
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: Exploring Matching Rates: From Key
Point Selection to Camera Relocalization

Anonymous Authors

1 OVERVIEW
In this supplementary material, we furnish additional details of our
network framework and augment the experimental data presented.
Specifically, we commence by elucidating the intricacies of the net-
work architecture employed in our study. Subsequently, we have
supplemented our analysis with additional detailed experimental
data and performance metrics on the 12scenes dataset to further elu-
cidate our method. Finally, we illustrate the implicitly retained scene
models inherent in our method through visualization techniques.

2 NETWORK ARCHITECTURE
2.1 Scene Coordinate Regression Head
In our research, we have employed a scene coordinate regression
head that diverges from the one used in ACE [1]. This decision was
informed by our observation that the parameterization of the scene
coordinate regression head in ACE might struggle with mapping
scene coordinates in more challenging scenarios, such as the stairs
scene in the 7scenes dataset. To address this, we have increased the
complexity of the regression head. In ACE, the impact of adding
or subtracting MLP layers on performance was investigated, with
experimental data suggesting that additional MLP layers do not
enhance localization accuracy. Thus, we cautiously expanded the
number of MLP layers using a residual connection approach, which
allows the network to not only retain a substantial portion of the
original feature information but also to conduct a more nuanced
analysis of the subtle differences within the features.

We have visualized our network architecture in Figure 2. In deviation
from ACE [1], we have incorporated four additional sets of resid-
ual blocks and introduced two extra MLP layers in the final scene
coordinate regression segment. This augmentation has enhanced
the head network’s capacity to process features, culminating in an
overall improvement in the network’s performance.

2.2 Keypoint Classification Network

Figure 1: Keypoint Classification Network. We have developed a
straightforward keypoint classification network that consists of
only four MLP layers. At the end of the network, we employ a
Sigmoid Layer to convert the estimations into probability values.

To augment the inlier ratio, we have devised a keypoint selection
network, which essentially functions as a classification network
tasked with discerning whether a point qualifies as an inlier. The
input for this network is the feature set extracted by the feature
backbone, identical to that used by the scene coordinate regression
head. This implies that our approach does not significantly increase
computational demands during testing. Moreover, since we classify
features that have undergone rigorous training for scene coordinate
prediction, this method is expected to substantially reduce training
time.

Our network architecture is intentionally straightforward, composed
of several MLP layers, with each blue MLP layer integrating a
ReLU activation function. The final MLP layer in our design esti-
mates the probability that scene coordinates correspond to keypoints,
culminating with a sigmoid function that maps these estimations to
probabilities. The network architecture is depicted in Figure 1.

During the training of our keypoint classification network, we adopt
a scheme analogous to that employed for the scene coordinate regres-
sion head. We initiate by sampling features and their corresponding
keypoint status. Sampling ceases upon reaching a count of 8 mil-
lion. To decouple the sampled buffer, we employ a shuffling method,
and then we proceed to rapidly train the network utilizing a large
learning rate. Typically, our keypoint training network is capable of
completing its training within a span of 5 minutes.

3 MORE TRAINING DETAILS
During initial training, we set the maximum loss for the scene coor-
dinate regression head at 0.005 and the minimum loss at 0.0001. We
set the initial learning rate for the training of the keypoint network
to 0.0001. For the training of the keypoint selection network, the
maximum loss was set at 0.0004 and the minimum at 0.0001. When
fine-tuning the scene coordinate network using keypoints, we set
our maximum loss at 0.0006 and the minimum loss at 0.00005. All
of our training epochs were fixed at 32, a number determined to
allow the scene coordinate estimation to reach a sufficiently good
level of training. For all our training, we employed the AdamW [3]
optimizer. During training, we uniformly applied the 1cycle learning
rate policy as proposed by [5] for rapid convergence.

4 EXPERIMENTS ON 12SCENES
The 12Scenes [6] dataset, consisting of indoor scenes, served as
another testing ground for the validation of our method to demon-
strate its efficacy in more generalized settings. We trained our model
based on poses obtained via Structure from Motion (SfM) [2], a
more ubiquitous approach when depth-based SLAM systems are
inapplicable. The results are presented in Table 1. In the 12Scenes
dataset, since the localization accuracy at the precision of (5°, 5cm)
has nearly reached 100%, we have also listed the accuracies at the
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Figure 2: Network Architecture of Head. We have designed a deeper regression head for the estimation of scene coordinates, employing
six residual blocks, each comprising three layers of Multi-Layer Perceptrons (MLPs). Five MLPs are dedicated to the final regression
of the scene coordinates, and we have retained the Dehomogenization Layer from the ACE framework. Except for the last and the first
layers, which may be adjusted according to specific requirements—for instance, when adopting a Homogeneous estimation approach,
the output of the penultimate orange-red layer consists of four channels—the remaining layers uniformly feature 512 channels.

Table 1: Pose Estimation Results on 12scenes.

