
Under review as a conference paper at ICLR 2021

6 APPENDIX A. TRAINING PROTOCOLS AND HYPERPARAMETER CHOICES.

The fruit fly network was trained on the OpenWebText Corpus (Gokaslan & Cohen, 2019), which is
a 32GB corpus of unstructured text containing approximately 6B tokens. Individual documents were
concatenated and split into sentences. A collection of w-grams were extracted from each sentence
by sliding a window of size w along each sentence from the beginning to the end. Sentences shorter
than w were removed. The vocabulary was composed of Nvoc = 20000 most frequent tokens in the
corpus.

Training was done for Nepoch. At each epoch all the w-grams were shuffled, organized in mini-
batches, and presented to the learning algorithm. The learning rate was linearly annealed starting
from the maximal value "0 at the first epoch to nearly zero at the last epoch.

The training algorithm has the following hyperparameters: size of the KC layer K, window w,
overall number of training epochs Nepoch, initial learning rate "0, minibatch size, and hash length
k. All models presented in this paper were trained for Nepoch = 15. The optimal ranges of the
hyperparameters are: learning rate is "0 ⇡ 10�4�5 ·10�4; K ⇡ 200�600; w ⇡ 9�15; minibatch
size ⇡ 2000� 15000; hash length k is reported for each individual experiment.

7 APPENDIX B. COMPARISON WITH BINARIZED GLOVE AND WORD2VEC.

Method Hash Length (k) Hash Length (k)
4 8 16 32 64 128 4 8 16 32 64 128

MEN (69.5/68.1) WS353 (64.0/47.7)
Ours 34.0 49.9 55.9 56.7 55.3 51.3 43.2 52.1 55.3 57.4 60.3 51.7
LSH 16.9 23.7 35.6 42.6 53.6 63.4 8.2 20.7 30.0 34.7 43.9 50.3

RandExp 27.5 37.7 46.6 57.6 67.3 71.6 20.9 32.9 41.9 48.4 57.6 61.7
ITQ 0.1 7.7 10.5 16.5 30.4 50.5 -6.6 -6.1 -2.4 -4.4 6.1 24.8
SH 9.4 17.0 22.9 37.6 52.9 65.4 15.4 14.1 19.5 32.3 43.1 58.4

PCAH 12.5 21.8 27.6 39.6 53.4 68.1 6.4 6.3 20.6 33.9 49.8 62.6
NLB - - - - 46.1 63.3 - - - - 30.1 44.9

SIMLEX (31.5/29.8) RW (46.8/31.4)
Ours 13.4 16.5 22.8 22.1 21.1 17.0 11.0 22.6 25.8 36.9 38.6 35.2
LSH 6.8 11.9 17.0 21.2 26.8 30.9 10.8 16.3 21.8 27.8 36.3 45.0

RandExp 10.4 17.2 22.8 28.5 32.4 35.2 19.9 21.3 30.9 40.5 47.6 53.3
ITQ 7.0 1.6 4.3 5.5 11.8 18.2 13.7 5.3 6.6 6.9 12.5 26.5
SH 9.3 15.6 15.9 17.0 23.1 31.2 22.6 21.5 24.3 28.8 36.1 45.8

PCAH 4.4 10.3 11.0 17.3 24.1 31.6 12.4 16.7 21.5 30.3 36.9 44.4
NLB - - - - 20.5 31.4 - - - - 25.1 34.3

RG (74.2/67.6) Mturk (57.5/61.9)
Ours 24.0 40.4 51.3 62.3 63.2 55.8 44.0 49.0 52.2 60.1 57.7 55.2
LSH 21.2 35.4 44.6 55.1 63.1 70.1 16.0 23.1 33.2 35.6 42.7 55.5

RandExp 36.6 49.0 49.5 66.1 69.6 70.9 29.3 35.8 41.4 50.4 59.0 61.6
ITQ -17.5 -8.9 26.3 41.7 50.5 66.2 9.9 7.8 10.1 17.7 32.8 47.3
SH 4.5 5.8 20.3 42.9 61.3 72.6 18.9 17.6 27.5 35.45 48.1 57.9

PCAH 1.9 9.6 19.8 40.9 53.3 68.2 15.5 15.1 27.1 41.7 46.5 56.2

Table 7: Evaluation on word similarity datasets. For each dataset and hash length, the best (sec-
ond best) score is in bold (underlined). The performance for GloVe embeddings is reported next
to the name of each dataset in the format 300d/100d. Spearman’s rank correlation coefficient is
reported for common baselines that binarize GloVe (300d) embeddings together with our results.
Hyperparameter settings for our algorithm: K = 400, w = 11.

