Published in Transactions on Machine Learning Research (11/2023)

Appendix

A ImageNet Bcupr prompts C Pseudoword+DM

Figure 7: Fine-tuning the diffusion model resolves the domain gap between ImageNet (collected almost two
decades ago) and images generated by the stable diffusion model (trained recently). A.ImageNet examples of
the class “cellphone” show devices that were popular in 2006 when ImageNet was collected. B. Prompting
the pretrained stable diffusion model (here: CLIP PROMPTS) generates images depicting newer cellphones
used in recent times. C. Fine-tuning the DM (here: PSEUDOWORD+DM) closes this domain gap, as generated
images show cellphones akin to the ImageNet samples in panel A.
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Retrieved ImageNet Retrieved ImageNet

Figure 8: Duplicate candidates found by comparing perceptual image hashes of retrieved images to our Ima-
geNet test-split.
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Pseudoword+DM ImageNet Pseudoword+DM ImageNet

Figure 9: Duplicate candidates found by comparing perceptual image hashes of generated images
(PSEUDOWORD+DM) to our ImageNet test-split.
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Figure 10: FT CLUSTER CONDITIONING with k = 5 clusters compared to ImageNet. Semantically similar
ImageNet images are clustered together and one conditioning is learned for each cluster to reconstruct the

training images (see section 3 for details).

We exclude images resembling human faces to preserve data

privacy. A. Examples for the class “tiger cat” which is ambiguous in ImageNet itself (left column). B.

Examples for the class “desktop computer”.

Best viewed when zoomed in.
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Figure 11: cLIP PROMPTS examples for each CLIP text template.
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Figure 12: examples for each TEXTUAL INVERSION text template.
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Figure 13: Ezamples of IMAGIC optimization for various epochs.
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