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Exploring Matching Rates: From Key Point Selection to Camera
Relocalization
Anonymous Authors

ABSTRACT
Camera relocalization is the task of estimating camera pose within
a known scene. It has important applications in the fields of Virtual
Reality (VR), Augmented Reality (AR), robotics, and more within
the domain of computer vision. Learning-based camera relocalizers
have demonstrated leading pose accuracy, yet all current methods
invariably utilize all the information within an image for pose esti-
mation. This may offer robustness under challenging viewpoints
but impacts the localization accuracy for viewpoints that are easier
to localize. In this paper, we propose a method to gauge the credibil-
ity of image pose, enabling our approach to achieve more accurate
localization on keyframes. Additionally, we have devised a keypoint
selection method predicated on matching rate. Furthermore, we
have developed a keypoint evaluation technique based on reprojec-
tion error, which estimates the scene coordinates for points within
the scene that truly warrant attention, thereby enhancing the lo-
calization performance for keyframes. We also introduce a gated
camera pose estimation strategy, employing an updated keypoint-
based network for keyframes with higher credibility and a more
robust network for difficult viewpoints. By adopting an effective
curriculum learning scheme, we have achieved higher accuracy
within a training span of just 20 minutes. Our method’s superior
performance is validated through rigorous experimentation. The
code will be released.

CCS CONCEPTS
• Computing methodologies → Perception; Mixed / augmented
reality; Virtual reality; Machine learning.

KEYWORDS
camera relocalization, scene coordinates regression, keypoint sets,
keypoint guided

1 INTRODUCTION
The concept of certainty is of profound importance in human en-
deavors, providing solace through the predictability of contempo-
rary life. This pursuit of dependability permeates the field of camera
relocalization, wherein there is a desire for pose estimation to be
imbued with a similar degree of certainty. camera relocalization
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Figure 1: Camera Relocalization. Camera relocalization is
the task of estimating the camera pose within a known scene.
Our approach endeavors to incorporate confidence measures
and keypoint cues into the process of camera pose estima-
tion, thereby providing credibility support during practical
applications and further enhancing the positional accuracy
of keyframes

tasks necessitate the computation of a camera’s 6-DoF pose rel-
ative to a pre-mapped scene when presented with query images.
Training involves the ingestion of image sequences paired with
their respective camera poses, with the aim of facilitating rapid and
precise determination of the camera’s position upon its subsequent
scene encounter. This functionality is pivotal in diverse applications
such as VR, AR, robotics, and autonomous navigation. Predominant
research efforts in this area strive to refine the accuracy of camera
pose estimations uniformly across all test images. Nonetheless, a
nuanced analysis uncovers intrinsic limitations of this approach.
Consequently, the ability to assess the likelihood of obtaining an
accurate camera pose from an input image is equally critical as
achieving high precision in the pose estimation itself.

camera relocalization’s evolution commenced with image retrieval,
the primitive form of which, scene recognition, depended on robust
image retrieval for localization. Progressive iterations in camera
relocalization have focused on feature-based methods to augment
precision. The introduction of random regression forests [11, 24],
capable of regressing scene coordinates, markedly enhanced camera
relocalization accuracy. Deep learning frameworks [14–16], utiliz-
ing deep networks for direct pose regression from images, have
validated the proficiency of these networks in correlating imagery
with their respective poses, albeit with limitations in generalization
across novel viewpoints.

Scene coordinate regression [2, 4–7] signifies a dissection of the
camera relocalization task, assigning the network the exclusive
function of correlating input imagery with scene coordinates. The
ACE[2] framework advances this task decomposition, with a feature
backbone isolating scene feature descriptors, and scene coordinate
regression dedicated to aligning these descriptors with scene co-
ordinates. This bifurcation lessens the computational demand on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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scene-specific network models, thus expediting camera relocaliza-
tion.

We advocate for a further subdivision of the camera relocalization
task. Specifically, the identification of inliers should be decoupled
from the RANSAC and PnP procedures. This can be realized by
employing a convolutional network to assist in keypoint evaluation.
In parallel, this network can be harnessed, in conjunction with inlier
data from the estimated pose, to ascertain the confidence of the
camera pose estimation.

