
Part I548

Appendix549

A Dataset Documentation550

We open-source our environment, data, code and instructions on how to run them 1. We do not551

provide the data as a downloadable file, it can be generated using the instructions in the repository.552

We provide instructions to reproduce the results of our benchmark experiments. The data is provided553

under the MIT license. We bear all responsibility in-case the dataset leads to any violation of rights.554

The metadata for the dataset can also be found in the given github repository.555

Intended Use. The intended use of this dataset is for causal learning research in model-based RL. We556

hope that this dataset can help to speed up discovery of novel methods that can learn causal relations557

in RL environments.558

Reading the Data. The data is generated and stored in HDF5 format. 2, it can be accessed using the559

h5py python package 3. We provide the code for reading the data.560

B A short review to Structured Causal Models561

Causal modeling. A Structural Causal Model (SCM) [Peters et al., 2017] over a finite number562

M of random variables Xi is a function that maps from the jointly-independent noise Ni and563

parents (direct causes) Xpa(i,C) of Xi to Xi. The matrix C 2 {0, 1}M⇥M represents the adjacency564

matrix (structure) of the graph, such that cij = 1 if node i has node j as a parent (equivalently,565

Xj 2 Xpa(i,C); i.e. Xj is a direct cause of Xi).566

Xi := fi(Xpa(i,C), Ni) , 8i 2 {0, . . . ,M � 1} (1)
Causal structure discovery is the recovery of ground-truth C from observational and/or interventional567

studies.568

Interventions. An intervention on a variable Xi changes the function fi that maps from the causal569

parents of Xi and the independent noise ((Xpa(i,C), Ni)) to Xi. There are several common types570

of interventions available [Eaton and Murphy, 2007]: No intervention: only observational data is571

obtained from the ground truth model. Perfect: the value of a single or several variables is fixed and572

then ancestral sampling is performed on the other variables. Imperfect: the conditional distribution of573

the variable on which the intervention is performed is changed. All our experiments are performed574

with perfect interventions (aka. setting the state of a variable to a particular value, for example575

location or color), as they are the most common type of interventions in RL.576

C Ranking based Evaluation577

Apart from standard reconstruction loss, we also provide ranking results based on the evaluation578

metrics followed by Kipf et al. [2019]. Given observations at two different time steps, these metrics579

capture how close is the predicted transition in the embedding space to the embedding of the true580

observation obtained through the true environment transitions. Here the notion of closeness is defined581

as ranking from a large buffer of states under euclidean norm.582

C.1 Hits at Rank 1 (H@1)583

This score is 1 for a particular example if the predicted state representation is nearest to the encoded584

true observation and 0 otherwise. Thus, it measures whether the rank of the predicted representation585

is equal to 1 or not, where ranking is done over all reference state representations by distance to the586

true state representation. We report the average of this score over the test set.587

1https://github.com/dido1998/CausalMBRL
2https://www.hdfgroup.org/solutions/hdf5/
3https://pypi.org/project/h5py/
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C.2 Mean Reciprocal Rank (MRR)588

This is defined as the average inverse rank, i.e, MRR = 1
N

PN
n=1

1
rankn

where rankn is the rank of the589

n
th sample of the test set where ranking is done over all reference state representations.590

D Model-free RL algorithms591

We evaluated model-free reinforcement learning models on our tasks. The reasons are two-folds.592

First, this would allow us to gain insights on the difficulty of the tasks (aka, whether a model-free593

agent without an explicit world-model could solve the task. Another one is that this would allow us594

to compare the representation learned by various models and check if they would help to improve595

performances for model-free RL algorithms.596

D.1 Methodology597

We evaluated the popular Proximal Policy Optimization (PPO)[Schulman et al., 2017] on our tasks598

under 3 different settings. We first trained the PPO algorithm from scratch, this let us check how599

the difficult our tasks are for model-free algorithms, it also acts as a good baseline for comparing600

representations learned by a pretrained encoder verus representations learned using a pure RL601

objective. In the second setting, the encoder that maps from input pixels to hidden state of the LSTM602

in the PPO algorithms is replaced by the encoder of a pretrained model described in Section 3. These603

pretrained models (Autoencoders, VAE, modular networks and GNNs) are trained to predict next-step604

observations. We then freeze the parameters of these encoders while training the entire PPO model605

and we evaluate the model on the RL performance. The last setting takes in a pretrained encoder606

similar to the previous setting, except that it allows gradients to be passed back into the encoder607

during training. The last 2 settings allow us to compare whether the representation learned by various608

models (Autoencoders, VAE, Modular networks and GNNs) are helpful for downstream RL tasks.609

E Reward Prediction Evaluation610

Below, we provide the methodology of training the reward predictor and doing evaluation based on it611

as well as further implementation details relevant to our particular set of environments.612

E.1 Methodology613

For downstream RL evaluation, we consider learning a reward predictor and then performing planning614

based on taking greedy actions in the direction of immediate highest reward (inspired from Watters615

et al. [2019]). For our tasks, the reward is a function of the next state and the target state but not the616

action. For example, in physics environment the reward is the average distance between the objects617

in their current configuration and a target configuration. Similarly, for chemistry environment it is the618

number of color matches between the current state and the target state.619

More concretely, we learn a reward predictor function (parameterized by a single layered MLP) that620

takes as input the current state as well as the target state of the world and tries to predict the reward621

for the current state. This reward predictor is learned in a supervised way and all the other weights622

(encoder, decoder, transition models) are kept fixed during this training. Thus, it is only possible to623

learn a good reward predictor if the encoder model captures the important aspects of the objects from624

the raw image.625

Given the current encoded state of the world, we consider all possible actions and transitions according626

to them in the latent space (using the learned transition model). After the transition, we use the627

learned reward predictor to predict the reward for the (new state, target state) pair. This gives us628

the immediate reward obtained from each action. Having obtained those rewards, our policy is to629

just greedily take the action that gives us the best immediate reward. Note that in our reward setting630

(dense and/or partial rewards) this is typically a good policy as can be seen in the oracle (greedy)631

performance (where we take actions according to the true reward).632
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For training, we consider the supervised L1 loss optimized using the Adam Optimizer -633

LReward Predictor(✓) = kf✓(st, starget)� r(xt, xtarget)k1
st = Encoder(xt)

starget = Encoder(xtarget)

where r(·, ·) is the true reward function.634

For evaluation, we consider the true final reward as well as the success rate obtained under policy ⇡635

where ⇡ is implicitly defined using the learned reward function f✓ as follows -636

⇡(st, starget) = argmax
a2A

f✓(Transition(st, a), starget)

We leave the formulation of training a value function estimator using a TD-learning objective as an637

important future work.638

E.2 Implementation Details639

For all the environments, when training a reward predictor we consider a starting state of the640

environment and the state of the environment obtained after doing 10 random actions. Given the641

starting state and the target state, we use the dense reward obtained in the configuration to act as the642

supervision signal for training of the reward predictor model.643

For physics environment, we consider the reward to be the average distance of objects from their644

target configurations. Whereas, for the chemistry environment we consider the number of partial645

matches between the two states as the reward function.646

For evaluation on downstream RL tasks, for kth step prediction, we consider targets that are generated647

from k random actions in the environment. We also report baseline performances of a random648

policy as well as an optimal policy. For the physics environment, we set the optimal policy to be the649

one step greedy policy based on the true reward while for the chemistry environment, we consider650

the same actions that led to the target configuration to be the optimal policy. Note that since the651

chemistry environment is stochastic, the same actions may not lead to the same state. Hence any loss652

in performance even after performing optimal actions is due to the data uncertainty that arises due to653

the stochasticity.654

F Model setups and training procedure655

F.1 Model Based Experiments656

For our model based experiments, we consider four models that encode different inductive biases -657

