
1 Table of Notation1

Table 1: Table of Model Elements
zk Vector of sensed values
z0:k History of sensed values to date
uk Vector of control inputs
u0:k History of control inputs to date

yk+∆T Performance metrics over time k to k +∆T
J Reward function maps performance metrics to a scalar
θk System parameters, intrinsic and extrinsic (unknown)
τk Control objective derived from current task
gk Vector of control parameters
C Control law uk = C(gk, τk, z0:k, u0:k) (grey-box)
∆T Frequency at which OCCAM adapts and computes new gains

2 Details on Simulated Platforms2

In this section we provide additional details about each of our simulated evaluation platforms, in-3

cluding two benchmark functions which are commonly used to test global functional optimization4

algorithms.5

2.1 Benchmark Functions6

We first validate our method on randomized variations of two common global optimization bench-
mark functions [1]. The first is the Branin function, which has a 2D input space and 1D output
space:

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t)cos(x1) + s

We treat as system parameters the six constants that parameterize the shape of the Branin function:7

θ = [a, b, c, s, t, r].8

The second is the Hartmann function, which has a 6D input space and 1D output space:

f(x) = −
4∑
i

θiexp

−
6∑

j=1

Aij(xj − Pij)
2


Where A and P are constant matrices, and we randomize over the 4-dimensional vector θ as system9

parameters.10

For these benchmark functions, there are no measured quantities z0:k or control actions u0:k. We11

consider the inputs to the benchmark functions to be the “gains” gk, and the outputs of the functions12

to be the performance measures yk. Therefore the data tuples for these functions consist of only13

the inputs x and scalar “metrics” y = f(x). For these functions, the reward function is simply set14

to the negative of the scalar function values: J(y) = −y. Because there is no history context, the15

context-only baseline in these two examples is simply our method without weight adaptation.16

For the benchmark functions, we use F-PACOH [2], which is based on training neural networks with17

regularization to serve as mean and kernel functions in a GP. F-PACOH is ill-suited to our robotic18

tests due to the high dimensionality of the full input space to the networks, so we use the LK-GP19

baseline in our robotic experiments instead.20

2.2 2D Race Car21

Our first simulated robotic system is a 2-dimensional car racing around a track, modified from the22

OpenAI Gym “Car Racing” environment [3]. The environment models a powerful rear-wheel-drive23
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car with sliding friction, making control nontrivial while trying to maximize speed on track. The24

system has three control inputs: uk = [us, ug, ub]. The controller C of the car consists of a25

proportional-plus-derivative (PD) controller that computes steering input us to steer the car towards26

the centerline of the track and a simple control law that accelerates the car by force ug on straight-27

aways up to a maximum speed, or brakes the car by force ub for corners above a certain curvature28

threshold. The sensor measurements of this system are zk = [v, ωk, elat], where v is the forward29

velocity of the car, ωk is the angular velocity, and elat is the lateral distance between the car and30

the track centerline. The controller C uses zk and an estimate for track curvature, c, derived from a31

vector of upcoming track waypoints τk to compute uk as follows:32

us = kpselat + kdsėlat

ug =

{
kpg, if v ≤ vmax

0, otherwise

ub =

{
kpb, if c ≥ cthresh

0, otherwise

The tunable parameters of this controller are

g = [kps kds kpg kpb vmax cthresh]

The racing car environment has three unknown system parameters θ = [m, p, µ], which are respec-33

tively the mass of the car, the car’s engine power, and the friction between the tires and track.34

For the racing car, the evaluation function computes the vector of performance metrics

yk:k+∆T =
1

∆T

[
1

1 +
∑

i elati
,

1

1 +
∑

wi
,
∑

vi

]
These are respectively the inverse average lateral tracking error, inverse of total number of timesteps35

during which a wheel was slipping, and average velocity over a fixed evaluation horizon. We invert36

tracking error and wheelslip since, in general, they ought to be minimized. In this case, the evalu-37

ation horizon is not a fixed ∆T but instead is however long it takes for the car to traverse a fixed38

distance on track. For online testing of this system, we set the reward function to be a weighted39