To achieve our objectives, we have devised a pose estimation con-
fidence assessment method based on the inlier rate, and on this
foundation, we have developed a keypoint judgment network and
training framework to further enhance the accuracy and assessment
capabilities of camera relocalization. Specifically, our contributions
can be summarized as follows:

• We have designed a scene coordinate estimation method and
a camera pose estimation framework based on a keypoint net-
work.

• We have developed a pose estimation confidence method based
on the keypoint discrimination network.

• Through extensive experimentation, we have demonstrated
that our method outperforms the state-of-the-art methods in
accuracy and validated the effectiveness of each component of
our approach.

2 RELATEDWORK
The problem of camera relocalization involves recovering the 6DoF
camera pose of a query image from a known scene. Current main-
stream approaches include image or feature retrieval-based meth-
ods, pose regression methods, and scene coordinate regression
methods. A more detailed introduction to these methods will be
provided below.

The implementation of image retrieval methods involves searching
a query image [21] from a database of images with poses to retrieve
similar images. The retrieved image with the most similar pose is
then outputted. Arandjelovic et al. proposed VLAD [26] for global
image feature description, enabling the retrieval of similar images.
NetVLAD [1] improved upon VLAD features by using a convolu-
tional neural network model. It introduced a learnable generalized
VLAD layer, enabling a plug-and-play approach for network-based
feature extraction. InLoc [25] provided a dataset with panoramic
images that had variations in lighting and dynamics. It proposed
a method to optimize pose estimation using synthesized virtual
views. By extracting and matching feature points [10], it established
numerous matching relationships with noisy points. Robust pose
estimation algorithms, such as RANSAC, significantly enhance the
pose estimation accuracy. The main challenges of the above meth-
ods are the speed of database retrieval[1] and the accuracy of pose
estimation. As the dataset size increases, the number of retrievals
and computational complexity also increase.

Methods based on random forests [24] can be applied to feature ex-
traction and matching [13]. They use a random forest composed of

Figure 2: Training the Keypoint Selection Network. When
training the keypoint selection network, we obtain the mask
of keypoints by projecting a set of keypoints. The keypoint
selection network analyzes the features of the image to select
those keypoints with a higher matching rate.

Figure 3: Training Pipeline. For keypoint guided scene coor-
dinate regression network training, we begin by extracting
image features using a feature backbone. These features are
then passed into a keypoint estimation network. Following
this, features are filtered based on the estimated keypoints.
The selected features, along with their corresponding param-
eters, are stored into a Training Buffer for the training pro-
cess. Finally, the network is trained expeditiously using Gra-
dient Decorrelation and Curriculum Learning techniques.

regression decision trees to regress scene coordinates, which repre-
sent the coordinates of image pixels in the scene model. Method [9]
based on random forests enables real-time learning of new scenes.
Method [11] enhances camera relocalization in dynamic scenes
with moving objects by suppressing the routing process based on
the stability of features. However, random forest methods use depth
information as input features.

The PoseNet series [14–16] utilizes convolutional neural networks
to extract features from images and directly regress camera poses.
In subsequent PoseNet methods, PoseNet16 [14] improved localiza-
tion results by controlling the model’s confidence through uncer-
tainty measurement and determining the correlation between input
images and the scene. PoseNet17 [15] explores effective training
methods and focuses on designing loss functions for direct pose
regression.

In DSAC [4], a probabilisticmodel derived from reinforcement learn-
ing makes the optimal selection of RANSAC differentiable. This
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allows deep learning-based methods to be applied to camera relocal-
ization in an end-to-endmanner. DSAC++ [5] improves the network
model, training methods, and data representation, further enhanc-
ing accuracy. ESAC [6] uses a hybrid expert model based on [4]
to address the coverage of large datasets and ambiguity problems.
DSAC* [7] improves [4] by using a better Resnet network structure
and an improved training loss function, further enhancing pose
estimation. AECRN [17] introduces RWEI to represent event data,
enabling its effective application to scene coordinate regression.
By designing an attention-based network architecture, it achieves
higher accuracy in event-based scene coordinate regression. By ex-
tracting and matching feature points [10], it established numerous
matching relationships with noisy points. ACE [2] further refines
the DSAC series methods [4–7]by separating feature extraction
from scene coordinate regression and using curriculum learning to
reduce the training time of the scene coordinate regression head
to around 5 minutes. This greatly reduces the deployment time of
the model in new scenes. However, [2] neglects the estimation of
important coordinate points. It estimates all points, neglecting both
the estimation of image credibility and the consideration of high-
confidence images and pixels. In this paper, we propose a method
that measures the credibility of image pose estimation and guides
scene coordinate estimation using key points, achieving further
improvement in accuracy.

