Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL INFORMATION ABOUT DATASET

The specific statistics of the dataset are shown in Table §]

Table 4: The Statistics of EEG-ImageNet Dataset.

#Categories #Images #Subjects #EEG-image pairs Datasize
EEG-ImageNet 80 4000 16 87,850 20.85GB

As shown in Listing [} the EEG-ImageNet dataset storage format is provided after review. The
dataset can be accessed through the cloud storage link available in our GitHub repository after
review. Due to file size limitations on the cloud storage platform, we split the dataset of Stage 1
into two parts: “EEG-ImageNet_1.pth” and “EEG-ImageNet_2.pth”. Users can choose to use only
one of the parts based on their specific needs or device limitations. Demographic information is also
provided at the file level.

{
"dataset": [
{
"eeg_data": torch.tensor,
"granularity": "coarse"/"fine",
"subject": 15,
"label": "ne2106550',
"image": 'n02106550_1410.JPEG’,
"stage": 30/20, (This attribute only appears in Stage 2)
}o
1,
"labels": [
"n02106662",
1,
"images": [
"n02106662_13.JPEG",
1

Listing 1: EEG-ImageNet dataset format.

A.2 APPARATUS

All the image stimuli are presented on a desktop computer that has a 27-inch monitor with a reso-
lution of 2,560x1,440 pixels and a refresh rate of 60 Hz. Participants are required to use the key-
board to interact with the platform. EEG signals are captured and amplified using a Scan NuAmps
Express system (Compumedics Ltd., VIC, Australia) and a 64-channel Quik-Cap (Compumedical
NeuroScan). A laptop computer functions as a server to record EEG signals and triggers using
Curry8 software. Throughout the experiment, electrode-scalp impedance is maintained under 50¢2,
and the sampling rate is set at 1,000Hz.

A.3 EXPERIMENTAL SETUP DETAILS

We conduct experiments under three different granularity settings: the “all” task includes all 80
categories; the “coarse” task includes 40 coarse-grained categories; and the “fine” task includes 8
fine-grained categories that belong to the same parent node, with the average accuracy calculated
across 5 groups.

The model structures and hyperparameters are as follows. For SVM, we try linear, polyno-
mial, and radial basis function (RBF) kernels. The regularization parameter is tested from values
{1073,1072,107%,1,10%,102%,10%}. For RandomForest, we try to set the number of trees in the

13

Under review as a conference paper at ICLR 2026

forest from values {20, 50, 100, 200, 500}, with all other parameters set to their default values. For
KNN, we set the number of neighbors to {5, 10, 15,20}. For ridge regression, all parameters are set
to their default values. For RGNN, when calculating the edge weights between electrodes, we use
the hardware parameters of our data collection device to determine the topological coordinates of
each electrode. In addition to the standard implementation, we add two batch normalization layers.
The main hyperparameters adjusted are the number of output channels of the graph convolutional
network (i.e., the hidden layer dimension) and the number of hops (i.e., the number of layers). These
are set to {100,200, 400} and {1,2,4} respectively. For EEGNet, we use the standard implemen-
tation and set the length of the first step convolution kernel to half the number of sampling time
points, which is 200. The main hyperparameters adjusted are the number of output channels for the
first convolutional layer (F1) and the depth multiplier (D), which are set to {8, 16,32} and {2, 4,8}
respectively. For MLP, we set two hidden layers with dimensions of 256 and 128, respectively. Each
linear layer is followed by a batch normalization layer and a dropout layer with a probability of 0.5.
In the PT task, during the pre-training phase we train with half of the learning rate for half of the
epochs.

For all deep models, we use the cross-entropy loss function. In MLP and EEGNet, we use the SGD
optimizer with learning rate 10~3, weight decay 10~3, and momentum 0.9, training for 2000 epochs.
After that, we adjust the learning rate to 10~* and weight decay to 10~ and continue training for
another 1000 epochs. In RGNN, we use the Adam optimizer with learning rate 10~3 and weight
decay 103, training for 2000 epochs. Subsequently, we adjust the learning rate to 10~* and weight
decay to 10~* and train for an additional 1000 epochs. The batch size is uniformly set to 80.