Within (5°,5cm) Within (2°,2cm) Within (1°,1cm) Median Err.(°,cm)
Scene ACE Ours ACE Ours ACE Ours ACE Ours
apt1_ckitchen 100.00% 100.00% 99.40% 100.00% 88.00% 92.70% 0.5,0.5 0.5,0.4
apt1_living 100.00% 100.00% 99.80% 100.00% 80.10% 89.50% 0.5,0.6 0.5,0.5
apt2_bed 100.00% 100.00% 97.50% 99.60% 80.30% 84.80% 0.5,0.5 0.5,0.5
apt2_kitchen 100.00% 100.00% 99.10% 99.10% 76.10% 84.80% 0.4,0.7 0.4,0.6
apt2_living 100.00% 100.00% 98.90% 99.40% 80.50% 88.30% 0.5,0.7 0.5,0.5
apt2_luke 100.00% 100.00% 97.80% 99.80% 65.50% 80.90% 0.5,0.8 0.5,0.6
office1_gates362 100.00% 100.00% 99.00% 100.00% 65.00% 74.40% 0.5,0.8 0.4,0.7
office1_gates381 99.90% 100.00% 96.70% 98.10% 64.10% 72.40% 0.6,0.8 0.6,0.7
office1_lounge 100.00% 100.00% 91.70% 97.60% 58.10% 67.30% 0.5,0.9 0.5,0.8
office1_manolis 100.00% 100.00% 93.90% 96.20% 70.60% 72.70% 0.5,0.8 0.5,0.7
office2_5a 99.40% 100.00% 92.00% 95.60% 51.90% 66.40% 0.5,1.0 0.5,0.8
office2_5b 99.50% 99.50% 91.60% 97.50% 61.50% 83.00% 0.4,0.9 0.5,0.6
Average 99.90% 99.96% 96.45% 98.58% 70.14% 79.77% 0.5,0.8 0.5,0.6

higher precisions of (2°, 2cm) and (1°, 1cm). The data clearly in-
dicate that our method has significantly improved the accuracy at
these more stringent thresholds of (2°, 2cm) and (1°, 1cm).

Table 2: Median Error on 7Scenes Dataset.

Scene Init. Init. With K.S. K.F.T with K.S.
chess 0.5,0.6 0.5,0.6 0.6,0.5
fire 0.5,0.3 0.5,0.6 0.5,0.6
heads -,- 0.5,0.5 0.5,0.5
office 0.4,1.5 0.5,1.2 0.5,1.1
pumpkin 0.5,1.2 0.5,1.1 0.5,0.9
redkitchen 0.5,0.4 0.5,1.0 0.5,0.8
stairs -,- 0.7,1.4 0.9,1.2

5 MORE RESULTS
In Table 2, we present the median pose errors obtained at different
stages of training on the 7Scenes [4] dataset. Our approach yielded
only a slight improvement in the median error for scene coordinate
estimation. In certain scenarios, there was a minimal reduction in

median error, but these reductions were almost imperceptible. Con-
currently, the probability of improvement in our method was higher
than the probability of experiencing a decrease in performance.

6 RECONSTRUCTION
Our task entails the input of an image and the estimation of pixel-
wise scene coordinates, the aggregation of which from multiple
viewpoints yields a model of the scene. In essence, our relocaliza-
tion method involves an implicit exploration of the scene structure
within the network model, thereby facilitating scene reconstruction.
We have conducted a demonstration of scene reconstruction on the
7Scenes dataset. The reconstruction results have been exhibited in
other studies as well [7, 8]. We primarily focus on comparing the
reconstruction performance between the main comparative method
ACE and our approach, followed by an analysis based on these find-
ings. The reconstruction outcomes are illustrated in Figures 3. The
left half of each figure displays the reconstruction results from ACE,
while the right half showcases the results from our reconstruction
method.
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(a) Chess Reconstruction with ACE (b) Chess Reconstruction with Ours

Figure 3: Scene Reconstruction of Chesssc on 7Scenes dataset.

In the reconstruction process using the ACE method, we directly
reconstructed using inliers and discarded scene coordinate points
that were more than 5 meters from the scene’s origin. For scene re-
construction based on our method, we filtered the scene coordinates
used for reconstruction. Initially, we selected key points through the
estimated keypoint probabilities (greater than 0.9). Subsequently,
we rotated the images (20°) and extracted features using a feature
network. Afterward, by estimating homography transformations, we
obtained another set of corresponding points. Points with scene co-
ordinate distances less than 0.1 meters were considered for scene
reconstruction. We selected points that satisfied both criteria as the
reconstruction points. Our method evidently filters out most out-
liers, making the reconstructed scene more congruent with the actual
scene. As can be seen from Figures 3, our method, after filtering
out outliers, results in many voids, indicating regions where scene
coordinate estimation is unfavorable have been eliminated.

Additionally, we observed a phenomenon where depth estimation
tends to be challenging around edge regions, often resulting in depth
discontinuities or ’holes’ at the edges. This suggests that although
these locations may have been successful in minimizing reprojec-
tion error, they may have erroneously estimated scene coordinates,
particularly incorrect depth values from the current viewpoint. This
observation will be addressed in future research.

Furthermore, despite achieving better reconstruction results with our
designed scheme, the discarding of a substantial number of points
has led to a decrease in the overall accuracy of pose estimation. This
issue will also be addressed in subsequent research.
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