3 METHOD
The previous ACE method [2] proposed a novel concept of dividing
scene coordinate regression into two parts: the first part involves
extracting features from the image, and the second part focuses on
regressing the scene coordinates from the extracted features. This
raised another question: can we integrate keypoint guidance into
this process to enhance the scene coordinate regression capability of
the regression head for those points critical to accurate localization
in real scenes, thus achieving more precise camera relocalization?
To address this, we designed a keypoint discrimination network.
Before training the scene coordinate regression head, we trained a
keypoint discrimination network to determine whether a particular
feature is a key point in the scene that is essential for camera
relocalization or scene recognition. Utilizing these keypoints, we
determine the features and points to be used for scene coordinate
regression learning.
3.1 Identifying Key Points by Highest Matching

Rate
The selection of key points is, in fact, a highly challenging endeavor,
yet it is crucial for localization tasks. This is because localization
relies on the establishment of matching relationships between im-
ages, and the foundation of these relationships is the pairing of key
points. The selection and matching of key points also represent
the primary method by which humans and all other visual animals
perform localization. A common procedure involves initially iden-
tifying points that are easily recognizable within an observation,
followed by continuous tracking of these points and estimation
of one’s own pose. Inspired by insights from SiLK [13], we posit
that the fundamental criteria for key points should be their ease of
matching and the likelihood of correct matches. Based on this, we
define those key points through the highest matching rate.

Figure 4: Selected Keypoints with the Highest Matching Rate
in chess scene. These key points encompass nearly all regions
of the scene that are readily observablewhile discarding areas
with ambiguous interpretations.

Figure 5: The blue curve represents the mean translation
error beyond the Inlier ratio.

Let 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} be the set of all points in the image, and let
𝑀 (𝑝) be a function that measures the matching rate of point 𝑝 . We
define the key points 𝐾 as follows:

𝐾 = {𝑝 ∈ 𝑃 | 𝑀 (𝑝) ≥ 𝜏}, (1)

where 𝜏 is a threshold value chosen based on the desired confidence
level for the matches. The function𝑀 (𝑝) is designed to reflect the
ease of matching and correctness of the matches, which can be
formulated as:

𝑀 (𝑝) =
𝑛∑︁
𝑖=1

𝑤𝑖 ·match_quality(𝑝, 𝑝𝑖 ), (2)

Here, 𝑤𝑖 are weights assigned based on the relative importance
of matching with point 𝑝𝑖 , and match_quality(𝑝, 𝑝𝑖 ) is a function
that returns a score representing the quality of the match between
points 𝑝 and 𝑝𝑖 .

match_quality(𝑝, 𝑝𝑖 ) = exp
(
− ∥desc(𝑝) − desc(𝑝𝑖 )∥2

2𝜎2

)
, (3)
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Figure 6: Pose Estimation Framework. Our pose estimation can be construed as performing pose selection across two distinct
branches. The upper path is a keypoint-guided branch endowed with image confidence estimation, aimed at more accurately
estimating the camera poses of images with elevated confidence levels. The lower path is a generalist branch tasked with
estimating the camera poses of images with a higher degree of generalizability but without assured accuracy. Initially, query
images undergo feature extraction via a Feature Backbone, and the resultant features are inputted into both a Keypoint Selector
Network and a pair of Scene Coordinate Estimators. Subsequently, within the keypoint branch, only keypoints are leveraged
for pose estimation, which in turn generates a confidence metric, specifically the Inlier Ratio. Ultimately, a gated mechanism
in the Pose Selection phase adjudicates between the poses from the high-confidence branch or the more generalist branch, with
the adjudicated pose being promulgated as the definitive pose output.

where 𝑑𝑒𝑠𝑐 (𝑝) represents the feature descriptor of point 𝑝 , and 𝜎 is
a scaling parameter that adjusts the sensitivity of the match quality
to differences in the descriptors.