combination of the reward terms: J(y) =
∑3

j=0 rjy[j].40

2.3 Quadrotor with Model-Based Controller41

Our second simulated platform is a quadrotor MAV equipped with a geometric trajectory track-42

ing controller defined on SE(3) [4]. This controller takes in a reference trajectory τk defined43

in the quadrotor’s flat output space: position (px, py, pz) and yaw. The controller computes44

a feedforward motor speed command based on τk using the quadrotor’s nominal mass, iner-45

tial tensor, thrust and drag torque coefficients. It then uses measurements from the quadrotor46

zk = [px, py, pz, vx, vy, vz, R]k, where R is the rotation matrix representation of attitude, to com-47

pute feedback commands to correct tracking errors. The controller is parameterized by PD gains on48

the 3D position and PD gains on the attitude: gk = [kx, kv, kR, kΩ] (following the convention given49

by [4]). The quadrotor has five unknown system parameters which are the quadrotor’s mass, princi-50

pal moments of inertia, and thrust coefficient: θ = [m, Ixx, Iyy, Izz, kη]. The baseline controller is51

only aware of the nominal parameters, which are centered around those of the Crazyflie platform [5],52

and not the actual values. Thus, the feedback gains must be used to compensate for this parametric53

error. For more detailed information about the quadrotor’s dynamics and the controller derivation,54

see [4].55

For this system, the four performance measures y are the inverted average positional tracking error,56

inverted average yaw tracking error, inverted average pitch and roll, and inverted average com-57

manded thrust over the episode. Following the racing car example, we choose the reward function58

to be a weighted combination of the terms of y: J(y) =
∑4

j=0 rjy[j]. For this system, we set59

∆T = 4 seconds.60
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For our quadrotor experiments, the commanded trajectories τ consist of 3-dimensional ellipsoidal61

trajectories of varying radii and frequencies. Because of the simplicity of these trajectories, we62

do not have to provide information about τ as input to the network for this system. We leave the63

incorporation of more general and complex trajectories to future work. We use RotorPy [6] and its64

included SE(3) controller for all quadrotor simulations. For this environment, we also evaluate our65

framework on a physical quadrotor with the same controller and performance measures.66

2.4 Quadrupedal Robot with Learned Locomotion Policy67

Our third simulated robotic platform is a quadrupedal robot equipped with a static pretrained lo-68

comotion policy π trained using model-free RL [7]. π outputs joint angles such that the torso69

of the robot follows a velocity twist command ck = (ẋdes, ẏdes, ω̇des). The policy takes as high-70

dimensional input measurements zk the joint positions and velocities qk, q̇k, previous joint angle71

commands ak−1, commands ck, timing reference variables, and estimated base velocity and ground72

friction. We treat π as our controller C for this system.73

Although π is parameterized by a deep neural network, it is also conditioned on an additional com-
mand that allows the user to specify high-level behaviors that the policy should follow:

bk =
[
θcmd
1 , θcmd

2 , θcmd
3 , f cmd, hcmd, hcmd

f , scmd]
The three terms

[
θcmd
1 , θcmd

2 , θcmd
3

]
jointly specify the quadrupedal gait, f cmd is the commanded74

stepping frequency, hcmd is the commanded body height, hcmd
f is the commanded footswing height,75

and scmd is the commanded stance width. Thus, the policy tries to follow the velocity command ck76

while satisfying the behavior constraints. In the original work bk is a quantity to be selected by a77

human operator, while in this work we treat bk as the controller parameters to be tuned automatically78

based on the quadruped’s randomized parameters and the task ct. For details on how the learned79

policy is trained, see [7].80

The randomized system parameters θk for the quadruped are added mass payloads to the robot base,81

motor strengths, and the friction and restitution coefficients of the terrain. Although the π contains82

an estimator module to regress the ground friction, it does not receive direct observations of any of83

these parameters.84

For use in our method, we input only a reduced-dimension subset of zk into our prediction model85

network consisting of the estimated base linear and angular velocities and joint torques applied by86

the motors.87

The four performance measures for the quadruped are the inverted average velocity errors along88

each axis of the command and inverted total commanded torque over the evaluation horizon. For89

this system, we set the evaluation horizon ∆T = 3 seconds.90

The reward function for the quadruped has the same form as the quadrotor system: J(y) =91 ∑4
j=0 rjy[j]. All simulations are done using code and pretrained models from [7] and the Isaac92

