
Published at the NeurIPS 2021 Deep RL Workshop

A IMPLEMENTATION CONSIDERATIONS

We will introduce some implementation details for our model, specifically how the parameters for
each distribution are learned.

Data Collection Model: In the first phase of the actor critic process we are in a generation phase of
the data. Here, we have a prior over the latent variables pυZ(zt). This prior distribution can be defined
as a Gaussian distribution with parameters as pυZ(zt) = N (zt;µ

Z
t , log σZ

t ). To learn the parameters
of this Gaussian prior we utilize an MLP (f ) defined by [µZ

t , log σZ
t ] = fZ(st) which takes the current

state as input.

Now that we have the learned parameters, we can sample zt ∼ pυZ(zt) using the reparam-
eterization trick given the learned mean and standard deviation. We denote this as zt ∼
reparameterize(µZ

t , log σZ
t ). At each time-step during the generation phase, we encounter a state

from our environment. We find the distribution parameters and then sample zt as denoted previ-
ously. The latent variable policy is then executed: at ∼ πθ(at|st, zt). By applying action at on the
environment we then obtain st+1, rt, and repeat until termination. This leaves us with a sequence
of states for use in inference. We denote the full trajectories generated in this phase with, τ , and
τ(s) = {s0, . . . , sT } being the trajectories only containing states. Let us define the set of state only
trajectories as, {τ0(s), . . . , τ

n
(s)} ∈ D(s).

Training Model: The 2nd part of our actor critic algorithm where we learn the policy using the data
in the inference phase. This is where we approximate the true posterior distribution over our latent
variables. As in Z-forcing, we will use a backwards RNN, which takes the reversed sequence of
states, τ←(s) as input. We define this network as,

bt = f←(st+1, bt+1). (10)
Each state bt therefore contains information about future states and can be used to shape the approxi-
mate posterior distribution over latent variables to contain this information. We define the inference
network with a normal distribution,

qφZ(zt|bt) = N (zt;µ
q
t , log σq

t ), (11)

where, as before, the parameters are learned with an MLP defined by [µq
t , log σq

t ] = f q(bt).

We derive a conditional generative model pζ(b|z) over the backwards states given the inferred
latent variables zt ∼ qφZ(zt|bt). Similar to before, we define the parameters of this Gaussian as
pζ(bt|zt) = N (zt;µ

Ax
t , log σAx

t ), with a MLP that produces [µAx
t , log σAx

t ] = fAx(zt).

PGIF-DQN Implementation: The latent variable is utilized as an additional input to the DQN,
in line with the other implementations of PGIF. In this model, we have a backwards loss used to
train the backwards network parameters. Recall that the backwards RNN network hidden states
are denoted as ht. The final outputs of the backwards network are denoted as bt. In our inference
network, we condition on the backwards network hidden states, denoted by qφ(zt|ht). The backwards
loss is trained using the TD error with the backwards output network predicting the Q-values. The
backwards loss is formulated as,

Jbwd = E(s,a)∈B[
1

2
(rt + γt max

at+1

Qtarget(st+1, at+1)− bst,at)2], (12)

with sample batch B from an episodic replay buffer.

B ADDITIONAL RELATED WORK

Learning stochastic latent variable RNNs Deriving an approximate posterior over stochastic
latent variables (Bayer & Osendorfer, 2015) conditioned on a backwards RNN hidden state has been
practically useful in RNNs (Goyal et al., 2021) and has been able to overcome being trapped in local
minima (Karl et al., 2017). Z-forcing (Goyal et al., 2021) is able to learn useful latent variables that
capture higher level representations even with a strong auto-regressive decoder, by reconstructing
hidden states in a backwards RNN. We use the main methods from Z-forcing to force our variables to
learn a useful representation of the trajectory for the agent. Our method employs an auxiliary signal
similar to (Karl et al., 2017) to design a cost with good convergence properties. Our work is a novel
application of these stochastic latent variable RNNs in online and offline policy gradient methods.