All the implementations mentioned above are open-sourced and available in the GitHub repository.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Table[5|shows the average results of all participants in Stage 1 and Table[6|shows the average results
of all participants in Stage 2.

Table 5: The average results of all participants in the object classification task of Stage 1. * indicates
the use of time-domain features, otherwise the use of frequency-domain features. f indicates that
the difference compared to the best-performing model is significant with p-value < 0.05.

Model Acc (all) Acc (coarse) Acc (fine) F1 (all) F1 (coarse) F1 (fine)
Ridge 0.286+0.0747 0.394+0.0817 0.583%£0.074F 0.261+£0.0701 0.373+0.082F 0.610+0.1217F
Classic model KNN 0.304+£0.0861 0.401£0.097F 0.696+0.0681 0.286+0.081F 0.380+0.096F 0.717+0.1327%
RandomForest 0.349+0.0871 0.454+0.105F 0.729+0.0721 0.323+0.0831 0.425+0.099% 0.723+0.092%
SVM 0.392+0.0867 0.506+0.099F 0.778+0.0547 0.378+0.083F 0.486+0.105F 0.770+0.0547F
MLP 0.404£0.103F 0.534+0.115 0.816+0.054 0.397+0.100F 0.523+0.108 0.819+0.053
EEGNet* 0.260+£0.098F 0.303+0.108% 0.365+0.095% 0.251+0.095+ 0.291+0.098% 0.374+0.102%
Deep model RGNN 0.405+£0.095 0.470+£0.092F% 0.706£0.073% 0.401+0.098 0.455+0.087F 0.723+0.079%

Table 6: The average results of all participants in the object classification task of Stage 2. * indicates
the use of time-domain features, the use of frequency-domain features. { indicates that the difference
compared to the best-performing model is significant with p-value < 0.05.

Model Acc (all) Acc (coarse) Acc (fine) F1 (all) F1 (coarse) F1 (fine)
Ridge 0.182+0.0531 0.253+0.0741 0.431£0.1081 0.178+£0.052+ 0.243+0.0751 0.438+0.107%
Classic model KNN 0.220+0.0811 0.310+0.1131 0.574+0.119% 0.211£0.083F 0.299+0.1051 0.565+0.134+
> RandomForest 0.268+0.1011 0.358+0.1291 0.609£0.136% 0.259+0.098+ 0.341+0.1171 0.596+0.139+
SVM 0.281+£0.0901 0.368+0.1071 0.657+0.140% 0.271£0.084F 0.365+0.1091 0.648+0.134+
MLP 0.297+0.093 0.395+0.110 0.718+0.149 0.285+0.087 0.392+0.108 0.710+0.140
Deep model EEGNet* 0.169+0.0441 0.244+0.0951 0.377+0.0961 0.160+£0.041+ 0.228+0.0881 0.372+0.0967F
RGNN 0.302+0.097 0.401+0.105 0.693+0.140% 0.297+0.100 0.388+0.106 0.701+0.142+

Table [/ shows the performance of the best-performing participant across all models and tasks of
Stage 1..

Figure [5] shows the accuracy for each participant in the object classification task of Stage 1 across
SVM, MLP, and RGNN models. We find that the ranking of participants’ accuracy is relatively
consistent across different models.

14

Under review as a conference paper at ICLR 2026

Table 7: The best results of all participants in the object classification task of Stage 1.