• Autoencoders (AE) - Monolithic model that compresses everything into a single entity.658

• Variational Autoencoders (VAE) - Similar to Autoencoders but with regularization to stay659

close to a prior distribution in latent space.660

• Modular Model (Modular) - Has a separate representation for each object and can be used661

to capture interactions between multiple sets of objects.662

• Graph Neural Networks (GNN) - Also has an object-wise representation but can capture663

only pairwise interactions between objects.664

Each model has an encoder-decoder model as well as a transition model. The encoder-decoder model665

is aimed at inferring the high level causal variables from raw pixel data whereas the transition model666

is tasked with controlling how the encoded state transitions based on the actions taken. We build all667

our models on the architectural backbone provided by Kipf et al. [2019].668

The encoder model is a convolutional neural network followed by a 3-layered MLP (Table 1). It669

outputs a single representation in case of monolithic models and an object-wise representation (i.e.670

separate for each object) in case of modular networks and graph neural networks.671
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Type channels activation stride
Conv2D 9⇥ 9 512 Leaky Relu 1
BatchNorm2D - - -
Conv2D 5⇥ 5 M (number of objects) Sigmoid 5

Table 1: Architecture of the encoder used for the world models.

Type channels activation stride
Linear 512 Relu -
Linear 512 Relu -
Linear M ⇥ 10⇥ 10 - -

ConvTranspose2D 5⇥ 5 512 Relu 5
BatchNorm2D - - -

ConvTranspose2D 9⇥ 9 50 - 1
Table 2: Architecture of the decoder used for the world models.

The decoder model (if used - refer Appendix F.2) takes either a single representation (in case of672

monolithic models) or object-wise representations (in case of modular networks / GNNs) and outputs673

an image as close as possible to the input image. The structure of the decoder is detailed in Table 2.674

We follow the medium encoder-decoder structure followed by Kipf et al. [2019]. For embedding675

dimension, we use a fixed embedding dimension of 32 per object where the number of objects are676

specified by the environment description. For example, if we have 3 objects in the environment,677

then the embedding dimension of Autoencoder based models is 96 while it is 32 per object for678

Modular/GNN models.679

Mathematically, given an observation xt, the encoder maps the observation to its latent representation680

st which is either monolithic or modular. Further, the decoder (if used) maps the latent representation681

back to the input space.682

st = Encoder(xt)

x̂t = Decoder(st)

Each architecture also has a transition model to model how a particular action affects the state of the683

world. Based on the current state of the world and an action taken, the transition model predicts the684

next state of the world. For monolithic models (AE and VAE), the transition model is a 3-layered685

MLP. For GNN, it is a graph neural network with only one node-to-edge and one edge-to-node686

information propagation, that is, it encodes only pairwise interactions. For modular models, it is a687

separate MLP for each object, that allows it to encode higher order interactions between multiple688

objects.689

Mathematically, the transition (prediction of next state) from a given state st based on an action at690

can be shown as -691

ŝt+1 = Transition(st, at)

F.2 Training Details692

We consider two methods of training for all our baseline models -693

• Negative Log Likelihood (NLL)694

• Contrastive Loss (Decoder Free)695

For the models trained using NLL, we perform training in 3 stages. First, we do pretraining where696

only the encoder and decoder are trained to reconstruct the given image. Second, we learn the697

transition where the encoder and decoder are fixed and the transition function is trained to optimally698

predict the next state given the current state and action. Finally, we do finetuning where we train both699

the encoder-decoder model as well as the transition model on combined objectives of reconstructing700

the current images, reconstructing the images in next step as well as doing correct transitions in the701

latent space.702
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For the reconstructions, we use the binary cross entropy loss (BCE loss) while for the transitions, we703

use the mean squared error loss (MSE loss).704

Mathematically, given the current observation xt, the action taken at and the next observation705

obtained xt+1, we first encode both the observations into the latent space as -706

st = Encoder(xt)

st+1 = Encoder(xt+1)

We then perform a transition from the current step using the transition model as well as use the707

decoder to perform reconstructions based on the current encoded state as well as the predicted state -708

ŝt+1 = Transition(st, at)
x̂t = Decoder(st)

x̂t+1 = Decoder(ŝt+1)

Given these variables, the pretraining, transition training and the finetuning can be characterized as -709

Pretraining : argmin
Encoder,Decoder

BCE(xt, x̂t)

Transition : argmin
Transition

MSE(st+1, ŝt+1)

Finetuning : argmin
Encoder, Decoder, Transition

BCE(xt, x̂t) + MSE(st+1, ŝt+1) + BCE(xt+1, x̂t+1)

For models trained with contrastive loss, we follow the same setup as in Kipf et al. [2019]. In this setup710

we don’t use a decoder and instead learn everything in encoded state end-to-end. Mathematically,711

this can be described as the following -712

Contrastive Training : argmin
Encoder, Transition

H +max(0, � � H̃)

H = MSE(ŝt+1, st+1)

H̃ = MSE(s̃t+1, st+1)

s̃t+1 : Negative state obtained from random shuffling of batch

We train each stage for 100 epochs using Adam optimizer [Kingma and Ba, 2014] with a learning713

rate of 5e-4 and batch size 512.714

G Physics Environment715

G.1 Detailed setups716

We provide an environment which consists of objects of different shapes and potentially different717

colors. Each object has a unique weight associated with it and only heavier objects can push lighter718

ones. This induces an acyclic tournament causal graph with sparse two-way interactions between the719

objects, which form the nodes of the graph.720

More precisely, the physics environment with M objects (eg. 3) and colormap C (eg. blues) can be721

considered as the set {oi = {si, wi, ci, pi} | i = 1 to M} where oi denotes the i
th object which is722

characterized by its position pi, its shape si, its color ci and its weight wi. An edge exists from oi to723

oj if and only if wi > wj . We consider the weight of each object to be unique, thereby getting rid of724

cycles. The specifics of the environment are determined by how the shape, color and weight of an725

object are related. For our experimentation, we consider two different settings which are outlined726

below. However, we emphasize that the physics environment is not limited to just these specifications727

and can be easily extended to form more complicated relationships between the three properties.728