14



Published at the NeurIPS 2021 Deep RL Workshop

Combining model-based and model-free RL Our proposed PGIF is a way of enabling a model-
free RL algorithm to “look into the future”. Although we do not learn explicit models of the MDP,
our work may nevertheless be considered as combining elements of both model-based and model-free
RL. Previous works have also claimed to do this, although in distinct ways. For example, previous
work has proposed learning a low dimensional encoding of the environment and then performing
planning in this abstract representation along with model-free RL (Fra, 2019). VPNs (Oh et al., 2017)
improve representations in model-based RL, and use a single network along with supervised learning
to learn transition and reward dynamics in an abstract representation of the state space. Attention
augment agents utilize dynamics model roll-outs as input during policy optimization (Racanière
et al., 2017). Our work takes a very different approach and incorporates a representation of future
information using the hidden states of a backwards RNN, while leveraging VPN-style losses only to
enforce information in the RNN to be propagated from inputs to outputs.

Auxiliary objectives in RL Incorporating auxiliary objectives in RL generally takes the form
of intrinsic rewards. State-space density models have been used to derive intrinsic rewards that
incentivize exploration, challenging the agent to find states that generate "surprise" (Ostrovski et al.,
2017). Other works use the prediction error in an inverse model as a metric for curiosity (Pathak
et al., 2017). The auxiliary objectives we utilize in this work serve the purpose of improving the
incorporation of future dynamics information into policy optimization.

Value Prediction Networks In more detail, the VPN loss introduces the following additional
learnable functions:

Encoding network :f (enc) : s→ xa) Outcome encoder: f (out) : x, a→ γ̂, r̂b)

Value predictor: f (val) : x→ V̂ (x)c) Transition predictor: f (trans) : x, a→ x̂′d)

Given a backwards state bt, we first embed this to x0t = f emb(bt) with (a). We then make predictions
on future rewards r̂lt, transition dynamics xlt, discounts γ̂lt, and values V̂ (xlt) using (b, c, d) for
l = 0, . . . , k. Finally, we compute the VPN loss as,

JtVPN =

k−1∑
l=0

(Rt+l − V̂ (xlt))
2 + (rt+l − r̂lt)2 + (logγ γt+l − logγ γ̂

l
t)

2, (13)

where Rt+l is the empirically observed future discounted reward in the trajectory. The full auxiliary
loss JAx(ζ) is then given by summing up the loss in (13) over all timesteps in all trajectories.

C FULL ALGORITHM

We show the full algorithms for PGIF-PPO (Algorithm 2) with State based forcing and PGIF-SAC
(Algorithm 4) with state based forcing in this section. Using VPN forcing simply changes the
auxiliary loss calculations. The shared Backwards RNN Pass algorithm is in Algorithm 3.

We implement SAC with discrete actions for BSUITE umbrella-length environment using methods
described in (Christodoulou, 2019).

D EXPERIMENTAL PARAMETERS

In this section, we give the hyperparameters used for each of our experiments in Tables 3, 4, and 5.
For MiniGrid, the parameters are in Table 6.

15



Published at the NeurIPS 2021 Deep RL Workshop

Algorithm 2 Algorithm with Advantage Policy Gradient and State Based Forcing
Require: Initial policy parameters: θ , Prior parameters: υZ, φZ, KL weight: β, Auxiliary loss

Parameters: θAx, Auxiliary loss weight: α Backwards net input parameters: θin, Backwards RNN
parameters: θbkw, Backwards net output parameters: θbkw-out, Initial hidden states hi.

1: for policy-step k = 0, 1, 2, . . . , N do
2: Collect set of Trajectories D = {τi, . . . } :
3: repeat
4: [µZ

t , log σZ
t ] = fυZ(st)

5: zt ∼ reparameterization(µZ
t , log σZ

t )
6: Execute: πθ (at|st, zt) = fθ (st, zt)
7: Observe st+1, rt from environment.
8: τi = τi ∪ {st, at, st+1, rt}
9: until episode termination

10: Compute advantage estimates Âkt using GAE.
11: for Trajectory: τi ∈ D do
12: bi, hi = BackwardsPass(τi,hi, θ(in), θbkw, θbkw-out)
13: τi = τi ∪ {bi}
14: Reset: JPG = 0
15: for timestep t ∈ {0, . . . , T} do
16: ∀{st, bt, at} ∈ D: [µZ

t , log σZ-PG
t ] = fφZ(bt, st)

17: zPG
t ∼ reparameterization(µZ-PG

t , log σZ-PG
t )

18: πθ (at|st, zPG
t ) = fθ (st, z

PG
t )

19: [µAx
t , log σAx

t ] = fθAx(zPG
t )

20: JKL = KLDivergence(µZ-PG
t , log σZ-PG

t , µZ
t , log σZ

t )
21: JAx = LogProbGaussian(bt, µ

Ax
t , log σAx

t )

22: JPG
+
= Eτi∈D

[
log πθ (at|st, zPG

t )Âkt

]
− αJAx − βJKL

23: Update all parameters w.r.t: JPG
24: Update value function estimates with any method.

