x1;wk)
)

= H2 · regret(K).

Hence,

(v) .
√

(d ∧ S)ι ·
√
SAι ·

(√
H2K +H ·

√
regret(K)

)
.
√

(d ∧ S)H2SAKι2 +
√

(d ∧ S)H2SAι2 ·
√
regret(K).

Summing up terms (i) to (v) and choosing ε = 1/K, we obtain

regret(K) . H2SAι+HSAKε+H2S2Aι2 +H2.5S2Aι2

+
√

(d ∧ S)H2SAKι2 +
√

(d ∧ S)H2SAι2 ·
√
regret(K)

. H2.5S2Aι2 +
√

(d ∧ S)H2SAKι2 +
√

(d ∧ S)H2SAι2 ·
√
regret(K),

solving which we obtain

regret(K) .
√

(d ∧ S)H2SAKι2 +H2.5S2Aι2.

Applying Lemma 1 completes the proof.

C Proof of Theorem 3 and Corollary 5

In this section, we follow notations in Algorithm 2 and Algorithm 3 and prove Theorem 3. Let
V
k

h(x;w) := maxaQ
k

h(x, a;w). Let πk be the planning policy at the k-th episode and π̄k be the
exploration policy at the k-th episode.

25

Bonus. We set the bonus functions in Algorithm 3 and Algorithm 2 to be

bk(x, a) := 2ε+

√
(d ∧ S)H2ι

2Nk(x, a)
, ck(x, a) :=

3H2Sι

Nk(x, a)
+ 2bk(x, a), ι := log

6H2SAK

δε
, (11)

where ε is a parameter to be decided later (we will set ε = 1/K).

We note Lemma 4 applies for the planning phase. The follows lemma relates planning error with
exploration regret.
Lemma 10 (Planning error). If events (GH), (GP̂) hold, then for every x, a, h, k, w,

V kh (x,w)− V π
k

h (x,w) ≤
(

1 +
1

H

)H−h+1

· V kh(x).

In particular V k1 (x1;w)− V πk

1 (x1;w) ≤ e · V k1(x).

Proof. We prove the conclusion by induction. For H + 1, the conclusion holds since both the left
high side and the right hand side are zero. Next we assume the conclusion holds for h+ 1, i.e.,

V kh+1(x,w)− V π
k

h+1(x,w) ≤
(

1 +
1

H

)H−h
· V kh+1(x), (12)

and consider h. Recall the definitions in Algorithm 2 and Algorithm 3. Set a = πkh(x), then we have

V kh (x;w) = Qkh(x, a;w) = H ∧
(
〈w, rh(x, a)〉+ P̂kV kh+1

∣∣∣
x,a,w

+ bk(x, a)

)
, (13)

V π
k

h (x;w) = Qπ
k

h (x, a;w) = 〈w, rh(x, a)〉+ PV π
k

h+1

∣∣∣
x,a,w

, (14)

and

V
k

h(x) = max
a′

Q
k

h(x, a′) ≥ Qkh(x, a) = H ∧
(
P̂kV

k

h+1

∣∣∣
x,a

+ ck(x, a)

)
.

If Q
k

h(x, a) = H , clearly we have V kh (x;w)− V πk

h (x;w) ≤ H ≤ V kh(x), thus the conclusion holds.
In the following suppose

V
k

h(x) = max
a′

Q
k

h(x, a′) ≥ Qkh(x, a) = P̂kV
k

h+1

∣∣∣
x,a

+ ck(x, a). (15)

Then (13) and (14) yield

V kh (x,w)− V π
k

h (x,w) ≤ P̂kV kh+1

∣∣∣
x,a,w

− PV π
k

h+1

∣∣∣
x,a,w

+ bk(x, a)

= P̂k(V kh+1 − V π
k

h+1) + (P− P̂k)(V ∗h+1 − V π
k

h+1) + (P̂k − P)V ∗h+1

∣∣∣
x,a,w

+ bk(x,w)

≤ P̂k(V kh+1 − V π
k

h+1) + (P− P̂k)(V ∗h+1 − V π
k

h+1)
∣∣∣
x,a,w

+ 2bk(x, a). (by Lemma 4)

≤
(

1 +
1

H

)
P̂k
(
V kh+1 − V π

k

h+1

)∣∣∣
x,a,w

+
3H2Sι

Nk(x, a)
+ 2bk(x, a) (by Lemma 3)

≤
(

1 +
1

H

)
P̂k

((
1 +

1

H

)H−h
V
k

h+1

)∣∣∣∣∣
x,a

+
3H2Sι

Nk(x, a)
+ 2bk(x, a) (by (12))

=

(
1 +

1

H

)H−h+1

P̂kV
k

h+1

∣∣∣
x,a

+ ck(x, a) (by (11))

≤
(

1 +
1

H

)H−h+1

Q
k

h(x, a) ≤
(

1 +
1

H

)H−h+1

V
k

h(x) (by (15)).

