
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL INFORMATION ABOUT DATASET

The specific statistics of the dataset are shown in Table 4.

Table 4: The Statistics of EEG-ImageNet Dataset.

#Categories #Images #Subjects #EEG-image pairs Datasize

EEG-ImageNet 80 4000 16 87,850 20.85GB

As shown in Listing 1, the EEG-ImageNet dataset storage format is provided after review. The
dataset can be accessed through the cloud storage link available in our GitHub repository after
review. Due to file size limitations on the cloud storage platform, we split the dataset of Stage 1
into two parts: “EEG-ImageNet 1.pth” and “EEG-ImageNet 2.pth”. Users can choose to use only
one of the parts based on their specific needs or device limitations. Demographic information is also
provided at the file level.

{
"dataset": [

{
"eeg_data": torch.tensor,
"granularity": "coarse"/"fine",
"subject": 15,
"label": ’ne2106550’,
"image": ’n02106550_1410.JPEG’,
"stage": 30/20, (This attribute only appears in Stage 2)

}, ...
],
"labels": [

"n02106662", ...
],
"images": [

"n02106662_13.JPEG", ...
]

}

Listing 1: EEG-ImageNet dataset format.

A.2 APPARATUS

All the image stimuli are presented on a desktop computer that has a 27-inch monitor with a reso-
lution of 2,560×1,440 pixels and a refresh rate of 60 Hz. Participants are required to use the key-
board to interact with the platform. EEG signals are captured and amplified using a Scan NuAmps
Express system (Compumedics Ltd., VIC, Australia) and a 64-channel Quik-Cap (Compumedical
NeuroScan). A laptop computer functions as a server to record EEG signals and triggers using
Curry8 software. Throughout the experiment, electrode-scalp impedance is maintained under 50Ω,
and the sampling rate is set at 1,000Hz.

A.3 EXPERIMENTAL SETUP DETAILS

We conduct experiments under three different granularity settings: the ”all” task includes all 80
categories; the ”coarse” task includes 40 coarse-grained categories; and the ”fine” task includes 8
fine-grained categories that belong to the same parent node, with the average accuracy calculated
across 5 groups.

The model structures and hyperparameters are as follows. For SVM, we try linear, polyno-
mial, and radial basis function (RBF) kernels. The regularization parameter is tested from values
{10−3, 10−2, 10−1, 1, 101, 102, 103}. For RandomForest, we try to set the number of trees in the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

forest from values {20, 50, 100, 200, 500}, with all other parameters set to their default values. For
KNN, we set the number of neighbors to {5, 10, 15, 20}. For ridge regression, all parameters are set
to their default values. For RGNN, when calculating the edge weights between electrodes, we use
the hardware parameters of our data collection device to determine the topological coordinates of
each electrode. In addition to the standard implementation, we add two batch normalization layers.
The main hyperparameters adjusted are the number of output channels of the graph convolutional
network (i.e., the hidden layer dimension) and the number of hops (i.e., the number of layers). These
are set to {100, 200, 400} and {1, 2, 4} respectively. For EEGNet, we use the standard implemen-
tation and set the length of the first step convolution kernel to half the number of sampling time
points, which is 200. The main hyperparameters adjusted are the number of output channels for the
first convolutional layer (F1) and the depth multiplier (D), which are set to {8, 16, 32} and {2, 4, 8}
respectively. For MLP, we set two hidden layers with dimensions of 256 and 128, respectively. Each
linear layer is followed by a batch normalization layer and a dropout layer with a probability of 0.5.
In the PT task, during the pre-training phase we train with half of the learning rate for half of the
epochs.

For all deep models, we use the cross-entropy loss function. In MLP and EEGNet, we use the SGD
optimizer with learning rate 10−3, weight decay 10−3, and momentum 0.9, training for 2000 epochs.
After that, we adjust the learning rate to 10−4 and weight decay to 10−4 and continue training for
another 1000 epochs. In RGNN, we use the Adam optimizer with learning rate 10−3 and weight
decay 10−3, training for 2000 epochs. Subsequently, we adjust the learning rate to 10−4 and weight
decay to 10−4 and train for an additional 1000 epochs. The batch size is uniformly set to 80.

All the implementations mentioned above are open-sourced and available in the GitHub repository.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Table 5 shows the average results of all participants in Stage 1 and Table 6 shows the average results
of all participants in Stage 2.

Table 5: The average results of all participants in the object classification task of Stage 1. * indicates
the use of time-domain features, otherwise the use of frequency-domain features. † indicates that
the difference compared to the best-performing model is significant with p-value < 0.05.

Model Acc (all) Acc (coarse) Acc (fine) F1 (all) F1 (coarse) F1 (fine)

Classic model

Ridge 0.286±0.074† 0.394±0.081† 0.583±0.074† 0.261±0.070† 0.373±0.082† 0.610±0.121†
KNN 0.304±0.086† 0.401±0.097† 0.696±0.068† 0.286±0.081† 0.380±0.096† 0.717±0.132†

RandomForest 0.349±0.087† 0.454±0.105† 0.729±0.072† 0.323±0.083† 0.425±0.099† 0.723±0.092†
SVM 0.392±0.086† 0.506±0.099† 0.778±0.054† 0.378±0.083† 0.486±0.105† 0.770±0.054†

Deep model

MLP 0.404±0.103† 0.534±0.115 0.816±0.054 0.397±0.100† 0.523±0.108 0.819±0.053
EEGNet* 0.260±0.098† 0.303±0.108† 0.365±0.095† 0.251±0.095† 0.291±0.098† 0.374±0.102†

RGNN 0.405±0.095 0.470±0.092† 0.706±0.073† 0.401±0.098 0.455±0.087† 0.723±0.079†

Table 6: The average results of all participants in the object classification task of Stage 2. * indicates
the use of time-domain features, the use of frequency-domain features. † indicates that the difference
compared to the best-performing model is significant with p-value < 0.05.