Algorithm 3 BackwardsPass
Require: Trajectory: τ , Hidden states h, Input MLP Parameters: θin, Backwards RNN Parameters:

θbkw, Output net parameters: θbkw-out.
1: τ−1 = Reverse-Order(τ)
2: xbkw = fθin(τ−1)
3: hbkw = fθbkw(xbkw, h) (Operates over the entire sequence)
4: xbkw-out = fθbkw-out(hbkw),
5: xbkw-out = Reverse-Order(xbkw-out)
6: hbkw = Reverse-Order(hbkw)
7: return xbkw-out, hbkw

16



Published at the NeurIPS 2021 Deep RL Workshop

Algorithm 4 SAC Algorithm with State Based Forcing
Require: Initial policy parameters: θ , Z forcing parameters: υZ, υU, φZ, φU, KL weight: β, Aux-

iliary loss Parameters: θAx-PG, θAx-TD, Auxiliary loss weight: α Backwards net input param-
eters: θin, Backwards RNN parameters: θbkw-Z, θbkw-U, Backwards net output parameters:
θbkw-out-Z, θbkw-out-U, Initial hidden states hi

Z,hi
U.

1: for policy-step k = 0, 1, 2, . . . , N do
2: Collect set of Trajectories D = {τi, . . . } :
3: repeat
4: [µZ

t , log σZ
t ] = fυZ(st)

5: zt ∼ reparameterization(µZ
t , log σZ

t )
6: Execute: πθ(at|st, zt) = fθ(st, zt)
7: Observe st+1, rt from environment.
8: τi = τi ∪ {st, at, st+1, rt}
9: until episode termination

10: for Trajectory: τi ∈ D do
11: bi

Z, hi
Z = BackwardsPassZ(τi,h

Z
i , θ

in-Z, θbkw-Z, θbkw-out-Z)

12: bi
U, hi

U = BackwardsPassU(τi,h
U
i , θ

in-U, θbkw-U, θbkw-out-U)

13: τi = τi ∪ {bi
U,bi

Z}
14: Reset: JPG, JQ = 0
15: for timestep t ∈ {0, . . . , T} do
16: ∀{st, bt, at, st+1, b

Z
t , b

U
t } ∈ D

17: Compute at+1

18: [µZ
t+1, log σZ

t+1] = fυZ(st+1)

19: zt+1 ∼ reparameterization(µZ
t+1, log σZ

t+1)
20: at+1 ∼ πθ(at+1|st+1, zt+1) = fθ(st+1, zt+1)
21: Compute target Q (U-Tar to denote distribution parameters)
22: [µU-Tar

t+1 , log σU-Tar
t+1 ] = fυU(st+1)

23: uTar
t+1 ∼ reparameterization(µU-Tar

t+1 , log σU-Tar
t+1 )

24: y(rt, st+1, d) = rt + γ(1− d)
(
Qψ-target(st+1, at+1, u

Tar
t+1)−α log πθ(at+1|st+1, zt+1))

)
25: Update Q functions
26: [µU

t , log σU
t ] = fφU(bQ

t , st)
27: ut ∼ reparameterization(µU

t+1, log σU
t+1)

28: JKL-TD = KLDivergence(µU
t , log σU

t , µ
U-Tar
t , log σU-Tar

t )
29: [µAx-TD

t , log σAx-TD
t ] = fθAx-TD(ut)

30: JAx-TD = LogProbGaussian(bQ
t , µ

Ax-TD
t , log σAx-TD

t )

31: JQ
+
= (Qψ(st, at, ut)− y(rt, st+1, d)) + αJAx-TD + βJKL-TD

32: Update Target Networks
33: (ψ − target)← ρ(ψ − target) + (1− ρ)ψ
34: Update Policy
35: [µZ-PG

t , log σZ-PG
t ] = fφZ(bZ

t , st)