Thus the conclusion also holds for h. By induction we complete the proof.

The following lemma is a consequence of Theorem 6 with zero reward.

26

Lemma 11 (Zero reward regret). In (11) set ε = 1/K, then with probability at least 1− δ, the total
value (regret) of Algorithm 2 is bounded by

K∑
k=1

V
k

1(x1) .
√

(d ∧ S) ·H3SAKι+H2S2Aι2, ι := log(HSAK/δ).

Proof. Use Theorem 6 with preference/reward set to be zero.

We are ready to prove Theorem 3.

Theorem 8 (Restatement of Theorem 3). Consider Algorithm 2 and Algorithm 3 with bonus function
(11) and ε = 1/K, and suppose that Algorithm 2 is run for

K h
(d ∧ S) ·H3SAι

ε2
+
H2S2Aι2

ε
, ι := log

HSA

δε

episodes, then Algorithm 3 outputs an (ε, δ)-PAC policy for preference-free exploration.

Proof. Recall that in the planning phase, we uniformly sample one of the K policies as our final
policy. Thus, with probability at least 1− δ,

V ∗1 (x1;w)− V π1 (x1;w) =
1

K

K∑
k=1

(
V ∗1 (x1;w)− V π

k

1 (x1;w)
)

≤ 1

K

K∑
k=1

(
V k1 (x1;w)− V π

k

1 (x1;w)
)

(by Lemma 4)

≤ e

K

K∑
k=1

V
k

1(x1) (by Lemma 10)

.

√
(d ∧ S) ·H3SAι

K
+
H2S2Aι2

K
, (by Lemma 11)

where ι = log(HSAK/δ), for the right hand side to be bounded by ε, it suffices to set

K h
(d ∧ S) ·H3SA

ε2
log

HSA

δε
+
H2S2A

ε
log2 HSA

δε
.

C.1 Proof of Corollary 5

For the first conclusion, we simply set d = SA and apply Theorem 3.

For the second conclusion about non-stationary MDPs, the proof logic follows with small revisions.

First, as the MDP is non-stationary, we replace P by {Ph}Hh=1. Similar in the algorithms, we need
to replace Nk(x, a) by

{
Nk
h (x, a)

}H
h=1

, which represents the number of visits to (x, a) at step h
upto episode k. Then the empirical transition probability will be estimated by P̂kh(y | x, a) =
Nk
h (x, a, y)/Nk

h (x, a), for Nk
h (x, a) ≥ 1.

Second, note that for stationary MDP, we have
∑

(x,a)N
K(x, a) = HK, but for non-stationary

MDP, this needs to be replaced by
∑

(x,a)N
K
h (x, a) = K for every h. Then for non-stationary MDP,

the integration tricks used in the proof of Theorem 6 needs to be revised accordingly. Let us take

27

term (iv) as an example, the revised analysis should be:

(iv) =

K∑
k=1

H∑
h=1

∑
x,a

wkh(x, a) ·

√
(d ∧ S)H2ι

Nk
h (x, a)

· 1

∑
j<k

wjh(x, a) ≥ 2ι

 (by a revised (3))

.
H∑
h=1

∑
x,a

K∑
k=1

wkh(x, a) ·
√

(d ∧ S)H2ι∑
j<k w

j
h(x, a)− ι

· 1

∑
j<k

wj(x, a) ≥ 2ι

 (by a revised (GN))

.
√

(d ∧ S)H2ι ·HSA ·
√
K =

√
(d ∧ S)H4SAKι. (integration trick)

Therefore the obtained bound has an enlarged H dependence.

Last, repeating the proof of Theorem 3 with the revised notations and the above revised inequalities,
we obtain the exploration trajectory complexity for non-stationary MDP, where the order of H is
enlarged due to the revised Theorem 6.