Gym simulator [8].93

History Size Encoder Layers Encoded Dim Network Layers Nonlinearity Basis Size Phase 1 epochs Phase 2 epochs

Branin - - - [16,16,16] ReLU 5 50 45
Hartmann - - - [32, 32, 32] ReLU 15 75 45
Racing Car 25 [32, 32] 15 [32, 32, 32] ReLU 5 40 55
Quadrotor 25 [64, 64] 15 [64, 64, 64] ReLU 15 50 40
Quadruped 20 [64, 64] 15 [64, 64, 64] ReLU 15 50 15

Table 2: Architecture and Training Hyperparameters for OCCAM Basis Function Network for all
tested systems
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History Buffer Size Encoder Layers Encoded Dim Network Layers Nonlinearity Meta Training Epochs Inner Loop Steps

Branin - - - [16,16,16] ReLU 35 10
Hartmann - - - [32, 32, 32] ReLU 70 20
Racing Car 25 [32, 32] 15 [32, 32, 32] ReLU 70 10
Quadrotor 25 [64, 64] 25 [64, 64, 32] ReLU 25 20
Quadruped 20 [64, 64] 15 [64, 64, 64] ReLU 35 20

Table 3: Architecture and Training Hyperparameters for Reptile baseline for all tested systems

Network Layers Num fitting iters Weight Decay Prior Factor Feature Dim

Branin [32,32,32] 2500 3e-5 0.06 5
Hartmann [32, 32, 32] 2500 0.03 0.23 6

Table 4: Training Details for F-PACOH baseline for all tested systems

3 Model Training and Testing Details94

The datasets for the robotic systems each consist of N = 1500 batches of NB = 64 datapoints95

each. The hyperparameters of each dataset and network are provided in the supplementary material.96

Note that our method does not require sampling only optimal or high-performing gains to generate97

data - only random ones. Thus, the dataset for each system consists of N batches of datapoints:98

[(g, τ, z, u, y)0:NB
]0:N . Each of these batches is used as a “task” for a single inner loop during the99

meta-training process.100

We find that we are able to use small networks to model each system; the networks are all fully-101

connected networks that consist of 3 hidden layers with fewer than 64 hidden units, outputting102

between 5-20 bases, indicating that many of the robotic systems that we are interested in control-103

ling can be effectively modeled with a relatively small number of parameters. The exact network104

layer sizes and training hyperparameters are given in the supplementary material. All models are105

implemented and trained in PyTorch [9].106

Architectural details and training hyperparameters for OCCAM’s basis function network, Reptile,107

and F-PACOH are presented in Tables 2, 3, and 4 respectively. The F-PACOH training hyperparam-108

eters were chosen in accordance with experiments conducted in the original paper.109

Training and testing parameter ranges for each system evaluated in this work are shown in Tables 5,110

6, 7, 8, and 9. For the reward curves and tables shown in the main submission, test system parameters111

were sampled exclusively from the set difference of the test parameter range and training parameter112

range.113

Training Testing
Parameter low high low high

a 0.8 1.2 0.5 1.5
b 0.11 0.13 0.1 0.15
c 1.2 1.8 1 2
r 5.5 6.5 5 7
s 9 11 8 12
t 0.035 0.045 0.03 0.05

Table 5: Parameter ranges for Branin experi-
ments

Training Testing
Parameter low high low high

θ1 1.0 1.5 0.5 1.5
θ2 1.0 1.2 0.6 1.4
θ3 2.4 3.0 2.0 3.0
θ4 3.0 3.4 2.8 3.6

Table 6: Parameter ranges for Hartmann ex-
periments
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Training Testing
Parameter low high low high

Size 0.01 0.03 0.005 0.04
Engine Power 2.5e4 4.5e4 2e4 5e4
Friction Limit 250 450 200 500

Table 7: Parameter ranges for Racing Car.
Note that these quantities are given in inter-
nal units used by the simulator, not SI units.