36: zPG
t ∼ reparameterization(µZ-PG

t , log σZ-PG
t )

37: at ∼ πθ(at|st, zPG
t ) = fθ (st, z

PG
t )

38: [µAx-PG
t , log σAx-PG

t ] = fθAx-PG(zPG
t )

39: JKL-PG = KLDivergence(µZ-PG
t , log σZ-PG

t , µZ
t , log σZ

t )
40: JAx-PG = LogProbGaussian(bZ

t , µ
Ax-PG
t , log σAx-PG

t )

41: JPG
+
= Eτi∈D

[
Qψ(st, at, ut)− α log πθ(at|st, zPG

t )
]

+ αJAx-PG + βJKL-PG

42: Update all parameters w.r.t: JPG or JQ
43: Update value function estimates with any method.

17



Published at the NeurIPS 2021 Deep RL Workshop

Parameter Value

Optimizer Adam
Learning rate 5e−4

Batch size 250
Actor and Critic network dimensions (256, 256)
RNN Dim 15
RNN-Embedding Dim 20
Z or Q Dim 5
Z-force Neural net dim 20
Initial random exploration steps 10000
Replay Buffer Size 1,000,000 steps
Discount 0.99
Evaluation Episodes 5

Table 3: Parameters used for PGIF and SAC in the online experiments with MuJoCo.

Parameter Value

Optimizer Adam
Learning rate 1e−3

Value penalty True
Batch size 250
Actor and Critic network dimensions (200, 300)
Q value ensemble 2
RNN Dim 15
RNN-Embedding Dim 20
Z or Q Dim 10
Z-force Neural net dim 20
Initial random exploration steps 10000
Replay Buffer Size 1, 000, 000 steps
Discount 0.99
Evaluation Episodes 5
BRAC Value Penalty α 0.1

Table 4: Parameters used for offline RL experiments

Parameter Value

Hidden Dim 128
Activation ReLu
Heads 1
Heads 1
Layers 3
Attention Dropout 0.1

Table 5: Parameters used for the transformers experiments.

18



Published at the NeurIPS 2021 Deep RL Workshop

Parameter Value

Adam optimizer learning rate 7 · 10−4

β1;β2 0.9; 0.999
ε 10−5

entropy coefficient 10−2

RNN Dim 75
RNN-Embedding Dim 90
Z or Q Dim 5
Z-force Neural net dim 80
value loss coefficient 0.5
discount 0.99
maximum norm of gradient in PPO 0.5
number of PPO epochs 4
batch size for PPO 256
entropy coefficient 10−2

clip parameter 0.2

Table 6: Parameters for benchmark tasks in MiniGrid

Training the behavior policy for BRAC offline RL experiments uses behavior cloning with 300,000
time steps.

For the purpose of the backwards RNN, since we have variable episode length we pad the episode
sequence to the maximum length with zeros. The maximum number of timesteps is generally 1000 in
MuJoCo. The training of the RNN with this long sequence and the pre-processing steps involved are
expensive computationally. For offline experiments, our replay buffer is episodic, so we train with
an entire episode at each update. For online we train with a batch of randomly sampled steps from
the replay buffer (and obtain the respective episodes that those steps were in for the training of the
backwards RNN).

For the weight parameters α and β, we recommend that the weight on the KL be increased at a small
fixed constant rate during training so that the final returned policy uses minimal information about
the future. We use an initial weight of 1e−4 for the KL and auxiliary losses and increase it by 1e−6

at each training iteration for experiments to a max weight of 1. Thus, at the end of training the policy
and value functions should be minimally reliant on this privileged information.

For an empirical comparison to Value driven hindsight modelling (HiMo), the only code-
base is a notebook and is quite rudimentary (See: https://github.com/deepmind/
deepmind-research/blob/master/himo/himo_example.ipynb); We attempt a
good faith implementation on the MiniGrid set of environments for HiMo to make at least some
comparisons, but do not extend this method into other environments relying on different codebases.