D Proof of Theorem 4

In this section, we follow notations in Algorithm 2 and Algorithm 3 and prove Theorem 4. Our
construction of hard instance is based on the results from Jin et al. [2020].

The following two definitions are migrated from reward-free exploitation (RFE) [Jin et al., 2020] to
preference-free exploitation (PFE) in MORL.
Definition 1 (Set of MOMDPs). Fix S,A, H, r,W as the state sets, action sets, length of horizon,
reward vector, preferences set, respectively. Then a set of transition probabilities P induces a set of
MOMDPs, denoted as (S,A, H,P, r,W) := {(S,A, H,P, r,W) : P ∈P}.
Definition 2 ((ε, p)-correctness). We say a PFE algorithm is (ε, p)-correct for a set of MOMDPs
(S,A, H,P, r,W), if with probability at least 1− p,

V πw
1 (x1;w;P) ≥ V ∗1 (x1;w;P)− ε, for all w ∈ W and P ∈P,

where πw is the policy given by the PFE algorithm for preference w ∈ W .

Basic hard instance. We specify the following set of MOMDPs (S,A, 2,Pbasic(s, ε), r,W) as a
basic hard instance:

• A state set S := {s} ∪ [d], where s is the initial state, and |S| = d+ 1.
• An action set A := [A].
• A horizon length H = 2.
• A d-dimensional action-independent reward vector, described by a matrix r := (0, Id×d) ∈
Rd×(d+1), i.e., the i-th row r(i)(·) ∈ Rd+1 sets reward 1 at state i, and reward 0 elsewhere.

• A preference setW :=
{
w ∈ Rd, ‖w‖1 = 1

}
. Forw ∈ W , w>r ∈ Rd+1 gives a scalarized

reward.
• A set of transition probabilities

Pbasic(s, ε) :=

{
P : ∀a ∈ [A], i ∈ [d],

∣∣∣∣P (i | s, a)− 1

d

∣∣∣∣ ≤ ε

d
, P (i | i, a) = 1

}
.

For P ∈Pbasic(s, ε), the initial state is always set to be s; then the agent takes an action
and transits to [d] with a near uniform distribution; finally, [d] are all absorbing states.

For the above basic hard instance, Jin et al. [2020] gives the following lemma to characterizes its
learning complexity.
Lemma 12 (Lower bound on the sample complexity of PFE for the basic hard instance). Fix
ε ≤ 1, p ≤ 1

2 , A ≥ 2, suppose d ≥ O (logA). There exists a distribution D over Pbasic(s, ε), such
that any (ε/12, p)-correct PFE algorithm alg for (S,A, 2,Pbasic, r,W) must satisfy

EP∼DEP,alg [K] ≥ Ω

(
dA

ε2

)
,

where K is the number of trajectories collected by alg in the exploration phase.

28

Proof. See Jin et al. [2020], Lemma D.2. Note that by the construction of the basic hard instance,
the preference-weighted reward recovers any reward that is action-independent, thus for the basic
hard instance defined in the language of PFE, it equals to the basic hard instance studied by Jin et al.
[2020], Lemma D.2 for RFE.

Hard instance in full version. Based on the basic hard instance, we next build the hard instance
in full version that witnesses the lower bound in Theorem 4. Let n = 2`0 . The hard instance is a set
of MOMDPs (S,A, H,P, r,W) specified as follows:

• A state set

S :=
{

(s, `) : s ∈ [2`], ` = 0, . . . , `0
}⋃

{(s, `0 + 1) : s ∈ [d]} ,

where (0, 0) is the initial state. The states can be viewed as a `0-layer binary tree with d
leaves attached to the last layer. Clearly, |S| = 2`0+1 − 1 + d = 2n− 1 + d = Θ (n).