G.2 Identity of Objects729

Since we are proposing RL environments, we need to make sure that the mapping from the action730

space to the object space is well defined and observable / learnable. Here, we briefly discuss that it is731

the case in the settings of the physics environment proposed in this paper. We also discuss that in the732
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Unobserved environment this mapping can be very hard to learn and for this reason, we proposed733

another variant known as FixedUnobserved environment.734

Our mapping from action space to object space is such that given an initialization of the environment,735

the first action dimension always corresponds to the heaviest object. Similarly, the second to the736

second heaviest and so on.737

Now, in the Observed environment case, the heaviest object is also the darkest object in the scene so738

it is relatively easy for a model to infer the action to object mapping once it has learned the fact that739

intensity of color represents the weight of the object.740

On the other hand, in the Unobserved case, the colors of the objects are sampled without replacement741

from a larger set of colors. For example, consider a 3 object environment with the set of colors to be742

red < green < orange < yellow where the ordering defines the ordering of the weight. Then if in one743

initialization has the colors (red, green, yellow) then here the first action dimension corresponds to744

the color red. However, another initialization of the same environment can be (green orange, yellow)745

and then the first action dimension would correspond to the green object. Thus, for a model to learn746

the action to object mapping, it has to learn this global ranking of colors. We found that this was747

typically hard for the models to do.748

To alleviate the above complexity, we consider another setting FixedUnobserved where we keep the749

shapes of the objects fixed and unique. Here, there is an additional constraint that apart from the750

colors following a global ordering of weights, the unique shapes also follow a global ordering of751

weights and hence, this creates an easily learnable mapping.752

G.3 All variables are observed753

In this setting, we consider all the objects to be of the same color but different shades, eg. different754

shades of the color blue. The weight of each object is a monotonic function of its color intensity,755

meaning that darker objects are heavier.756

Mathematically, given a colormap C (single color; continuous in intensity of the color), ci 2 [0, 1]757

denotes the intensity of the color C for object i (1 being darkest; 0 lightest). Moreover, the weight of758

that object is given by wi = g(ci), where g is a strictly monotonic function. Thus, darker objects are759

given heavier weights and thus can push lighter objects.760

This setting easily allows for zero shot generalization since a model that has been trained on a subset761

of shades of a particular color can generalize to do well across different shades of the same color.762

Moreover, the shape of an object here is a distractor since the dynamics of the objects are only763

controlled by their colors.764

G.4 Some variables are unobserved765

In this setting, all objects are of distinct discrete colors drawn from a discrete colormap c. Each color766

is associated with a unique weight and here, too, heavier objects can push lighter ones but not vice767

versa.768

Mathematically, given a colormap C (multiple discrete options), ci 2 C denotes the color for object i769

such that ci 6= cj 8i 6= j. Moreover, the weight of that object is given by wi = g(hi), where g is an770

injective function and g : C ! R.771

This setting does not allow for zero shot generalization in the colors since whenever a new color is772

introduced, the agent will have to perform interventions on it to infer its place in the graph. However,773

similar to the observed case, the shapes of the objects act as distractors since the dynamics is only774

controlled by the colors.775

G.5 Unobserved Variables but Fixed Shapes776

In this setting, all objects are of distinct discrete colors and shapes where the set of shapes is kept777

constant across different episodes. Here, the weight of an object can be reflected either from its shape778

or its color. For example, the lightest object in the episode will always be of a fixed unique shape and779

it will always have the lightest color (where lightest color is defined according to the order on the780

color in the colormap - eg. red < blue < green)781
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This setting does not allow for zero shot generalization in either the colors or the shapes since782

whenever a new color or shape is introduced, the agent will have to perform interventions on it to783

infer its place in the graph.784

G.6 Experimental Results785

We perform experiments on a wide range of settings for the underlying causal graph for the physics786

environment. We categorize our findings below -787

• Graph Neural Networks (GNNs) generally don’t perform well compared to Modular models788

and Autoencoders (AEs) on a wide variety of metrics (ranking metrics, reconstruction loss,789

downstream RL task) in the setting of likelihood based loss (refer to Figure 8 - Figure 19790

and Table 3 - 14)791

• Models trained with contrastive loss are generally better at predictions made over longer792

time scales in terms of ranking metrics (refer to Figure 8 - 13 and Table 3 - 8)793

• Models trained with contrastive loss are also generally better at downstream RL tasks as794

compared to those trained with likelihood based loss. In particular there are some settings795

where the former were able to do almost perfect planning while the latter weren’t able to do796

good planning in any setting (refer to Figures 16, 18 and 19 and Tables 9, 13 and 14)797

• Modular models and Graph Neural Networks scale better than the monolithic counterparts798

when the number of objects in the causal graph increases. Further, while the ranking metrics799

still remain good, we see that the planning metrics suffer by a large margin (refer to Figure 8800

- 19 and Table 3 - 14)801

• While Autoencoder models perform decently based on ranking metrics, they generally don’t802

perform as well on downstream RL tasks when compared to Graph Neural Networks and803

Modular models (refer to Figure 14 - 19 and Table 9 - 14)804

• While ranking metrics on the unobserved environment are still decent (refer to Figures 10805

and 11 and Tables 5 and 6), we see that in terms of downstream RL planning, none of the806

models do much better than a random policy (refer to Figures 16 and 17 and Figures 16807

and 17)808

• We see a case where models that have very good ranking metrics over long time horizons809

(AE with NLL Finetune; Figure 12 and Figure 18) perform much worse on downstream810

RL tasks than GNNs and Modular models which had lower ranking metrics (Table 13 and811

Figure 18).812

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 97.23±0.37 98.23±0.28 0.04±0.0 72.78±2.5 77.74±2.14 0.1±0.01 40.46±3.48 47.4±3.37 0.22±0.01

GNN 64.86±4.43 73.39±4.08 0.11±0.01 17.73±6.15 25.44±7.73 0.33±0.05 6.4±3.51 11.05±5.17 0.44±0.06

Modular 97.13±0.55 98.22±0.42 0.04±0.0 70.7±9.01 76.46±7.95 0.13±0.02 36.66±9.88 44.25±10.14 0.26±0.03

VAE 49.52±1.51 58.98±1.79 0.25±0.02 1.7±0.13 3.4±0.16 1.0±0.11 0.16±0.03 0.56±0.06 1.18±0.14

NLL
Finetuned

AE 98.08±0.2 98.81±0.15 0.03±0.0 80.95±2.2 84.54±1.86 0.07±0.0 51.98±4.12 57.96±3.84 0.16±0.01

GNN 74.64±11.03 78.88±10.19 0.04±0.0 32.43±16.24 39.39±17.45 0.14±0.05 8.23±7.15 12.03±9.29 0.28±0.07

Modular 98.16±0.49 99.0±0.33 0.03±0.0 81.49±10.07 86.17±8.66 0.07±0.02 48.7±16.19 56.48±16.41 0.17±0.04

VAE 77.61±16.75 83.27±13.68 0.04±0.0 18.96±13.9 25.5±17.07 0.29±0.08 1.3±1.08 2.87±1.96 0.51±0.07

Contrastive
AE 82.11±2.22 88.5±1.61 - 50.0±6.43 65.2±5.04 - 34.36±8.42 51.22±8.17 -

GNN 93.86±9.59 95.99±6.42 - 78.28±32.39 82.29±26.85 - 72.06±39.58 75.46±35.65 -
Modular 98.73±1.04 99.31±0.58 - 94.7±4.2 97.02±2.38 - 90.6±6.87 94.45±4.08 -

Table 3: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment setting with 3 objects.
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Figure 8: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 97.77±1.45 98.38±1.05 0.08±0.01 63.88±9.77 69.55±9.0 0.25±0.03 27.18±7.09 33.6±7.71 0.45±0.03

GNN 95.13±3.02 96.95±2.24 0.19±0.02 41.49±3.95 50.63±3.93 0.47±0.05 19.28±2.57 26.59±3.06 0.63±0.07

Modular 99.57±0.16 99.73±0.12 0.09±0.0 79.14±4.89 84.06±4.09 0.28±0.01 35.68±6.99 43.82±7.55 0.48±0.02