We utilized Colmap [22] to obtain the collection of keypoints, upon
which we performed projection and optimization. The figure 4 visu-
alizes the finalized selection of our keypoint collection. It is evident
that our keypoint collection encompasses the primary and pivotal
regions of the scene while disregarding areas that are deficient in
texture or lack identifiable qualities.

3.2 Further Optimization of Point Selection
Using Reprojection Error

Selecting effective inliers in keypoint-guided inlier ratio estima-
tion requires the network to determine which points should be
considered as keypoints and which points generate more accu-
rate 3D scene coordinates, leading to more correct 2D-3D corre-
spondences. There are various criteria for determining keypoints.
Traditional methods control the number of keypoints through non-
maximum suppression, while some newer convolutional neural
network-based methods use matching accuracy to evaluate key-
points. However, for convolutional networks and scenes, each
model’s keypoints in each scene actually exhibit randomness and
uncertainty. Therefore, we propose a keypoint probability evalua-
tion method based on reprojection error, converting the reprojec-
tion error into keypoint probabilities using the following formula:

𝑘𝑖 = 1 − 1
1 + 𝑒𝜆−𝑝𝑖

, (4)

where 𝜆 is the softness parameter that controls the tolerance level
of the reprojection error. A smaller value indicates that a smaller
reprojection error is required to achieve a higher keypoint probabil-
ity. In this work, we set 𝜆 to 4. 𝑝𝑖 represents the reprojection error
of the scene coordinate estimation, and 𝑘𝑖 represents the keypoint
probability of that point. This formula is inspired by the sigmoid
function. We further estimate the keypoint probabilities based on
the trained scene coordinate estimation head. We found that after
feature extraction by the convolutional network, the performance
of the scene coordinate regression head in regressing scene coor-
dinates exhibits randomness, meaning it does not always perform
well at a specific point but rather shows a probabilistic behaviour.
Therefore, we estimate the keypoint probabilities based on the
trained scene coordinate estimation head, making our keypoint es-
timation method scene- and model-specific. This requires effective
and efficient training of our network. Thus, we employ a simple
network structure and accelerate the training of the keypoint se-
lection network using curriculum learning. This approach enables
us to achieve our goal of efficient training with minimal additional
time.

3.3 Inlier Ratio Based Confidence Estimation
Our priority should be ensuring the quality of our outputs rather
than maximizing the number of outputs. Currently, all vision-based
camera relocalization methods aim to improve overall performance
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Table 1: Pose re-localization results compare with other methods.

Scene DSAC DSAC++ Cas. (3D) DSACStar ACE Ours
chess 94.60% 93.80% 99.95% 96.70% 100% 100%
fire 74.30% 75.60% 99.70% 92.90% 99.50% 99.90%
heads 71.70% 18.40% 100.00% 98.20% 99.70% 100%
office 71.20% 75.40% 99.48% 87.10% 100% 99.50%
pumpkin 53.60% 55.90% 90.85% 60.70% 99.90% 99.90%
redkitchen 51.20% 50.70% 90.68% 65.30% 98.20% 99.70%
stairs 4.50% 2.00% 94.20% 64.10% 81.90% 88.60%
Average 60.10% 60.40% 96.41% 80.71% 97.03% 98.23%

Table 2: Pose re-localization results compare with other methods on Cambridge Landmarks dataset.

Cambridge Landmarks Average
(cm/◦)Court King’s Hospital Shop St.Mary’s

FM

AS (SIFT) 24/0.1 13/0.2 20/0.4 4/0.2 8/0.3 14/0.2
hLoc(SP+SG) 16/0.1 12/0.2 15/0.3 4/0.2 7/0.2 11/0.2
pixLoc 30/0.1 14/0.2 16/0.3 5/0.2 10/0.3 15/0.2
GoMatch N/A 25/0.6 283/8.1 48/4.8 335/9.9 N/A
HybridSC N/A 81/0.6 75/1.0 19/0.5 50/0.5 N/A

A
PR PoseNet17 683/3.5 88/1.0 320/3.3 88/3.8 157/3.3 267/3.0

MS-Transformer N/A 83/1.5 181/2.4 86/3.1 162/4.0 N/A

SC
R

w
/D

ep
th DSAC*(Full) 49/0.3 15/0.3 21/0.4 5/0.3 13/0.4 21/0.3

SANet 328/2.0 32/0.5 32/0.5 10/0.5 16/0.6 84/0.8
SRC 81/0.5 39/0.7 38/0.5 19/1.0 31/1.0 42/0.7