E ONLINE EXPERIMENT LEARNING CURVES

In this section, we show the training curves for the online experiments with full observability in
Figure 4. We compare PGIF against SAC only, since we see that PPO performs much worse from
initial experiments. Note that in practicality, it is best to reduce the maximum number of steps in
the MuJoCo environments to 500 for better computational efficiency in the backwards RNN steps
(without much change in final reward). We note that our method appears to have a small reduction in
standard error compared to vanilla SAC.

19



Published at the NeurIPS 2021 Deep RL Workshop

Figure 4: The online episodic mean reward evaluated over 5 episodes every 500 steps for MuJoCo
continuous control RL tasks with full observability. We show the average over 5 random seeds.
500, 000 environment step interactions are used. The shaded area shows the standard error.

We aim to investigate the effect PGIF learning with a lower batch size. We notice that PGIF has
better performance at lower batch sizes. It may be an interesting direction to further investigate this
anomaly. In Figure 5, we show the performance of PGIF with a batch size of 25.

Figure 5: The online episodic mean reward evaluated over 5 episodes every 500 steps for MuJoCo
tasks with full observability. We show the average over 5 random seeds. 500, 000 environment step
interactions are used. The model is updated with a batch size of 25. The shaded area shows the
standard error.

20



Published at the NeurIPS 2021 Deep RL Workshop

F ABLATION ANALYSIS

In the following experiment, we compare the contributions of both PGIF implemented for the policy
only vs. PGIF implemented for the value function only. It appears that the main contribution of our
method comes from the implementation using the value function. "Best" refers to the best of either
VPN or State forcing auxiliary losses. Results are in Table 7 and 8.

Environment Value Only - Best Policy Only - Best PGIF-Best

HalfCheetah 12453 10713 12780
Ant 4573 4230 5173
Hopper 3188 2805 3211
Walker2d 4689 3786 4519

Table 7: PGIF actor vs critic ablation analysis. Performance on the online RL tasks showing the
average episodic return. The final average return is shown after training the algorithm for 500, 000
episodes and then evaluating the policy over 5 episodes. Results show an average of 5 random seeds.

Environment Value Only - Best Policy Only - Best PGIF-Best

ant-medium 3279 2877 3250
ant-medium-expert 2659 3001 3048
hopper-medium 2155 2402 2327
walker2d-medium 3888 3874 3989
halfcheetah-medium 5762 6029 6037
halfcheetah-medium-expert 5116 5389 5418
antmaze-umaze 0.5 0.95 0.95

Table 8: Actor vs critic PGIF ablation analyse. Performance on the offline RL tasks showing the
average episodic return. The final average return is shown after training the algorithm for 500, 000
episodes and then evaluating the policy over 5 episodes. Results show an average of 5 random seeds.
The value after ± shows the standard error.

In the following experiment, we compare the contribution of the auxiliary losses without the back-
wards RNN. Results are in Table 9.

Environment VPN-Aux StateForce-Aux Both PGIF-Best

HalfCheetah 9950 9813 9917 12781
Ant 4165 4111 4197 5173
Walker 3324 2997 3120 4519
Hopper 2951 2680 2742 3211
AntMaze 0.1 0 0 0.5

Table 9: PGIF without backwards RNN auxiliary loss ablation analysis. Performance on the online
RL tasks showing the average episodic return. The final average return is shown after training the
algorithm for 500, 000 episodes and then evaluating the policy over 5 episodes. Results show an
average of 5 random seeds.

G EXPERIMENTS USING TRANSFORMERS

Using transformers for processing the future trajectory into latent variables offers a few key benefits
over traditional RNN architectures, namely better computational efficiency with long sequences and
improved ability to model long timescale interactions. These provide a few interesting benefits for
use with our architecture, namely due to the fact that some of our environments generate sequences

21



Published at the NeurIPS 2021 Deep RL Workshop

Figure 6: The percent improvement evaluated over 5 episodes by replacing the LSTM backwards
network with a transformer. The 30 timestep transformer has a context size of a 30 timesteps look-
ahead into the future of the trajectory. We show the average over 5 random seeds taking the final
policy evaluation mean episodic reward as the value. 500, 000 environment step interactions are used.
The error bars shows the standard error.

up to 1000 timesteps, which can be onerous for an RNN to process. In the following experiments, we
simply replace our RNN with a transformer. This is inspired by work that models trajectories using a
transformer (Janner et al., 2021) for offline RL. Additionally, we show the results of experiments
where we use a K-fixed length context of future states as the input to our transformer. A short length
context is much faster to process than the entire sequence of upstream states, but there is a decrease in
performance, suggesting that the entire trajectory contains useful information. We show these results
in Figure 6. The run-time of training was decreased by approximately 40%.