VAE 79.35±0.48 84.38±0.4 0.34±0.01 6.18±1.76 10.68±2.25 1.62±0.1 0.28±0.09 0.97±0.22 2.21±0.13

NLL
Finetuned

AE 98.29±0.77 98.78±0.53 0.07±0.01 69.58±7.23 74.59±6.45 0.2±0.02 31.75±6.64 38.22±6.97 0.39±0.02

GNN 97.71±2.81 98.43±2.13 0.07±0.0 68.36±18.69 73.78±17.13 0.2±0.05 26.52±13.33 32.94±14.63 0.46±0.13

Modular 99.65±0.2 99.77±0.14 0.06±0.0 77.21±6.81 82.08±5.83 0.21±0.04 23.15±6.27 29.24±7.12 0.53±0.12

VAE 68.44±2.1 74.52±1.6 0.09±0.0 8.42±1.32 12.42±1.8 0.75±0.03 0.58±0.14 1.34±0.28 1.07±0.05

Contrastive
AE 96.12±1.73 97.71±1.12 - 67.36±20.12 76.98±15.6 - 44.65±32.39 55.38±29.98 -

GNN 99.28±0.53 99.6±0.31 - 78.85±7.5 84.81±6.21 - 50.1±9.94 60.25±10.11 -
Modular 99.71±0.13 99.84±0.08 - 84.3±2.84 89.35±2.26 - 52.36±4.02 63.28±4.28 -

Table 4: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment setting with 5 objects.
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Figure 9: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment setting with 5 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 65.69±1.93 73.4±1.66 0.12±0.0 17.98±0.95 25.84±1.15 0.3±0.01 6.56±0.6 11.64±0.98 0.39±0.02

GNN 62.27±3.7 70.16±3.5 0.15±0.01 19.32±1.64 26.2±2.14 0.34±0.02 8.87±1.35 14.09±2.03 0.42±0.02

Modular 75.23±2.69 82.73±2.01 0.12±0.0 24.93±2.64 33.96±3.08 0.31±0.01 10.39±1.67 16.71±2.31 0.39±0.01

VAE 52.83±1.98 61.68±1.85 0.28±0.01 1.96±0.16 3.92±0.26 0.88±0.05 0.19±0.04 0.62±0.03 1.0±0.07

NLL
Finetuned

AE 95.35±1.13 97.02±0.75 0.06±0.0 40.92±7.81 49.77±7.94 0.21±0.02 9.41±4.36 13.92±5.64 0.35±0.03

GNN 74.19±5.88 80.08±5.04 0.07±0.0 20.13±8.28 26.32±9.43 0.16±0.01 2.3±2.97 3.94±4.06 0.25±0.02

Modular 94.92±1.84 96.79±1.24 0.07±0.0 27.62±6.53 34.7±7.51 0.21±0.02 2.52±1.21 4.16±1.74 0.32±0.03

VAE 49.65±4.14 59.58±3.92 0.07±0.0 7.82±1.04 12.3±1.48 0.25±0.03 0.83±0.16 2.05±0.29 0.36±0.04

Contrastive
AE 89.77±3.3 94.0±2.11 - 37.57±9.15 53.53±8.72 - 13.87±7.64 26.54±10.18 -

GNN 89.58±5.13 93.4±3.42 - 40.33±10.2 50.14±10.19 - 17.74±6.99 25.67±8.26 -
Modular 96.55±3.09 97.96±1.96 - 62.15±12.59 71.49±11.61 - 31.02±10.94 42.39±12.6 -

Table 5: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Unobserved
Physics environment setting with 3 objects.
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Figure 10: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Unobserved
Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 89.49±0.68 92.15±0.62 0.15±0.0 37.78±1.7 45.92±1.78 0.35±0.01 15.04±1.74 21.52±2.21 0.46±0.01

GNN 95.76±2.07 97.3±1.53 0.17±0.01 49.46±1.98 57.92±2.14 0.42±0.04 28.5±2.54 36.75±2.99 0.54±0.05

Modular 98.19±1.26 98.93±0.81 0.15±0.01 57.51±5.46 66.3±5.16 0.37±0.03 31.67±4.13 40.84±4.55 0.49±0.04

VAE 77.21±3.91 81.44±3.54 0.33±0.01 26.01±2.63 32.41±2.79 0.89±0.04 9.18±1.03 13.74±1.25 1.18±0.07

NLL
Finetuned

AE 95.79±0.58 97.27±0.43 0.11±0.0 27.77±1.72 35.19±1.88 0.22±0.01 3.73±0.45 5.92±0.57 0.32±0.02

GNN 99.04±0.72 99.43±0.44 0.1±0.0 58.45±7.06 65.86±6.56 0.2±0.01 10.34±3.74 15.38±4.81 0.28±0.01

Modular 99.87±0.05 99.93±0.03 0.1±0.0 42.15±9.03 49.12±9.4 0.22±0.01 4.35±2.47 6.32±3.35 0.36±0.04

VAE 65.67±5.74 72.42±5.11 0.11±0.0 15.62±3.52 20.41±4.25 0.3±0.02 3.55±1.5 5.57±2.15 0.42±0.03

Contrastive
AE 97.23±0.93 98.38±0.54 - 56.62±5.66 68.68±4.46 - 22.86±5.52 35.88±6.53 -

GNN 99.67±0.21 99.81±0.12 - 82.52±6.75 86.9±5.33 - 55.12±11.8 63.04±10.74 -

Modular 99.8±0.14 99.89±0.08 - 82.98±3.25 87.44±2.72 - 50.92±4.73 59.51±4.65 -

Table 6: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Unobserved
Physics environment setting with 5 objects.
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Figure 11: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Unobserved
Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 99.0±0.1 99.44±0.06 0.04±0.0 95.0±0.41 96.81±0.31 0.06±0.0 84.54±1.5 89.24±1.2 0.1±0.01

GNN 70.68±4.95 79.43±4.13 0.11±0.02 23.82±7.74 33.28±9.14 0.27±0.05 10.11±5.08 16.65±6.91 0.36±0.06

Modular 98.03±0.22 98.84±0.17 0.05±0.0 88.12±2.65 91.8±2.2 0.08±0.01 68.6±9.01 76.12±7.96 0.12±0.02

VAE 53.12±2.76 63.42±2.58 0.21±0.01 2.2±0.24 4.53±0.4 0.61±0.05 0.2±0.04 0.82±0.08 0.76±0.07

NLL
Finetuned

AE 99.24±0.08 99.59±0.05 0.04±0.0 96.73±0.37 98.02±0.22 0.05±0.0 90.56±1.0 93.72±0.69 0.07±0.0

GNN 75.16±12.45 79.97±11.99 0.05±0.0 34.78±14.54 42.8±16.43 0.11±0.04 12.76±7.38 17.88±9.47 0.21±0.07

Modular 98.76±0.15 99.35±0.09 0.04±0.0 91.3±2.18 94.54±1.63 0.06±0.0 66.7±7.96 75.15±7.17 0.1±0.01

VAE 68.53±13.05 76.55±10.71 0.05±0.0 21.38±10.49 29.76±12.17 0.18±0.03 1.72±1.0 3.85±1.66 0.29±0.04

Contrastive
AE 77.67±10.51 86.21±7.08 - 53.49±23.05 68.11±17.57 - 43.65±26.31 59.13±21.53 -

GNN 84.94±8.08 90.1±5.62 - 42.88±28.35 51.75±24.48 - 28.06±35.18 34.19±32.68 -
Modular 88.42±6.43 93.32±4.48 - 71.54±17.3 83.07±12.72 - 66.07±20.34 79.36±15.62 -