SC
R

DSAC*(Full) 34/0.2 18/0.3 21/0.4 5/0.3 15/0.6 19/0.4
DSAC*(Tiny) 98/0.5 27/0.4 33/0.6 11/0.5 56/1.8 45/0.8
ACE 43/0.2 28/0.4 31/0.6 5/0.3 18/0.6 25/0.46
Ours 46/0.5 21/0.4 23/0.6 5/0.4 12/0.6 22/0.48

across the entire test set. However, it is not realistic to expect cam-
era relocalization methods to perform efficiently and consistently
in challenging scenarios with limited sampled data or abundant
repetitive textures, considering that even humans exhibit limited
generalization abilities in scenes with restricted input. This can
be observed from the practical applications of existing methods
in various scenes. For instance, in the 7scenes dataset, the "stairs"
scene is notably more challenging for relocalization. Even a ran-
dom image from a particular viewpoint in this scene could result
in misjudgment.

An approach from the perspective of human localization suggests
continuously increasing confidence in their observations. When
humans reach a certain viewpoint during the localization process
and have sufficient confidence, they consider that they have accu-
rately determined their position in the scene. Based on this, we
believe that it is also necessary to evaluate the confidence of the
input images and their output poses. The output pose of an image
with high confidence can be considered a valid camera pose.

To address this, we propose an image pose confidence estimation
based on the inlier ratio. The confidence estimation of an image is
calculated using the following formula:

𝑟𝑖 =
100 · 𝑁 𝑖

𝑁𝑎
, (5)

where 𝑟𝑖 represents the pose estimation confidence of image 𝑖 ,
𝑁 𝑖 is the number of inliers output by the RANSAC-based PnP
algorithm, and 𝑁𝑎 is the total number of 2D-3D correspondences
provided as input. When using this confidence measure for pose
estimation, specific thresholds need to be set to determine the
level of confidence. We consider confidence levels above 90% to be
considerably confident, above 80% to be highly confident, above 60%
to bemoderately confident, and below 60% to be questionable. These
threshold settings are based on our observations of the experimental
data.

3.4 Key Point Guided Inlier Ratio Estimation
When evaluating the confidence of image pose estimation using
the inlier ratio, we found that existing methods perform poorly on
the test set, with a negligible proportion of considerably confident
estimates in the "stairs" scene. This is because current methods
use all constructed 2D-3D correspondences for pose estimation
indiscriminately with the selection of inliers solely determined
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by RANSAC. To improve the inlier ratio, we propose keypoint-
guided inlier ratio estimation. Our approach is based on the idea
that we should assess the suitability of 2D-3D correspondences for
scene coordinate estimation during their construction. Therefore,
we introduce an additional network branch in the relocalization
framework to estimate the confidence of the scene coordinates
of the network’s estimated pixels. Utilizing a keypoint estimation
network to estimate the probability of regressing correct inliers for
each pixel, we decide whether to use that point for camera pose
estimation. Consequently, our updated confidence estimation is
given by:

𝑟𝑖 =
100 · 𝑁 𝑖

𝑁𝑎𝑟
, (6)

where 𝑁𝑎𝑟 denotes the subset of 2D-3D correspondences with
reliable confidence, as estimated using the keypoint network.

3.5 Network Training
In our study, we are required to train a total of four networks: one
to obtain keypoints with the highest matching rate, one to acquire
keypoints with the minimal reprojection error, and two additional
networks dedicated to the initialization and further refinement
of these two types of keypoints, respectively. Among all training
processes, the network trained to identify keypoints based on the
matching rate is the most time-consuming. This is attributed to
the fact that the majority of points in an image are not keypoints,
precluding targeted training. Conversely, all other training activities
are confined to the regions of keypoints identified by the matching
rate.