• An action set A := [A].
• A horizon length H .
• A 2d-dimensional action-independent reward vector, described by a matrix

r :=

(
0d×(n−1) Ad×n 0d×d
0d×(n−1) 0d×n Id×d

)
∈ R2d×(2n−1+d),

where A ∈ Rd×n is a fixed matrix that we will specify later.
• A preference set W := WA ⊕Wbasic ⊂ R2d. Here Wbasic ⊂ Rd is the preference set

for the basic hard instance and gives the set of the last d-dimensions of a preference vector.
And we defineWA := {Aei, ei ∈ Rn, i = 1, . . . , n} ⊂ Rd, which gives the set of the first
d-dimensions of a preference vector. Here ei is the i-th standard coordinate vector for Rn.
Then w>r ∈ R2n−1+d gives a scalarized reward. The first 2n − 1 dimensions of the
scalarized reward w>r are always zero, i.e., the reward for the states in the 0, . . . , `0-th
layers is always zero. The last d dimensions of the scalarized reward is sampled from{
A>Aei, i = 1, . . . , n

}
, which specifies the reward for states in the (`0 + 1)-th layer.

• A set of transition probabilities

P :=
{
P (x`+1 = (s, `+ 1) |x` = (s, `), a = 1) = 1, ` = 0, . . . , `0 − 1,

P
(
x`+1 = (2` + s, `+ 1)

∣∣x` = (s, `), a > 1
)

= 1, ` = 0, . . . , `0 − 1;

P (x`0+1 |x`0 = (s, `0), a) = Psbasic, P
s
basic ∈Pbasic(s, ε)

}
.

Notice the transition probabilities up to the `0-th layer are fixed. And the transition probabil-
ity from the `0-th layer to the (`0 + 1)-th layer is specified by n multiples of the transition
probabilities that are defined earlier for the basic hard instance. In sum, a transition proba-
bility P ∈P corresponds to n multiples of transition probabilities Psbasic ∈Pbasic(s, ε),
s ∈ [n].

The following lemma is the key ingredient for obtaining lower bound for PFE.
Lemma 13. Let e1, . . . , en be the standard coordinate vector for Rn. Let e0 be the zero vector.
Suppose d ≥ 200

ε21
log(n+ 1). Then there exists a matrix A ∈ Rd×n such that∥∥A>Aei − ei∥∥∞ ≤ ε1, i = 1, . . . , n.

Proof. For d ≥ 8
ε2 log(n+ 1), by Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984],

there exists matrix A ∈ Rd×n, such that

(1− ε) ‖ei − ej‖2 ≤ ‖Aei −Aej‖2 ≤ (1 + ε) ‖ei − ej‖2 , ∀i, j ∈ {0, 1, . . . , n} .
Thus for i 6= j,

〈Aei, Aej〉 =
1

2

(
‖A(ei − e0)‖22 + ‖A(ej − e0)‖22 − ‖A(ei − ej)‖22

)
{
≤ 1

2

(
2(1 + ε)2 − 2(1− ε)2

)
= 4ε,

≥ 1
2

(
2(1− ε)2 − 2(1 + ε)2

)
= −4ε.

29

And for i = j,

〈Aei, Aei〉 = ‖A(ei − e0)‖22

{
≤ (1 + ε)2 ≤ 1 + 3ε,

≥ (1− ε)2 ≥ 1− 3ε.

In sum
δi,j − 4ε ≤ 〈A>Aei, ej〉 ≤ δi,j + 4ε.

Note that A>Aei =
∑n
j=1〈A>Aei, ej〉. Thus the above inequality implies

∥∥A>Aei − ei∥∥∞ ≤ 4ε.
A rescale of ε completes the proof.

We can then extend results from Jin et al. [2020] to PFE using Lemma 13.

Lemma 14 (Generalized Lemma D.3 of Jin et al. [2020]). Fix ε < 1
4 , ε0 < 1

16H and ε1 < 1
16 .

Consider P ∈P and w = (Aes, v) ∈ W , where v ∈ Rd is nearly uniform, i.e.,∥∥∥∥v − 1

d
1

∥∥∥∥
∞
≤ ε0

d
.

Then if policy π is ε-optimal, i.e., V π1 (P, w) ≥ V ∗1 (P, w)−ε, it must visit state (s, `0) with probability
at least 1

2 , i.e.,

Pπ[x`0 = (s, `0)] ≥ 1

2
.

Proof. From the preference vector we compute the scalarized reward as r =
(
0, A>Aes, v

)
, i.e.,

states in the 0, . . . , (`0 − 1)-th layers has zero reward, states in the `0-th layer has reward as A>Aes,
which takes value nearly 1 at state (s, `0) and value nearly 0 at other states, and states in the last layer
has nearly uniform reward v.

Let v̄ := 1
d

∑d
y=1 v[y] be the expected reward in the final layer under a uniform visiting distribution.