Training Testing
Parameter low high low high

Mass (kg) 0.02 0.09 0.01 0.1
Ixx (kg · m2) 2e-6 9e-4 1e-6 1e-3
Iyy (kg · m2) 2e-6 9e-4 1e-6 1e-3
Izz (kg · m2) 2e-6 9e-4 1e-6 1e-3
kη (N/(rad/s)2 2e-8 8e-7 1e-8 1e-6

Table 8: Parameter ranges for Quadrotor

Training Testing
Parameter low high low high

Added Payload (kg) -0.8 2.5 -1.0 4.0
Motor Strength Factor 0.9 1.0 0.8 1.1

Friction Coefficient 0.25 1.75 0.2 2.0
Restitution Coefficient 0.1 0.3 0.05 5.0

Table 9: Parameter ranges for Quadruped

4 Benchmark Function Results114

Table 10: Average Final Obtained Value on Benchmark Systems
Average Value over Last 5 Trials (↓)

Branin Hartmann (×10−4)

F-PACOH [2] 2.26± 0.70 3.30± 4.55
Reptile [10] 3.47± 11.79 1.14± 1.98

OCCAM (no-meta) 1.80± 0.77 7.42± 11.4
OCCAM (context-only) 4.25± 3.92 12.83± 15.7
OCCAM (Ours) 1.65± 0.49 3.14± 5.97

We report the average final reward obtained by all methods on the Branin and Hartmann benchmarks115

in Table 10, and show minima obtained by each method over time in Figure 1. Notably, our method116

performs well in both settings. In the Branin setting, OCCAM learns a good initialization and finds117

the best final minimum. In the Hartmann setting, even though OCCAM learns a relatively poor118

prior, it is able to adapt and find the same final minimum as F-PACOH.119
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Figure 1: Minima found on each benchmark function (Lower is Better)

5 Raw Performance Metrics120

Figures 2, 3, and 4 show the raw performance metrics obtained by each method on each system121

in the trials in which they did not crash. We note that each method is not directly optimizing for122

these raw metrics, but instead a weighted combination of their normalized versions, so good or bad123

performance in an individual metric in these plots does not necessarily translate to high or low reward124

in the plots reported in the paper. For example, in the Racing Car example, our method obtains a125

lower average speed than many other methods; however, this makes sense as, in the scalarized126

objective the model was optimizing for, the speed metric was weighted much lower than the tracking127

error metric. Also to faithfully report the raw metrics without the crashes skewing the averages, we128

filter out the runs that crashed. For example, in the quadrotor example, although Reptile performs129

well when it selects gains that don’t result in crashes, its higher crash rate brings down its overall130

average reward.131

Figure 2: Raw performance metrics obtained by each method on our out-of-distribution racing car
test set in successful runs.
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Figure 3: Raw Performance metrics obtained by each method on our out-of-distribution quadrotor
test set in successful runs.

Figure 4: Raw Performance metrics obtained by each method on our out-of-distribution quadruped
car test set in successful runs.

6 Additional Simulation Experiments132

6.1 In-Distribution Experiments133

Table 11: Average Final Reward and Crash Rate on In-Distribution Robotic Systems

Race Car Quadrotor Quadruped
Method Avg Final Rwd (↑) Crash % (↓) Avg Final Rwd (↑) Crash % (↓) Avg Final Rwd (↑) Crash % (↓)

Nominal 0.50± 0 0 1.15± 0.13 47.9 0.66± 0.9 14.7
LK-GP 0.49± 0.08 0 1.79± 0.38 37.7 0.74± 0.08 8.3
Reptile 0.42± 0.13 2.7 1.19± 0.37 33.8 0.72± 0.1 9.4
L1-Adaptive - - 1.37± 0.55 57.5 - -

OCCAM (context-only) 0.47± 0.06 2 1.94± 0.26 32.5 0.76± 0.07 5.6
OCCAM (Ours) 0.44± 0.19 4 1.82± 0.40 37.5 0.74± 0.09 8.7