We have ascertained the ground truth probabilities for keypoints
at each point, denoted as 𝐺𝑇 . Consequently, within our keypoint
estimation network, we are fundamentally estimating a probabil-
ity mask for the extraction of keypoints. Accordingly, we employ
the Binary Cross Entropy (BCE) loss as the loss function for our
keypoint estimation network. This approach is applied to both the
keypoint selection of the Highest Matching Rate and reprojection
error:

𝐿𝑘 (𝑘, 𝑘) = − 1
𝑁

𝑁∑︁
𝑖=1

(
𝑘𝑖 log(𝑘𝑖 ) + (1 − 𝑘𝑖 ) log(1 − 𝑘𝑖 )

)
, (7)

Here, 𝑁 is the number of samples, 𝑘𝑖 represents the ground truth
keypoint probability for the 𝑖-th feature, and 𝑘𝑖 represents the
predicted keypoint probability for the 𝑖-th feature.

Consequently, during the supervision process, we are limited to
methods such as re-projection error for guiding the learning of
scene coordinates. Specifically, the loss used for supervising is:

ℓ𝜋 [x𝑖 , y𝑖 , h∗𝑖 ] =
{
𝑒𝜋 (x𝑖 , y𝑖 , h∗𝑖 ) if y𝑖 ∈ V
||y𝑖 − ȳ𝑖 | |0 otherwise.

, (8)

where x is the 2D coordinate, y is the 3D scene coordinate, ȳ𝑖 is the
GT 3D scene coordinate, h∗ is the GT pose, andV is the group of 3D
scene coodinate satisfied with the determination of re-projection
error 𝑒𝜋 in [2].

We have designed a novel scene coordinate estimation head to
accommodate more complex scene conditions. Enhancing the net-
work depth of the scene coordinate estimation head boosts its ability

to solve scene coordinates in challenging scenarios. We follow the
Curriculum Training technique adopted in [2] for training our scene
coordinate regression network.

4 EXPERIMENTS
Our method was implemented using PyTorch, building upon the
publicly available code from ACE [2]. Here we detail our primary
parameter settings. For the training of the matching-based keypoint
network, a ResNet-like architecture was adopted. The initial learn-
ing rate was established at 0.0001, and the AdamW optimizer was
consistently employed across all network configurations. When
initializing the typical scene coordinate regression head, we set up
a training buffer of 8.8 million samples, with all features randomly
sampled from random images and augmentations. For training the
keypoint selection network, an 8 million sample training buffer
was established, drawing features from randomly chosen images. It
is noteworthy that we utilize all outputs from the sampled images
for keypoint training. In training the keypoint-guided scene coordi-
nate regression head, we fine-tuned the initialized head rather than
starting the training anew, thus preserving the network’s capability
to regress scene coordinates for non-keypoint features. For the pose
estimator, we continued to employ the method from ACE [2], but
with improvements made to the code to accommodate our approach.
When employing the keypoint estimation network as a guide, we
select points with an estimated probability value greater than 0.8 as
keypoints, corresponding to a reprojection error of approximately
5.

4.1 Indoor Relocalization
We conducted experiments on the 7Scenes [24] dataset, which of-
fers a variety of small-scale indoor scenes captured with handheld
devices, along with depth information and camera poses. We uti-
lized the camera poses obtained via Structure from Motion (SfM)
provided in [3] as ground truth (GT), as it has been validated in
[3] that scene coordinate regression methods are more suited to
pose estimation frameworks that employ a point matching mecha-
nism akin to SfM. Our primary method of comparison was ACE [2],
yet we also compared against other scene coordinate regression
approaches, including precursors to ACE and methods based on
random forests. In Table 1, we present the percentage performance
of our method and others on the 7Scenes [24] dataset within 5
degrees and 5 centimeters of error. Our method is shown to fur-
ther enhance relocalization performance, especially in challenging
scenes such as ’stairs’.

During our experimentation, we found that our method not only
excels in percentage performance within the (5◦, 5𝑐𝑚) error margin
but also significantly improves the precision of pose estimation. We
have detailed the performance of our method compared to others
within (2◦, 2𝑐𝑚) and (1◦, 1𝑐𝑚) errormargins in Table 4, respectively.
The data reveal that the precision of camera pose estimates from
our method has been further elevated, offering a solid guarantee
for the practical application of camera relocalization technology in
real-world scenarios.
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Table 3: Survival Rate and Accuracy. We measure the survival rate across three different stages, defined as the ratio of pose
estimates that meet our set confidence criteria, in conjunction with the accuracy of the pose estimation. We have set the
confidence threshold to an inlier rate exceeding 90%. "Init." denotes the network post-initialization, utilizing all coordinate
estimates for pose estimation; "Init. With K.S." refers to the post-initialization network employing keypoint selection for
pose estimation; "Keypoint fine-tune with K.S." indicates the network after keypoint fine-tuning, using keypoint selection for
pose estimation. Almost all pose estimates deemed to meet the confidence criteria fall within (5°,5cm), hence we only list the
percentages for errors under (2°,2cm) and (1°,1cm).