Table 7: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the FixedUnobserved
Physics environment setting with 3 objects.
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Figure 12: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the FixedUnobserved
Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 98.51±0.14 98.85±0.09 0.07±0.0 84.3±1.58 87.34±1.18 0.16±0.0 58.14±2.86 64.57±2.51 0.26±0.01

GNN 95.61±2.72 97.13±2.01 0.13±0.02 53.89±11.58 62.05±10.9 0.32±0.05 28.64±11.56 36.96±12.45 0.44±0.07

Modular 99.48±0.25 99.63±0.21 0.07±0.0 94.13±1.31 95.54±1.24 0.15±0.01 78.18±3.17 82.76±2.95 0.23±0.02

VAE 74.2±0.99 78.72±0.98 0.23±0.01 22.18±0.93 27.69±0.91 0.63±0.04 5.68±0.88 9.0±1.0 0.83±0.06

NLL
Finetuned

AE 99.18±0.16 99.37±0.11 0.07±0.0 91.48±1.86 93.19±1.41 0.12±0.01 73.28±3.92 77.99±3.36 0.2±0.02

GNN 95.86±3.39 97.36±2.31 0.06±0.0 65.56±16.0 71.71±14.42 0.13±0.03 35.26±20.76 41.63±20.99 0.26±0.07

Modular 99.85±0.12 99.91±0.08 0.06±0.0 95.04±1.85 96.59±1.39 0.11±0.01 61.72±9.28 68.6±8.84 0.23±0.02

VAE 54.28±4.29 62.55±3.59 0.07±0.0 10.07±3.42 14.12±4.4 0.28±0.01 1.91±1.13 3.3±1.72 0.4±0.02

Contrastive
AE 92.83±12.62 94.9±10.1 - 79.39±25.3 85.46±21.36 - 72.04±26.37 80.28±22.74 -

GNN 99.93±0.11 99.97±0.06 - 96.21±6.69 97.41±4.64 - 88.83±18.69 91.34±14.86 -

Modular 99.86±0.07 99.93±0.04 - 98.36±0.49 98.94±0.42 - 93.44±2.91 95.63±1.94 -

Table 8: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the FixedUnobserved
Physics environment setting with 5 objects.
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Figure 13: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the FixedUnobserved
Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success

Baselines Random Baseline -0.37 0.22 -1.26 0.01 -1.78 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.01 0.98

NLL

AE -0.26±0.01 0.44±0.03 -0.73±0.04 0.12±0.02 -1.02±0.06 0.08±0.02

GNN -0.34±0.02 0.29±0.03 -1.04±0.07 0.04±0.01 -1.49±0.1 0.02±0.01

Modular -0.25±0.02 0.46±0.04 -0.67±0.06 0.15±0.02 -0.97±0.09 0.08±0.02

VAE -0.33±0.02 0.32±0.03 -1.0±0.03 0.04±0.01 -1.37±0.04 0.01±0.0

NLL
Finetuned

AE -0.22±0.02 0.52±0.03 -0.62±0.04 0.17±0.02 -0.9±0.05 0.11±0.02

GNN -0.36±0.06 0.3±0.11 -1.06±0.24 0.06±0.04 -1.57±0.33 0.03±0.03

Modular -0.16±0.04 0.64±0.08 -0.48±0.11 0.27±0.09 -0.79±0.17 0.15±0.06

VAE -0.26±0.07 0.43±0.13 -0.85±0.2 0.08±0.05 -1.28±0.21 0.03±0.02

Contrastive
AE -0.27±0.02 0.42±0.03 -0.97±0.04 0.05±0.01 -1.44±0.05 0.02±0.0

GNN -0.11±0.17 0.77±0.36 -0.36±0.52 0.68±0.43 -0.5±0.72 0.66±0.43

Modular -0.2±0.07 0.54±0.13 -0.76±0.23 0.13±0.08 -1.06±0.28 0.07±0.05

Table 9: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 3 objects.
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Figure 14: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 3 objects.

Figure 15: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 5 objects.
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Figure 16: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 3 objects.

Figure 17: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 5 objects.
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Figure 18: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the FixedUnobserved Physics environment setting with 3 objects.

Figure 19: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the FixedUnobserved Physics environment setting with 5 objects.
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Figure 20: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment Zero Shot setting with 3 objects.

1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success

Baselines Random Baseline -0.22 0.22 -0.87 0.00 -1.31 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.00 0.98

NLL

AE -0.2±0.01 0.32±0.03 -0.66±0.04 0.04±0.01 -1.04±0.04 0.01±0.0

GNN -0.22±0.02 0.25±0.04 -0.74±0.04 0.02±0.0 -1.16±0.06 0.0±0.0

Modular -0.21±0.01 0.29±0.03 -0.65±0.02 0.04±0.01 -1.02±0.03 0.01±0.01

VAE -0.22±0.01 0.26±0.02 -0.73±0.02 0.02±0.0 -1.08±0.02 0.0±0.0

NLL
Finetuned

AE -0.18±0.01 0.36±0.02 -0.62±0.02 0.04±0.01 -1.0±0.02 0.01±0.0

GNN -0.26±0.03 0.18±0.06 -0.84±0.12 0.02±0.01 -1.27±0.18 0.0±0.0

Modular -0.17±0.01 0.41±0.03 -0.6±0.03 0.05±0.01 -1.02±0.04 0.01±0.0

VAE -0.23±0.04 0.22±0.1 -0.79±0.08 0.02±0.01 -1.17±0.1 0.0±0.0

Contrastive
AE -0.22±0.03 0.24±0.08 -0.74±0.04 0.02±0.01 -1.09±0.07 0.0±0.0

GNN -0.23±0.03 0.22±0.07 -0.74±0.06 0.02±0.01 -1.08±0.05 0.0±0.0

Modular -0.21±0.05 0.28±0.12 -0.68±0.09 0.02±0.02 -1.01±0.09 0.01±0.01

Table 10: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Observed Physics environment setting with 5 objects.

30



Figure 21: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment Zero Shot setting with 5 objects.

1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success

Baselines Random Baseline -0.37 0.22 -1.26 0.01 -1.78 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.01 0.98

NLL

AE -0.31±0.01 0.35±0.02 -0.95±0.02 0.06±0.01 -1.39±0.04 0.02±0.01

GNN -0.36±0.01 0.27±0.01 -1.13±0.02 0.03±0.0 -1.64±0.03 0.01±0.0

Modular -0.32±0.01 0.34±0.01 -0.94±0.02 0.06±0.01 -1.36±0.04 0.02±0.01

VAE -0.37±0.01 0.26±0.03 -1.06±0.06 0.04±0.01 -1.48±0.05 0.01±0.0

NLL
Finetuned

AE -0.26±0.02 0.44±0.03 -0.83±0.06 0.08±0.02 -1.23±0.07 0.03±0.01

GNN -0.37±0.02 0.26±0.03 -1.13±0.05 0.03±0.01 -1.71±0.1 0.01±0.01

Modular -0.27±0.03 0.43±0.05 -0.89±0.07 0.07±0.02 -1.32±0.09 0.02±0.01

VAE -0.39±0.03 0.22±0.03 -1.18±0.07 0.02±0.01 -1.61±0.09 0.0±0.0

Contrastive
AE -0.31±0.02 0.36±0.04 -0.96±0.04 0.05±0.01 -1.36±0.05 0.01±0.01

GNN -0.39±0.02 0.2±0.04 -1.22±0.06 0.02±0.01 -1.64±0.04 0.0±0.0

Modular -0.31±0.03 0.37±0.06 -1.07±0.07 0.04±0.01 -1.54±0.09 0.01±0.0

Table 11: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 3 objects.
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Figure 22: Plots for Observed Physics Environment with 3 objects. Note that (a) the ranking metric (H@1) does
not always correspond to good RL performance. In particular, the ranking metric is good across multiple steps
but RL performance generally degrades. (b) and (c) Ranking metric and success rate seem to be a bit negatively
correlated with test loss.