Model Acc (all) Acc (coarse) Acc (fine) F1 (all) F1 (coarse) F1 (fine)

Classic model

Ridge 0.182±0.053† 0.253±0.074† 0.431±0.108† 0.178±0.052† 0.243±0.075† 0.438±0.107†
KNN 0.220±0.081† 0.310±0.113† 0.574±0.119† 0.211±0.083† 0.299±0.105† 0.565±0.134†

RandomForest 0.268±0.101† 0.358±0.129† 0.609±0.136† 0.259±0.098† 0.341±0.117† 0.596±0.139†
SVM 0.281±0.090† 0.368±0.107† 0.657±0.140† 0.271±0.084† 0.365±0.109† 0.648±0.134†

Deep model
MLP 0.297±0.093 0.395±0.110 0.718±0.149 0.285±0.087 0.392±0.108 0.710±0.140

EEGNet* 0.169±0.044† 0.244±0.095† 0.377±0.096† 0.160±0.041† 0.228±0.088† 0.372±0.096†
RGNN 0.302±0.097 0.401±0.105 0.693±0.140† 0.297±0.100 0.388±0.106 0.701±0.142†

Table 7 shows the performance of the best-performing participant across all models and tasks of
Stage 1..

Figure 5 shows the accuracy for each participant in the object classification task of Stage 1 across
SVM, MLP, and RGNN models. We find that the ranking of participants’ accuracy is relatively
consistent across different models.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: The best results of all participants in the object classification task of Stage 1.

Model Acc (all) Acc (coarse) Acc (fine)

Classic model

Ridge 0.4550 0.5375 0.7200
KNN 0.5025 0.6063 0.8013

RandomForest 0.5006 0.6488 0.8450
SVM 0.5794 0.7038 0.8588

Deep model
RGNN 0.6088 0.6525 0.8050

EEGNet* 0.4413 0.5213 0.5988
MLP 0.5925 0.7413 0.8875

(a) The “all” task. (b) The “coarse” task.

(c) The “fine” task.

Figure 5: Acc for each participant in the object classification task of Stage 1 across SVM, MLP, and
RGNN Models.

Figure 6 presents more image generation results selected from other participants, with Figure 6a
showing good cases and Figure 6b showing bad cases. We identified three main types of bad cases.
Similar to the first two images, the reconstructed images lack or misrepresent low-level information
such as color and shape. These errors are relatively common and are due to the limitations of
our feature mapper and the simple structure of the reconstruction pipeline, resulting in insufficient
information restoration. Similar to the latter two images, the reconstructed images lack detail. This
limitation is due to the number of denoising steps in the diffusion model and the inherently low
signal-to-noise ratio of EEG signals.

We also observed that for certain categories, especially fine-grained ones, all test data points resulted
in near-noise outputs, which drew our attention. When we directly input category labels as text
prompts into Stable Diffusion 1.4, we found that the generated images had poor realism and three-
dimensional structure. Figure 6c compares these images with those generated by our reconstruction
pipeline from the training set. This improvement suggests that we can use EEG, which can be
quickly and extensively obtained as human feedback signals, to enhance the performance of text-
image pre-trained models or generative models. This will be the direction of future research.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Good cases.

(b) Bad cases. (c) Comparison of EEG and text-generated images.

Figure 6: More results in the image generation task.

A.5 TEMPORAL EFFECT

In Figure 7, we plotted the average classification accuracy for images at different index positions in
the test set under various training and test set splits to show the temporal effect in Stage 1.

(a) 30/20 split for the training and test sets. (b) 20/30 split for the training and test sets.

Figure 7: Average classification accuracy under different training and test set splits, with accuracy
plotted against the indices of image stimuli in the test set.

We observed that the first few images in the test set have significantly higher accuracy, indicating a
strong temporal effect.

A.6 THE USE OF LARGE LANGUAGE MODELS

In this work, we leveraged large language models (LLMs) to assist in manuscript preparation, in-
cluding refining the text for clarity and style, as well as facilitating literature retrieval. All LLM-
generated suggestions were carefully reviewed, edited, and integrated by the authors to ensure scien-
tific accuracy and consistency with our own writing voice. We acknowledge the ongoing discourse
around the ethical use of LLMs in scholarly writing—particularly regarding transparency, origi-
nality, and accountability. We transparently report the use of LLM assistance and reaffirm that all
substantive intellectual contributions (e.g. experimental design, data analysis, interpretation) origi-
nated from the authors.

16


	Introduction
	Related Work
	Dataset Construction
	Participants
	Stimuli Dataset
	Procedure
	Dataset Description

	Benchmarks Settings
	Preprocessing
	Feature Extraction
	Task Definition
	Models

	Experimental Results
	Discussion and Conclusion
	Ethics and Privacy
	Reproducibility statement
	Appendix
	Additional Information about Dataset
	Apparatus
	Experimental Setup Details
	Additional Experimental Results
	Temporal Effect
	The Use of Large Language Models