Then by construction we have |v(y)− v̄| ≤ ε0, which implies |v(y)− v(y′)| ≤ 2ε0. Therefore,

|Pv(·)− P′v(·)| ≤ 2ε0, for any two transition probability P and P′.

Now we can compute the value of a policy π:

V π1 = 〈Pπ [(·, `0)] , A>Aes(·)〉+ (H − `0 − 1)〈Pπ [(·, `0 + 1)] , v(·)〉
(since the last layer is absorbing)

≤ (1 + ε1)Pπ [(s, `0)] + ε1 (1− Pπ [(s, `0)]) + (H − `0 − 1)〈Pπ [(·, `0 + 1)] , v(·)〉
(by Lemma 13)

≤ ε1 + Pπ [(s, `0)] + (H − `0 − 1)〈Pπ [(·, `0 + 1)] , v(·)〉.

On the other hand we can lower bound the value of the optimal policy by a policy such that
x`0 = (s, `0) is taken with probability 1 (this is doable since the transition probability before the
`0-th layer is deterministic):

V ∗1 ≥ A>Aes(s)+(H−`0−1)〈P∗ [(·, `0 + 1)] , v(·)〉 ≥ 1−ε1+(H−`0−1)〈P∗ [(·, `0 + 1)] , v(·)〉.

In sum

1

4
≥ ε ≥ V ∗1 − V π1 ≥ 1− Pπ [(s, `0)]− 2ε1 − 2(H − `0 − 1)ε0

≥ 1− 2ε1 − 2Hε0 − Pπ [(s, `0)] ≥ 3

4
− Pπ [(s, `0)] .

Lemma 15 (Lemma D.4 of Jin et al. [2020]). Suppose H ≥ 2(`0 + 1). Then a PFE algorithm alg
that is (ε, p)-correct for the hard instance induces n PFE algorithms algs, s ∈ [n], which are all
(ε

4H , p)-correct for the basic hard instance.

30

Proof. Suppose policy π satisfies V π1 (P, w) ≥ V ∗1 (P, w) − ε, for all P ∈ P and w ∈ W . Then
by setting w =

(
0, ATAes, v

)
for s = 1, . . . , n, we obtain n sub-policies, each of which visits a

corresponding state from (1, `0), . . . , (n, `0) with probability at least 1
2 by Lemma 14 and induces a

near-optimal policy for the basic hard instance. The last claim is since

ε ≥ V ∗1 (P, w)− V π1 (P, w)

≥ Pπ [x`0 = (s, `0)] · (H − `0 − 1) · (V ∗1 (s;Psbasic, v)− V π1 (s;Psbasic, v))

≥ 1

2
(H − `0 − 1) · (V ∗1 (s;Psbasic, v)− V π1 (s;Psbasic, v)) (by Lemma 14)

≥ H

4
· (V ∗1 (s;Psbasic, v)− V π1 (s;Psbasic, v)) , (since H ≥ 2(`0 + 1))

which implies V π1 (s;Psbasic, v) ≥ V ∗1 (s;Psbasic, w)− ε
4H holds with probability p.

We are now ready to state Theorem 4 formally and deliver the proof.
Theorem 9 (Restatement of Theorem 4). Fix ε, p. There exists a set of MOMDPs induced by a set
of transition probabilities P , and a distribution D over P , such that if a PFE algorithm (alg) is
(ε, p)-correct for the set of MOMDPs, then the number of trajectories K that alg needs to collect in
the exploitation phase must satisfy

EP∼DEP,alg[K] ≥ Ω

(
min {d, S} ·H2SA

ε2

)
.

Proof. Let Ks be the number of visits to state (s, `0) by alg. Then according to Lemma 15, there
are n induced algorithms algs, s ∈ [n] that is (ε

4H , p)-correct for the basic hard instance, and each
of them collects ks number of trajectories.

However, by Lemma 12 there exists a distribution Ds over Pbasic(s,
ε

4H) such that

EP∼DsEP,algs [Ks] ≥ Ω

(
dAH2

ε2

)
.

Notice that during each episode, alg can and only can visit one of (s, `0) in the hard instance, thus
we have K =

∑
s∈[n]K

s. Making a summation we obtain

E [K] ≥ Ω

(
d · nAH2

ε2

)
= Ω

(
dSAH2

ε2

)
.