H Chemistry Environment813

H.1 Detailed Setup814

The chemistry environment consists of objects of different shapes and colors. Each object forms a815

node of a directed acyclic graph. The shapes and positions of the objects are fixed across episodes816

while the color of each object is sampled from a conditional probability table and depends on the817

colors of its ancestors.818

Considering a set of M objects: (Xi = {si, ci, pi} 8i 2 {1, . . . ,M}). Here, si, ci and pi denote819

the shape, color and position of the object respectively. As mentioned previously, the shapes and the820

positions are fixed across episodes but different for each object. The color of an object is a categorical821

variable that can take one of the K possible values. To model the CPT we use an MLP for each822

object, the input to an object’s MLP is the current state of each of its parent nodes and the outputs823

is a probability distribution over k colors out of which one color is sampled for that object. We824

can control the skewness of the distribution of each object by controlling the initialization of the825
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Figure 23: Plots for Observed Physics Environment with 5 objects. Note that (a) the ranking metric (H@1) does
not always correspond to good RL performance. In particular, the ranking metric is good across multiple steps
but RL performance generally degrades. (b) and (c) Ranking metric and success rate seem to be a bit negatively
correlated with test loss.

MLP parameters. It is more hard for a model to learn the correct probability distribution when the826

distribution is less skewed.827

In the chemistry environment, an intervention corresponds to changing the color of an object to a828

particular color from fixed set of K colors. When an intervention is performed on an object, a new829

color is sampled for each of its descendants using their respective MLPs as mentioned above. Each830

object changes its color to the newly sampled color at the same instant.831

Note that all our experiments for this environment were run for a setting of 5 objects and 5 colors832

unless specified otherwise.833

H.2 Ranking Loss and Causal Structure834

Initially, our vanilla chemistry environment had objects being initialized at random positions per835

episode while maintaining a fixed causal graph underneath. We call this setting the dynamic setting.836

We noticed that in this case, the ranking metrics were very good but performance on downstream837

RL task as well as qualitative reconstruction was very poor. On further investigation, we reached838
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1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success

Baselines Random Baseline -0.22 0.22 -0.87 0.00 -1.31 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.00 0.98

NLL

AE -0.22±0.01 0.26±0.03 -0.74±0.03 0.02±0.01 -1.14±0.03 0.0±0.0

GNN -0.22±0.01 0.25±0.02 -0.76±0.02 0.02±0.01 -1.19±0.03 0.0±0.0

Modular -0.21±0.01 0.28±0.03 -0.7±0.03 0.02±0.0 -1.08±0.04 0.01±0.0

VAE -0.23±0.01 0.22±0.02 -0.78±0.03 0.02±0.01 -1.18±0.06 0.0±0.0

NLL
Finetuned

AE -0.18±0.02 0.35±0.04 -0.59±0.05 0.04±0.01 -0.96±0.07 0.01±0.0

GNN -0.23±0.0 0.22±0.02 -0.8±0.04 0.02±0.01 -1.28±0.07 0.0±0.0

Modular -0.21±0.01 0.28±0.03 -0.69±0.04 0.03±0.01 -1.11±0.07 0.01±0.0

VAE -0.21±0.05 0.25±0.11 -0.73±0.13 0.03±0.01 -1.1±0.13 0.0±0.0

Contrastive
AE -0.25±0.02 0.2±0.06 -0.76±0.07 0.02±0.01 -1.12±0.09 0.0±0.0

GNN -0.21±0.02 0.25±0.06 -0.71±0.07 0.02±0.0 -1.08±0.07 0.0±0.0

Modular -0.24±0.02 0.2±0.04 -0.76±0.05 0.02±0.0 -1.12±0.06 0.0±0.0

Table 12: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the Unobserved Physics environment setting with 5 objects.

1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success

Baselines Random Baseline -0.37 0.22 -1.26 0.01 -1.78 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.01 0.98

NLL

AE -0.23±0.01 0.48±0.03 -0.59±0.03 0.18±0.02 -0.78±0.05 0.12±0.02

GNN -0.34±0.02 0.3±0.03 -1.03±0.09 0.05±0.01 -1.51±0.14 0.02±0.01

Modular -0.19±0.02 0.56±0.04 -0.48±0.06 0.25±0.05 -0.67±0.08 0.18±0.04

VAE -0.33±0.01 0.32±0.02 -0.98±0.04 0.05±0.01 -1.4±0.04 0.01±0.0

NLL
Finetuned

AE -0.2±0.01 0.54±0.03 -0.49±0.03 0.23±0.03 -0.64±0.04 0.18±0.02

GNN -0.33±0.07 0.33±0.11 -0.93±0.22 0.08±0.04 -1.42±0.3 0.02±0.01

Modular -0.11±0.02 0.73±0.05 -0.34±0.06 0.38±0.07 -0.58±0.1 0.24±0.06

VAE -0.31±0.03 0.34±0.05 -0.94±0.09 0.06±0.02 -1.34±0.11 0.02±0.01

Contrastive
AE -0.09±0.1 0.78±0.23 -0.38±0.33 0.45±0.31 -0.55±0.46 0.36±0.31

GNN -0.3±0.15 0.4±0.3 -0.96±0.48 0.21±0.38 -1.32±0.65 0.19±0.37

Modular -0.07±0.11 0.85±0.24 -0.24±0.38 0.73±0.41 -0.34±0.51 0.7±0.43

Table 13: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the FixedUnobserved Physics environment setting with 3 objects.

1 Step 5 Steps 10 Steps
Model Reward Success Reward Success Reward Success

Baselines Random Baseline -0.22 0.22 -0.87 0.00 -1.31 0.00
Greedy Baseline 0.00 1.00 -0.00 0.99 -0.00 0.98

NLL

AE -0.21±0.01 0.28±0.01 -0.66±0.02 0.04±0.01 -0.98±0.03 0.01±0.0

GNN -0.23±0.0 0.22±0.02 -0.76±0.04 0.02±0.0 -1.17±0.07 0.0±0.0

Modular -0.19±0.01 0.36±0.03 -0.51±0.03 0.08±0.01 -0.79±0.05 0.03±0.01

VAE -0.21±0.03 0.27±0.06 -0.75±0.09 0.02±0.01 -1.16±0.1 0.0±0.0

NLL
Finetuned

AE -0.19±0.01 0.35±0.01 -0.55±0.02 0.06±0.01 -0.83±0.03 0.02±0.0

GNN -0.25±0.03 0.2±0.08 -0.78±0.14 0.02±0.03 -1.17±0.19 0.01±0.01

Modular -0.13±0.01 0.52±0.05 -0.44±0.03 0.11±0.02 -0.81±0.06 0.03±0.01

VAE -0.24±0.01 0.19±0.02 -0.77±0.04 0.02±0.0 -1.14±0.07 0.0±0.0

Contrastive
AE -0.13±0.02 0.5±0.07 -0.51±0.08 0.09±0.04 -0.81±0.11 0.03±0.01

GNN -0.04±0.09 0.84±0.3 -0.17±0.3 0.74±0.36 -0.27±0.44 0.68±0.34

Modular -0.0±0.0 0.99±0.02 -0.06±0.06 0.78±0.2 -0.14±0.14 0.63±0.27

Table 14: Negative Return (lower is better) and Success Rate (higher is better) for different models and training
losses for 1, 5 and 10 step prediction for the FixedUnobserved Physics environment setting with 5 objects.