Init. Init. with K.S. Keypoint fine tune with K.S.
Survival Rate 2°2cm 1°1cm Survival Rate 2°2cm 1°1cm Survival Rate 2°2cm 1°1cm

chess 97|2000 100.00% 91.80% 1714|2000 99.80% 93.60% 1718|2000 99.80% 93.90%
fire 92|2000 100.00% 100.00% 733|2000 93.70% 81.20% 736|2000 95.40% 83.40%
heads 0|1000 0.00% 0.00% 238|1000 100.00% 98.70% 236|1000 100.00% 99.20%
office 20|4000 100.00% 25.00% 3193|4000 86.10% 35.10% 3197|4000 87.40% 42.50%
pumpkin 48|2000 100.00% 22.90% 1393|2000 94.50% 39.80% 1388|2000 97.60% 54.70%
redkitchen 38|5000 100.00% 100.00% 3501|5000 94.60% 50.20% 3483|5000 96.40% 63.60%
stairs 0|1000 0.00% 0.00% 9|1000 100.00% 0.00% 29|1000 100.00% 24.10%
Average 42|2429 71.43% 48.53% 1540|2429 95.53% 56.94% 1541|2429 96.66% 65.91%

Table 4: Results under Smaller Thresholds. We further detail the camera relocalization accuracy for errors within (2°, 2cm) and
(1°, 1cm). This improved precision can be attributed to the network’s more meticulous learning of salient keypoints within the
scene, which enables a deeper exploration of the scene’s structure. Consequently, our method exhibits enhanced accuracy even
within these reduced error margins.

Within (2°,2cm) Within (1°,1cm)
DSAC* ACE Ours DSAC* ACE Ours

chess 32.80% 99.00% 99.60% 0.50% 81.90% 91.80%
fire 55.20% 87.10% 95.20% 14.80% 57.00% 63.90%
heads 87.30% 98.20% 98.90% 40.00% 85.30% 87.10%
office 32.10% 81.00% 91.20% 5.90% 28.00% 60.40%
pumpkin 19.80% 84.50% 88.90% 4.70% 27.00% 60.7%
redkitchen 14.90% 87.00% 94.90% 2.60% 45.50% 73.90%
stairs 11.40% 24.10% 38.00% 1.10% 4.00% 8.10%
Average 36.21% 80.13% 86.67% 9.94% 46.96% 63.70%

4.2 Outdoor Relocalization
We validated our method for outdoor relocalization on the Cam-
bridge Landmarks [16] with the results tabulated in Tables 2. For
comparison, we replicate experiments from prior research using
various methods: AS (SIFT) [20], hLoc(SP+SG) [18], pixLoc [19], Go-
Match [28], HybridSC [8] for FM; PoseNet17 [15],MS-Transformer [23]
for APR; DSAC*(Full) [7], SANet [27], SRC [12] for SCR w/Depth;
DSAC*(Full) [7], DSAC*(Tiny) [7], ACE [2] for SCR. The Cambridge
Landmarks dataset consists of images of various historical buildings
in the old town area of Cambridge, with ground truth poses ob-
tained using the SfM [3]. Our method performed exceptionally well
in some scenes, outperforming our main comparison method, ACE,
in most scenarios. This is attributed to our network’s enhanced
capability for scene coordinate inference. During our experiments,
we also observed that a significant reason for poorer performance
on outdoor data was the sparsity of the dataset. Our method showed
commendable performance on the training set, yet its capacity to
generalize to new viewpoints was somewhat limited. Overall, our

method’s performance on outdoor data was superior to our main
comparison method, ACE [2].