H ANTMAZE EXPERIMENT

We additionally make comparisons to SAC and PPO-LSTM is the AntMaze environment (Florensa
et al., 2017) where we have a simple U-shaped maze with a goal at the end having sparse reward.
The agent receives a reward of +1 if it reaches the goal (within an L2 distance of 5) and 0 elsewhere.
The Ant starts at one end of a U-shaped corridor and must navigate to the goal location at the other
end. This task is particularly challenging since the reward is extremely sparse. We show the results
of this experiment here, where we see that the baselines are unable to make any progress on this
challenging task, while PGIF is able to solve the task to a point where it successfully navigates to
the goal location in the maze 50% of the time. We hypothesize our algorithm has benefits in these
environments since as soon as it obtains a reward signal it can adapt quickly and make use of the
signal by incorporating it in both policy and value optimization, therefore accelerating learning.

Method Mean Episodic Reward

PPO-LSTM 0.00± 0.00
SAC 0.00± 0.00
PGIF-PPO (VPN) 0.20± 0.13
PGIF-PPO (Force) 0.30± 0.15
PGIF-SAC (VPN) 0.40± 0.16
PGIF-SAC (Force) 0.50± 0.16

Table 10: Mean episodic reward on the AntMaze environment over 10 random seeds trained with 3
million environment steps. A sparse reward of +1 is obtained at the end of the episode if the agent
successfully reaches the goal state within an L2 distance of 5. The number after ± is the standard
error.

22



Published at the NeurIPS 2021 Deep RL Workshop

I ABLATIONS DEMONSTRATING THE IMPACT OF Z-FORCING

I.1 INCREASING NETWORK CAPACITY

In order to show that the performance improvements from PGIF are not due to in-
creased network capacity that the PGIF networks provide, we show learning curves us-
ing SAC with increased network capacities past 256, with the number of hidden units ∈
{(256, 256), (300, 300), (500, 500), (600, 600))}. We show the results on two fully observable on-
line MuJoCo continuous control tasks in Figure 7.

Figure 7: The online episodic mean reward evaluated over 3 seeds every 1000 steps for MuJoCo
online RL tasks. The number of hidden states in the policy and value network is varied. We show the
average over 3 random seeds. The shaded area shows the standard deviation.

I.2 n-STEP RETURNS

We now show that SAC does not benefit from n-step returns in Figure 8. This is to show that n-step
methods are not competitive with SAC. We show SAC on two fully observable online MuJoCo
continuous control tasks with n ∈ {1, 3, 5, 10}.

Figure 8: The online episodic mean reward evaluated over 3 seeds every 1000 steps for MuJoCo RL
tasks. The number of steps (n) using an n-step return is varied. We show the average over 3 random
seeds. The shaded area shows the standard deviation.

I.3 MULTIPLE UPDATES PER STEP

We now show that SAC does not benefit from multiple updates per step in Figure 9. This is to show
that more Bellman updates per step do not lead to significantly better performance with SAC. We
show SAC on two fully observable online MuJoCo continuous control tasks with n ∈ {1, 3}.

23



Published at the NeurIPS 2021 Deep RL Workshop

Figure 9: The online episodic mean reward evaluated over 3 seeds every 1000 steps for MuJoCo RL
tasks. The number of updates per step is varied. We show the average over 3 random seeds. The
shaded area shows the standard deviation.

I.4 NO Z-FORCING

We now demonstrate how our method performs when the auxiliary loss is removed, to show that it
the loss required for increased performance. In this experiment to KL loss is kept. We show this
ablation on a partially observable online Hopper-v2 MuJoCo environment in Figure 10.

Figure 10: The online episodic mean reward evaluated over 3 seeds every 1000 steps for a MuJoCo
RL task. The auxiliary loss is removed in. We show the average over 3 random seeds. The shaded
area shows the standard deviation.

J COMPUTING INFRASTRUCTURE

The cluster used to run these experiments has 688 NVIDIA V100-SXM2 GPUs.

24