the conclusion that under this setting, a model could do very well under the ranking metrics without839

learning the causal structure at all.840
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1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 73.41±0.63 78.83±0.54 0.1±0.0 26.32±1.55 31.97±1.53 0.31±0.01 10.73±1.19 14.47±1.32 0.45±0.02

GNN 57.06±1.49 65.9±1.26 0.15±0.01 12.08±1.15 18.33±1.49 0.4±0.04 3.6±0.67 6.97±1.11 0.5±0.05

Modular 71.67±1.47 77.8±1.21 0.12±0.0 26.7±4.2 33.58±4.68 0.31±0.02 10.84±2.89 15.38±3.71 0.42±0.03

VAE 43.78±1.57 55.48±1.93 0.29±0.02 1.59±0.1 3.18±0.1 1.09±0.12 0.12±0.03 0.46±0.04 1.23±0.14

NLL
Finetuned

AE 73.78±1.86 79.35±1.73 0.09±0.01 28.37±1.55 33.98±1.65 0.29±0.01 12.4±0.88 16.09±1.04 0.43±0.01

GNN 66.42±7.06 72.43±6.67 0.1±0.01 18.42±7.28 24.18±8.74 0.24±0.02 3.24±1.99 5.26±2.78 0.36±0.03

Modular 77.33±1.83 82.91±1.67 0.11±0.01 35.97±6.75 43.71±7.17 0.24±0.01 15.73±6.19 21.38±7.48 0.34±0.02

VAE 62.8±14.23 71.95±12.27 0.09±0.01 9.77±6.48 14.44±8.41 0.4±0.05 0.69±0.49 1.63±1.02 0.6±0.06

Contrastive
AE 72.16±1.31 78.78±1.07 - 33.23±5.11 45.72±4.26 - 18.92±4.56 31.02±5.04 -

GNN 92.19±5.86 94.89±4.05 - 61.6±19.42 69.77±17.93 - 44.51±21.94 53.42±22.27 -

Modular 85.03±1.73 88.08±1.88 - 58.26±3.25 65.85±3.68 - 45.83±3.15 54.69±3.21 -

Table 15: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment Zero Shot setting with 3 objects.

1 Step 5 Steps 10 Steps
Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

NLL

AE 85.81±1.18 89.11±1.05 0.15±0.0 32.64±2.82 39.22±2.92 0.41±0.01 10.2±1.74 14.34±2.0 0.58±0.02

GNN 94.67±2.05 96.86±1.35 0.2±0.0 39.49±3.03 48.71±3.35 0.49±0.05 17.39±2.85 24.61±3.59 0.65±0.06

Modular 95.68±1.94 97.14±1.5 0.16±0.0 51.19±6.06 59.25±6.13 0.42±0.01 18.94±4.4 25.58±5.39 0.58±0.02

VAE 79.8±0.66 85.83±0.54 0.35±0.01 4.83±1.62 8.52±2.25 1.68±0.1 0.23±0.07 0.76±0.18 2.26±0.15

NLL
Finetuned

AE 86.52±0.32 89.83±0.29 0.15±0.0 36.33±2.52 43.14±2.41 0.39±0.01 12.12±1.92 16.72±2.29 0.56±0.02

GNN 96.29±1.99 97.27±1.57 0.15±0.01 51.4±9.48 58.06±9.27 0.4±0.06 13.22±5.04 17.9±6.0 0.64±0.14

Modular 96.5±1.23 97.55±0.94 0.16±0.02 49.09±6.16 56.4±6.05 0.43±0.08 10.47±2.52 14.57±3.2 0.69±0.16

VAE 65.76±1.61 72.93±1.24 0.12±0.0 7.39±0.77 11.18±0.95 0.77±0.03 0.43±0.06 1.02±0.1 1.11±0.06

Contrastive
AE 93.92±2.23 95.64±2.18 - 58.72±13.26 68.87±10.01 - 34.58±21.13 45.31±20.27 -

GNN 99.63±0.37 99.8±0.21 - 82.16±8.14 87.05±6.6 - 55.34±12.14 64.19±11.66 -
Modular 99.84±0.11 99.91±0.06 - 86.88±3.19 91.02±2.51 - 55.64±5.68 65.58±5.57 -

Table 16: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models and training losses for 1, 5 and 10 step prediction for the Observed Physics
environment Zero Shot setting with 5 objects.

If the encoder learns to encode the positions and shapes of different objects, then it already does841

a great job at ranking. This is because ranking is done with respect to a large buffer of encoded842

states and since objects are randomly initialized per episode, there is very little probability that two843

encoded states share the exact same object shapes and positions. Thus, as long as the encoder and844

the transition function exploit the fact that two encoded states should be close by iff they have the845

same objects in the same positions, then it would do very well on the ranking metrics. Note that in846

Success Rate
Model From Scratch Freezed Finetuned

AE 0.284±0.003 0.293±0.003 0.283±0.01

VAE 0.28±0.006 0.281±0.003 0.287±0.001

Modular 0.284±0.013 0.285±0.01 0.317±0.026

GNN 0.281±0.003 0.284±0.009 0.292±0.004

Table 17: In this table we show the performance of PPO on the observed physics environment. The results
indicates that using a pretrained encoder (by either freezing or finetuning the encoder parameters) outperforms
the model trained from scratch in all cases, with the finetuned modular networks outperforming all other
models. This is an indication that the representations learned by such models help to improve downstream RL
performance, even for model-free RL algorithms.
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the above argument, the model had a way of ranking well without even learning anything about the847

edges in the graph, i.e. the structure of interactions between the objects.848

To alleviate this problem, we decided to keep the positions of the objects fixed across episodes too.849

We call this setting the static setting. This means that models will not be able to perform well on850

ranking metrics by just encoding the positions or shapes of the objects (since they are now shared851

across episodes). The only way to do well on ranking metrics then is to learn the underlying causal852

structure. We immediately saw a plummet in ranking metrics that confirmed our suspicions that the853

models were not able to learn the underlying causal structure.854

For a demonstration of the mentioned problem refer to Figure 27. In the figure we can see that for the855

dynamic setting, models achieve a much higher score on the ranking metrics (H@1 and MRR) as856

compared to the static setting while doing much worse on the downstream RL task as compared the857

static setting. This further reinforces the importance of using downstream RL tasks for evaluation.858

This also shows that inferring the causal graph even in the case of small graphs is a complex859

problem that current models are not able to solve well. We believe that the existence of this suite of860

environments provides a platform for extensive study of causality in world models.861

H.3 Experimental Results862

We perform ablation studies on the chemistry environment with varying factors in the underlying863

causal graph to study how these factors impact learning. We summarize our findings below -864