On the other hand, clearly in our construction, we can set d = n where Lemma 13 holds trivially.
Then by the same procedure we obtain

E [K] ≥ Ω

(
n · nAH2

ε2

)
= Ω

(
S2AH2

ε2

)
.

In sum we have

E [K] ≥ Ω

(
min {d, S} · SAH2

ε2

)
.

E Proof of Theorem 2

We now prove Theorem 2 based on Theorem 9.
Theorem 10 (Restatement of Theorem 2). Fix S,A,H . SupposeK > 0 is sufficiently large. Then for
any algorithm that runs for K episodes, there exists a set of MDPs P and a sequence of (necessarily
adversarially chosen) preferences

{
w1, . . . , wK

}
, such that

EP∼P,alg[regret(K)] ≥ 1

c
·
√

min {d, S}H2SAK

31

for some absolute constant c > 1, where the expectation is taken with respect to the randomness of
drawing an MDP and an algorithm collecting a dataset from the chosen MDP during the exploration
phase.

Proof. Let us fix d, S,A,H and a MDP structure as described in the proof of Theorem 9. Let K to
be a large number, and ε :=

√
min {d, S}H2SA/K0 to be a small number.

We only consider the randomness of (i) choosing an MDP with transition P and (ii) an algorithm
collecting a datasetHK from the chosen MDP during the exploration phase. In order words, we will
take expectation over all the randomness during the planning phase, in particular, the considered
regret is understood as

regret(K) :=

K∑
k=1

E
[
V ∗1 (x1;wk)− V π

k

1 (x1;wk) | P,HK
]
.

With this in mind, let us consider the following probability measures:

• Let P0(·) be the probability measure induced by the randomness of drawing a transition
kernel P from the set of transitions P .

• Let P (· | P) to denote the conditional probability measure induced by the randomness of
running an algorithm alg on a MDP with a fixed transition kernel P, i.e., the probability
measure of collecting a dataset.

• Let P (·) be the joint probability measure induced by the randomness of drawing a transition
kernel P, and the randomness of collecting a dataset.

Converting online-MORL algorithms into PFE algorithms. Let alg be an MORL algorithm deter-
mined by any fixed rules (but could contain random bits), and let adv be an (arbitrary) adversary that
provides preferences for alg in the online MORL game. Then we inductively define a preference-free
exploration algorithm ALG(K,P), which runs for at most K episodes on an MDP with transition
kernel P:

• At episode 1, adv chooses a preference w1 based on the fixed rule of alg; and alg interacts
with P under the guidance of w1 to collect datasetH1;

• At episode k ≤ K, adv chooses a preference wk based on the fixed rule of alg and the
history Hk−1; and alg interacts with P under the guidance of wk and collect dataset
Hk = Hk−1 ∪ {new empirical observations}.

• At episode k ≤ K, if the agent receives a sequence of planning preferences w1, . . . , wn, the
agent outputs a sequence of policies π1, . . . , πn respectively according to the planning rule
that alg adopts at the current episode (which is based on historyHk−1). For simplicity, we
denote ALG(P, k)[·] : {w} → {π} be such a planning process, i.e., ALG(P, k)[wi] = πi.

We now extend ALG into a “correct” PFE algorithm that stops at finite time:

ÃLG(P, k)[·] :=


ALG(P, k)[·], 1 ≤ k ≤ K,
PF-UCB(P, k −K)[·], K < k ≤ 2K,

output random policy for any preference, k > 2K.

To justify the correctness of this augmented algorithm, consider two error random variables:

error(P, k, ÃLG)[w] := E[V ∗1 (w;P)− V π1 (w;P) | P,Hk−1], for π = ÃLG(P, k)[w],

error(P, k, ÃLG) := max
w

error(P, k, ÃLG)[w],

and a stopping time
K̊ := (2K) ∧min

{
k : error(P, k, ÃLG) ≤ ε

}
.

Clearly K̊ ≤ 2K is bounded.

32

The augmented PFE algorithm ÃLG(P, K̊)[·] is correct. By construction, we have that for any MDP
with fixed transition kernel, if ÃLG is run for 2K episodes, its output becomes the same output of
PF-UCB that runs for K episodes, which is (ε, δ ≤ 0.9)-correct for any preference according to
Theorem 8. Mathematically, for any P,

P
{
error(P, 2K, ÃLG) > ε | P

}
< δ ≤ 0.9,

then over the randomness of choosing a transition kernel P ∼ P0, we have that

P
{
error(P, 2K, ÃLG) > ε

}
= EP∼P0

[
P
{
error(P, 2K, ÃLG) > ε | P

}]
< 0.9.