We also run our method and each baseline on test sets randomly sampled from the training distri-134

butions for each of the robotic systems (see Tables 7, 8, and 9). The average final obtained reward135

and crash rates are reported in Table 11. The performances of each method naturally improve in this136

setting as the sampled system parameters lie closer to the nominal parameters, but in particular the137

context-only baseline, which only uses the fixed context encoder for sysid, and the LK-GP base-138

line both obtain amongst the highest rewards and perform similarly to OCCAM, showing, within139

the training distribution, these approaches perform well.140

Also notable in this setting is that the L1-Adaptive controller obtains higher reward than the Nom-141

inal controller, demonstrating that the adaptive control does indeed improve performance when the142

deviation from the nominal dynamics is smaller. However, when the parametric error grows larger143

in the out-of-distribution experiments in the main paper, the adaptive controller becomes unstable144

and reduces performance.145

6.2 OCCAM Makes Interpretable Adaptations to the Gains146

To elucidate that our method finds semantically meaningful gains, we run an additional experi-147

ment in the racing car environment where we sweep only friction coefficients across 3 differ-148

ent tracks and plot the average final gains chosen by OCCAM in Figure 5. As friction in-149

creases, OCCAM selects gains that cause the car to accelerate more aggressively and drive faster,150

while in the low friction regime, the gains tend towards slower driving (higher brake gain, lower151
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Figure 6

(a) Basis weights computed in
the Racing Car Environment,
projected into two dimensions
and colored by the friction pa-
rameter. The weights form dis-
tinct clusters separated by differ-
ent friction coefficients.

(b) Basis weights computed in
the Quadruped Environment,
projected into two dimensions
and colored by the friction
parameter. The weights form
distinct clusters separated by
different added base payloads.

(c) Basis weights computed in
the Quadrotor Environment, pro-
jected into two dimensions and
colored by the friction parameter.
The weights form distinct clus-
ters separated by mass parame-
ters

speed in corners). Our method logically chooses a more aggressive driving profile as available152

traction increases, showing physically meaningful adaptation to changes in system parameters.153

Figure 5: Adapted gains found by our
framework for cars with increasing fric-
tion coefficients. For cars with higher
friction coefficients, our model chooses
gains that lead to faster and more ag-
gressive driving. Both the low-end and
high-end friction coefficients are out of
the training distribution of the model.

154

6.3 Is there structure to the learned weight space?155

We also include preliminary experiments demonstrating156

that the space of weights that OCCAM adapts in has157

meaningful structure. For each test set in the paper, we158

use t-SNE to project the weights computed by OCCAM’s159

regression procedure into two dimensions and plot the160

projected weights in Figures 6a, 6c, and 6b. Note that like161

the weight adaptation procedure, the t-SNE embedding162

procedure has no knowledge of the underlying system163

parameters. For each system, the values of the weights164

distinctly cluster according to the underlying system pa-165

rameters.166

7 Additional167

Physical Crazyflie Experiments168

We ran additional experiments on the physical Crazyflie169

platform in which we added a 5-gram mass from the beginning of the experiment and in the middle170

of the experiment. Plots of the tracking error obtained by the controller with OCCAM’s optimized171

gains, the nominal gains, and with the L1-Adaptive control augmentation are shown in Figures 7a172

and 7b. In both cases, OCCAM finds gains that result in more robust tracking in the Z-axis. We173

hypothesize that because our predictive model is trained on data gathered from many quadrotors174

with varied masses, it learns to select gains that better compensate for these variations.175

An interesting result are the minor, high frequency oscillations observed in the Z-axis in Figure 7a176

and in the X- and Y-axes in Figure 7b towards the end of the experiment. These are most likely the177

result of marginally stable closed-loop attitude dynamics. One possible solution to this is augment-178

ing the performance measures y and measurement vector z with pitch and roll angular velocities,179

which might encourage the predictive model and optimizer to select gains that do not result in os-180

cillations. Another solution is to add small random force perturbations to the training simulations181

so that marginally stable controllers achieve worse performance metrics. We leave exploring these182

additions to future work.183
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(a) Results with a 5-gram mass added from the start. (b) Results with a 5-gram mass added at roughly 26s

Figure 7: Positional tracking error results on physical Crazyflie quadrotor following a 3-dimensional
ellipsoidal reference trajectory, with added masses.
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