• It is easier for models to learn the right causal structure when the cause-effect chains are865

short. For eg., all models perform much better (under all metrics) on the collider graph866

where cause-effect length can be at-most one as opposed to chain and full graph where the867

cause-effect length is longer (refer to Figure 24 and Table 18)868

• Modular Models generally perform better than Graph Neural Networks (GNNs) when trained869

using NLL loss because the former can encode higher-order interactions while the latter870

only encodes pairwise interactions (refer to Figure 24 and Table 18).871

• While models trained on the dynamic chemistry environment perform very well on ranking872

metrics, they don’t do well on the downstream RL task. This is because these models don’t873

actually learn the right causal structure but only encode the visual aspects of the particular874

episode such as shapes and positions. To further investigate this, we decided to keep the875

objects stationary. We saw that the ranking metrics immediately suffer by a large margin876

because the models couldn’t cheat by just encoding the visual details and not the causal877

structure (refer to Appendix H.2 and Figure 27 for details).878

• Increased stochasticity (entropy) of the conditional probability tables (CPTs) make it harder879

for the models to learn (refer to Figure 25). In the figure, we can see that almost all880

models generally perform better on less stochastic (more skewed) data as compared to more881

stochastic (less skewed) data.882

• Modular models outperform all other models on the downstream RL task (refer to Figures 7883

and 26 and Table 19) for all settings(i.e different graphs and number of steps) due to their884

ability to encode higher-order interaction which monolithic models like AEs and VAEs885

cannot do while Graph Neural Networks(GNNs) only en pairwise interactions. We also886

report 2 baselines random and optimal as described in Appendix E.2887

888
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Figure 24: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models trained using NLL Loss for 1, 5 and 10 step prediction for the vanilla
chemistry environment with 5 objects and 5 colors.

Figure 25: H@1 performance of models for data generated at different levels of skewness(stochasticity) for the
chain graph. As we see almost all models perform better on more skewed data as the data uncertainty is less on
more skewed data as compared to less skewed data.
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Figure 26: Mean reward and success rate for models trained on the chemistry environment with 5 objects and 5
colors. Modular models outperform all other models in almost all cases which shows that introducing structure
in the form of modularity is an important inductive bias for learning causal models.

1 Step 5 Steps 10 Steps
Graph Type Model H@1 MRR Rec. H@1 MRR Rec. H@1 MRR Rec.

Chain
NLL

AE 16.937±0.386 23.007±0.133 0.07±0.0 4.433±0.023 8.187±0.118 0.073±0.0 1.48±0.04 2.957±0.063 0.076±0.0

VAE 10.293±2.711 15.897±2.927 0.071±0.0 2.987±0.282 6.983±1.079 0.075±0.0 2.19±0.184 5.78±0.821 0.076±0.0

Modular 16.863±0.135 23.047±0.027 0.07±0.0 5.317±0.249 10.31±1.343 0.072±0.0 2.04±0.259 4.45±1.043 0.074±0.0

GNN 3.587±0.412 6.93±0.91 0.07±0.0 0.617±0.05 1.9±0.195 0.076±0.0 0.257±0.002 0.947±0.023 0.079±0.0

Full
NLL

AE 17.62±0.192 23.85±0.065 0.071±0.0 5.127±0.058 9.707±0.184 0.072±0.0 2.527±0.045 4.913±0.177 0.073±0.0

VAE 9.847±0.572 15.407±0.559 0.071±0.0 2.747±0.104 6.363±0.342 0.074±0.0 1.957±0.056 4.927±0.289 0.076±0.0

Modular 15.977±1.066 22.813±0.374 0.071±0.0 6.493±0.209 12.837±0.62 0.071±0.0 4.233±0.848 9.157±2.529 0.071±0.0

GNN 2.68±0.073 5.15±0.069 0.071±0.0 0.23±0.001 0.913±0.001 0.077±0.0 0.103±0.001 0.503±0.002 0.084±0.0

Collider
NLL

AE 20.993±0.016 29.723±0.014 0.072±0.0 14.84±0.09 29.32±0.135 0.069±0.0 15.01±0.829 29.657±2.029 0.067±0.0

VAE 9.847±0.572 15.407±0.559 0.071±0.0 2.747±0.104 6.363±0.342 0.074±0.0 1.957±0.056 4.927±0.289 0.076±0.0

Modular 20.89±0.16 29.563±0.173 0.072±0.0 15.297±0.063 29.99±0.062 0.068±0.0 15.78±0.47 31.21±0.515 0.067±0.0

GNN 8.377±2.358 15.737±4.398 0.072±0.0 5.443±2.729 14.527±15.714 0.073±0.0 4.04±3.073 10.607±20.141 0.08±0.0

Table 18: Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) (higher is better) and Reconstruction Error
(lower is better) for different models trained using NLL loss for 1, 5 and 10 step prediction for the vanilla
chemistry environment with 5 objects and 5 colors.
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Figure 27: This figure compares the performance of static and dynamic setting of the chemistry environment.
We can see that for the dynamic setting even though the models achieve almost perfect performance on the
ranking losses(H@1 and MRR) as compared to the static setting, their performance on the RL task is extremely
low as compared to the static setting. This shows that the ranking losses are not an accurate indicator for model
performance. For a description of static and dynamic setting see Appendix H.2. These experiments were run for
collider graph.
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1 Step 5 Steps 10 Steps
Graph Type Model Mean Reward Success Mean Reward Success Mean Reward Success

Chain
Random 0.56 0.046 0.38 0.005 0.36 0.007
Optimal 0.86 0.52 0.83 0.39 0.16 0.38

AE 0.81±0.001 0.37±0.003 0.75±0.003 0.26±0.01 0.717±0.004 0.227±0.009

VAE 0.74±0.003 0.213±0.002 0.583±0.005 0.09±0.003 0.557±0.006 0.073±0.003

Modular 0.82±0.001 0.38±0.002 0.763±0.002 0.283±0.011 0.743±0.003 0.237±0.007

GNN 0.673±0.0 0.123±0.0 0.6±0.001 0.12±0.0 0.563±0.001 0.1±0.0

Full
Random 0.45 0.027 0.27 0.005 0.25 0.004
Optimal 0.79 0.44 0.737 0.275 0.72 0.24

AE 0.8±0.0 0.41±0.001 0.773±0.002 0.28±0.007 0.747±0.003 0.243±0.006

VAE 0.707±0.001 0.237±0.002 0.55±0.001 0.067±0.0 0.523±0.001 0.053±0.0

Modular 0.82±0.0 0.447±0.003 0.807±0.002 0.337±0.006 0.78±0.002 0.287±0.006

GNN 0.663±0.0 0.177±0.0 0.457±0.0 0.03±0.0 0.39±0.0 0.02±0.0

Collider
Random 0.45 0.23 0.27 0.005 0.25 0.004
Optimal 0.95 0.75 0.94 0.733 0.96 0.80

AE 0.9±0.002 0.587±0.019 0.86±0.007 0.513±0.075 0.833±0.011 0.477±0.094

VAE 0.747±0.004 0.2±0.007 0.543±0.006 0.043±0.001 0.45±0.011 0.02±0.0

Modular 0.93±0.002 0.69±0.018 0.91±0.007 0.693±0.077 0.907±0.008 0.697±0.075

GNN 0.887±0.001 0.513±0.011 0.827±0.006 0.39±0.032 0.807±0.007 0.35±0.028

Table 19: Mean reward and Success rate (higher is better) for 1, 5 and 10 step for the vanilla setting of the
chemistry environment with 5 objects and 5 colors. This table uses models trained using NLL loss.
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Figure 28: Plots for chemistry environment with 5 objects and 5 colors for models trained using NLL Loss. We
see that there seems to be a positive correlation between H@1 and success rate for step 1 but this may not be
true for longer steps.
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