Model Acc (all) Acc (coarse) Acc (fine)
Ridge 0.4550 0.5375 0.7200
Classic model KNN 0.5025 0.6063 0.8013
RandomForest 0.5006 0.6488 0.8450
SVM 0.5794 0.7038 0.8588
RGNN 0.6088 0.6525 0.8050
Deep model EEGNet* 0.4413 0.5213 0.5988
MLP 0.5925 0.7413 0.8875
70
SVM 70 SVM
60 MLP Ao MLP
50 i + RGNN AGO oo Iroe + RGNN
§ e & % ox = Baseline §5o P Y A Baseline
340 T 40 *
%30 §3o
<20 520
10 10
8 11 0 6 13 3 9 5 2 1415 1 10 7 4 12 S e o s 36155 61 3 4t04d 712
Subjects Subjects
(a) The “all” task. (b) The “coarse” task.
70{ * . SVM
o MLP
60 . RGNN
o1 A A u e Baseline

Accuracy (%)
w B u
o o

N
o

-
o o

8 11 0 2 13 6 155 9 1 3 1410 4 7 12
Subjects

(c) The “fine” task.

Figure 5: Acc for each participant in the object classification task of Stage 1 across SVM, MLP, and
RGNN Models.

Figure [6] presents more image generation results selected from other participants, with Figure [6a]
showing good cases and Figure [6b] showing bad cases. We identified three main types of bad cases.
Similar to the first two images, the reconstructed images lack or misrepresent low-level information
such as color and shape. These errors are relatively common and are due to the limitations of
our feature mapper and the simple structure of the reconstruction pipeline, resulting in insufficient
information restoration. Similar to the latter two images, the reconstructed images lack detail. This
limitation is due to the number of denoising steps in the diffusion model and the inherently low
signal-to-noise ratio of EEG signals.

We also observed that for certain categories, especially fine-grained ones, all test data points resulted
in near-noise outputs, which drew our attention. When we directly input category labels as text
prompts into Stable Diffusion 1.4, we found that the generated images had poor realism and three-
dimensional structure. Figure [6c|compares these images with those generated by our reconstruction
pipeline from the training set. This improvement suggests that we can use EEG, which can be
quickly and extensively obtained as human feedback signals, to enhance the performance of text-
image pre-trained models or generative models. This will be the direction of future research.

15

Under review as a conference paper at ICLR 2026

Image visual
stimuli

Generated
image

(a) Good cases.

Text prompt

A pineapple

Image visual Generated

from text e

Generated
from EEG

(b) Bad cases. (c) Comparison of EEG and text-generated images.

Figure 6: More results in the image generation task.

A.5 TEMPORAL EFFECT

In Figure[7] we plotted the average classification accuracy for images at different index positions in
the test set under various training and test set splits to show the temporal effect in Stage 1.

60 60

50 50

40 40
3 S

5 30 5 30
O O
< 3

20 20

10 10

0 0

[5 10 15 0 L 10 15 20 25
Index Index
(a) 30/20 split for the training and test sets. (b) 20/30 split for the training and test sets.

Figure 7: Average classification accuracy under different training and test set splits, with accuracy
plotted against the indices of image stimuli in the test set.

We observed that the first few images in the test set have significantly higher accuracy, indicating a
strong temporal effect.

A.6 THE USE OF LARGE LANGUAGE MODELS

In this work, we leveraged large language models (LLMs) to assist in manuscript preparation, in-
cluding refining the text for clarity and style, as well as facilitating literature retrieval. All LLM-
generated suggestions were carefully reviewed, edited, and integrated by the authors to ensure scien-
tific accuracy and consistency with our own writing voice. We acknowledge the ongoing discourse
around the ethical use of LLMs in scholarly writing—particularly regarding transparency, origi-
nality, and accountability. We transparently report the use of LLM assistance and reaffirm that all
substantive intellectual contributions (e.g. experimental design, data analysis, interpretation) origi-
nated from the authors.

16

	Introduction
	Related Work
	Dataset Construction
	Participants
	Stimuli Dataset
	Procedure
	Dataset Description

	Benchmarks Settings
	Preprocessing
	Feature Extraction
	Task Definition
	Models

	Experimental Results
	Discussion and Conclusion
	Ethics and Privacy
	Reproducibility statement
	Appendix
	Additional Information about Dataset
	Apparatus
	Experimental Setup Details
	Additional Experimental Results
	Temporal Effect
	The Use of Large Language Models