By discussing whether K̊ < 2K (where the error is smaller than ε with probability 1) or K̊ = 2K
(where we apply the above inequality), we have that

P
{
error(P, K̊, ÃLG) > ε

}
< 0.9.

This implies that ÃLG that runs for K̊ episodes is (ε, 0.9)-correct for the set of MDP described in the
proof of Theorem 9. Then by Theorem 9, we have that

E[K̊] ≥ 1

c
· min {d, S}H2SA

ε2
=

1

c
·K,

for some absolute constant c > 1. On the other hand,
K

c1
≤ E[K̊] = E

[
1

[
K̊ >

K

2c

]
· K̊
]

+ E

[
1

[
K̊ ≤ K

2c

]
· K̊
]
≤ 2K · P

{
K̊ >

K

2c

}
+
K

2c
,

which implies that

P

{
K̊ >

K

2c

}
≥ 1

4c
,

then by the definition of K̊, we have that

P

{
for each 1 ≤ k ≤ K

2c
, error(P, k, ÃLG) > ε

}
≥ P

{
K̊ >

K

2c

}
≥ 1

4c
,

which further yields that for each 1 ≤ k ≤ K
2c1

,

E
[
error(P, k, ÃLG)

]
≥ 1

4c
· ε, (16)

and

E

K/(2c)∑
k=1

error(P, k, ÃLG)

 ≥ 1

4c
· ε · K

2c
=

1

8c2
·
√

min {d, S}H2SAK. (17)

Regret lower bound. Recall the definition of error(P, k, ÃLG) and note that for k ≤ K/(2c) ≤ K,
ÃLG[P, k] is the same as ALG(P, k), which plans in the same way as alg in the k-th episode.

We note that (17) holds for any adversary that chooses its preferences inductively based on the online
MORL algorithm. Now we specify the adversary adv as follows: for k ≤ K/(2c), adv specifies a
preference wadv based on the rule of alg, the datasetHk−1, and the transition kernel P, such that

(wadv)k := arg max
w
E[V ∗1 (w;P)− V π1 (w;P) | P,Hk−1], for π = ÃLG(P, k)[w],

then
error(P, k, ÃLG)[(wadv)k] = error(P, k, ÃLG).

As a consequence, we have that

E[regret(K)] ≥ E[regret(K/(2c))] = E

K/(2c)∑
k=1

error(P, k, ÃLG)[(wadv)k]


= E

K/(2c)∑
k=1

error(P, k, ÃLG)

 ≥ 1

8c2
·
√

min {d, S}H2SAK,

and a rescaling of the constant completes our proof.

33

F Discussion on [Zhang et al., 2020a]

There is a technical error in the proof of Lemma 2 in [Zhang et al., 2020a]. In particular, the sequence
considered in Page 11, between equations (16) and (17),{

1 [ki ≤ K] ·
[[
P̂k1 − Ph

] [
V
π̄k

h+1 − V
πk

h+1

]
(s, a) +

(
rk1h − E[rh](skih , a

ki
h)
)]}τ

i=1
,

is not a martingale difference sequence, since πk depends on the randomness upto episode k, however
k1, . . . , kτ are all no larger than k. Thus Azuma-Hoeffding’s inequality cannot be applied for this
sequence.

To fix this error, one may consider applying a covering argument and union bound over the value
functions, but the obtained bound in their Theorem 1 should be revised to Õ

(
log(N)H5S2A/ε2

)
.

34

	Introduction
	Preliminaries
	Online MORL
	A Sample-Efficient Online Algorithm
	Theoretical Analysis

	Preference-Free Exploration
	A Sample-Efficient Exploration Algorithm
	Theoretic Analysis

	Related Works
	Conclusion
	Numerical Simulations
	Proof of Theorem 1
	Good Events and Useful Lemmas
	Proof of the Hoeffding Variant.
	Proof of Bernstein Variant

	Proof of Theorem 3 and Corollary 5
	Proof of Corollary 5

	Proof of Theorem 4
	Proof of Theorem 2
	Discussion on (Zhang el al., 2020a)