4.3 Ablation Study
4.3.1 The Relationship Between Inlier Ratio and Error. Our method
introduces a confidence-based scene coordinate estimation approach.
We ponder the potential outcomes if we solely rely on the poses of
images with high confidence. We have detailed the performance
of our method across various scenes at different confidence levels
in the tables. To validate the appropriateness of our confidence
measure, we plotted a curve representing the relationship between
the confidence utilized and the translational error, as illustrated
in Figure 3. For clarity, we scaled and averaged the data. The blue
curve in the figure represents confidence, while the orange curve
indicates the translational error. It is observable from the graph
that an increase in error tends to follow a decrease in confidence.
Although this correlation is not absolute, our observations suggest
that there is generally an inverse relationship between inlier rate
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Figure 7: Variations in the inlier ratio across different stages.
We present the inlier rate progression over three distinct
phases on the chess test dataset. The green curve represents
the inlier rate following initialization. The orange curve de-
picts the inlier rate after the keypoint estimation network
has been trained and directly applied to the initialization
network.

and error, implying that a higher inlier rate may be associated with
increased error.

4.3.2 Confidence Frame and Key Point Guided. Enhancement of
Confidence in Keypoint-Guided Networks. Our method aims to fur-
ther improve the accuracy of images with high confidence; hence,
we estimate scene coordinates on keypoint data and employ the in-
lier rate as a measure of confidence for the precision of image pose
estimation. We preserve images with a confidence level of 90% and
estimate their camera poses. Table 3 lists the survival rate and ac-
curacy of our method at various stages for test images. It is evident
that the survival rate of test images was quite low initially without
keypoint guidance. The introduction of keypoint guidance resulted
in a significant increase in the survival rate, where survival rate
refers to images we consider to have sufficiently high accuracy. We
also observe that the survival rate of the network, further optimized
using keypoint guidance, did not decrease significantly, while the
localization accuracy for the test data with high survival rates was
further improved within error margins of (2◦, 2𝑐𝑚) and (1◦, 1𝑐𝑚).
Moreover, within the subset of high-confidence images, we nearly
achieved 100% accuracy within an error range of (5◦, 5𝑐𝑚), which
validates the practical reliability of our method. Additionally, we
note that in the Stairs scene, our confidence measurement method
was not able to maintain a high survival rate. This could be at-
tributed to the scene’s higher difficulty and the presence of more
repetitive textures, a phenomenon also observed in the Heads scene.

4.3.3 Usage of Time and Computational. Our approach does not
significantly increase training duration or computational resource
usage under standard conditions. The total training time is approx-
imately around 20 minutes in two Nvidia GeForce 2080 Ti GPUs,
which is acceptable considering the desired higher accuracy. During
testing, when the survival rate meets our satisfaction, our computa-
tional load is lower than that of ACE. This is because we use fewer
but more accurate 2D-3D matching points, reducing the required
iterations. However, if the survival rate is suboptimal, we may incur

the cost of performing pose estimation twice: first, a confidence-
based pose estimation, and then a more generalized pose estimation.
When pose estimation is solely based on confidence, we use fewer
2D-3D correspondences for pose estimation.

4.3.4 Limitations. We found several shortcomings that require
further research and improvement. Firstly, our method faces the
challenge of a low number of keypoints in difficult scenes with
sparse textures. Consequently, fine-tuning the process becomes
nearly infeasible, and we heavily rely on the initialized general-
ized network. Secondly, our approach is limited by the confidence
threshold. Currently, we use a fixed confidence threshold, but we
have noticed that its performance varies across different scenes.

5 CONCLUSION
Measuring the confidence of pose estimation is critical in practi-
cal applications. In this paper, we present a method for assessing
the credibility of image pose estimates, enabling effective evalu-
ation of camera poses after estimation. Additionally, to improve
the effective assessment of confidence and enhance localization
accuracy, we have designed a keypoint evaluation method based on
reprojection error. This method estimates scene coordinates for key-
points of interest, optimizing keyframe localization performance.
Furthermore, in practical application, our designed gated camera
pose estimation strategy, based on confidence thresholding, com-
bines keypoint-guided networks with more generalized networks to
further enhance the camera relocalization accuracy. Notably, our ap-
proach does not significantly increase training duration or volume
compared to state-of-the-art methods, achieving greater accuracy
within a training period of just 20 minutes. Through extensive ex-
perimental comparisons, we have demonstrated the effectiveness
of our proposed method, surpassing state-of-the-art results.
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