Our aim here is to demonstrate that the fruit fly word embeddings are competitive with existing
state-of-the-art binarization methods applied to GloVe and word2vec embeddings. We show this
by evaluating the semantic similarity of static word embeddings, using several common benchmark
datasets: WS353 (Finkelstein et al., 2002), MEN (Bruni et al., 2014), RW (Luong et al., 2013), Sim-
Lex (Hill et al., 2015), RG-65 (Rubenstein & Goodenough, 1965), and Mturk (Halawi et al., 2012).
These datasets contain pairs of words with human-annotated similarity scores between them. Specif-

13

Under review as a conference paper at ICLR 2021

ically, we compare with GloVe (Pennington et al., 2014) word embeddings2 trained on Wiki2014
and Gigaword 5, GloVe embeddings trained on OpenWebText Corpus (Gokaslan & Cohen, 2019)
and word2vec embeddings3.

Since our representations are binary (in contrast to GloVe and word2vec), we binarize GloVe and
word2vec embeddings and report their performance using a number of common hashing methods,
LSH/SimHash (Charikar, 2002) (random contractive projections followed by binarization based
on sign), RandExp (Dasgupta et al., 2017) (random expansive projections followed by k-winner
take all binarization), ITQ (Gong & Lazebnik, 2011) (iterative quantization), SH (spectral hashing)
(Weiss et al., 2009), PCAH (Gong & Lazebnik, 2011) (PCA followed by binarization based on
sign). Where available, we include evaluation from NLB, “Near-Lossless Binarization” (Tissier
et al., 2019) (autoencoder-based binarization).

Following previous work (Tissier et al., 2019; Sokal, 1958), model similarity score for binary repre-
sentations is evaluated as sim(v1, v2) = (n11 +n00)/n, where n11 (n00) is the number of bits in v1
and v2 that are both 1 (0), and n is the length of v1,2. Cosine similarity is used for real-valued rep-
resentations. The results are reported in Tables 7, 8 and 9. For each dataset, we report performance
across a range of hash lengths {4, 8, 16, 32, 64, 128}. For methods that incorporate randomness
(LSH, RandExp, ITQ), we report the average across 5 runs. ITQ, SH and PCAH in Tables 7 and
8 were trained using the top 400k most frequent words. Table 9 compares our method to GloVe
trained on OpenWebText (same dataset that our method is trained on) using the same vocabulary as
our method uses.

Our binary word embeddings demonstrate competitive performance compared to published meth-
ods for GloVe and word2vec binarization, and our algorithm can learn meaningful binary semantic
representations directly from raw text. Importantly, our algorithm does not require training GloVe
or word2vec embeddings first before binarizing them.

Method Hash Length (k) Hash Length (k)
4 8 16 32 64 128 4 8 16 32 64 128

MEN (75.5) WS353 (66.5)
Ours 34.0 49.9 55.9 56.7 55.3 51.3 43.2 52.1 55.3 57.4 60.3 51.7
LSH 35.5 42.5 53.6 63.4 68.4 72.2 26.0 34.7 43.9 50.3 56.0 58.6

RandExp 24.2 34.6 45.8 57.5 66.1 71.7 23.5 34.3 37.3 48.0 57.6 63.7
ITQ 9.2 13.3 25.1 41.5 57.6 68.5 16.0 18.1 22.5 30.2 43.9 54.8
SH 7.2 15.8 31.3 46.9 62.3 69.4 3.3 9.6 22.7 34.1 50.0 54.7

PCAH 5.3 18.6 37.7 52.0 63.9 71.6 17.3 24.9 38.5 42.0 52.1 59.3
SIMLEX (41.7) RW (61.3)

Ours 13.4 16.5 22.8 22.1 21.1 17.0 11.0 22.6 25.8 36.9 38.6 35.2
LSH 17.0 21.2 26.8 30.9 34.4 35.1 21.8 27.8 36.3 45.0 49.6 52.1

RandExp 17.6 24.4 29.2 32.6 38.0 39.8 24.7 27.7 39.8 46.8 52.3 55.6
ITQ 3.25 5.7 6.2 14.9 23.1 31.5 17.4 15.7 19.1 33.5 45.6 53.4
SH -3.6 3.6 10.4 17.0 23.7 32.4 14.6 22.8 28.7 37.9 43.5 52.4

PCAH -2.9 2.5 11.8 17.0 24.0 36.0 15.0 21.5 28.8 35.4 46.4 50.6
RG (75.4) Mturk (69.8)

Ours 24.0 40.4 51.3 62.3 63.2 55.8 44.0 49.0 52.2 60.1 57.7 55.2
LSH 44.6 55.1 63.1 70.1 76.4 75.8 33.1 35.6 42.7 55.5 58.6 62.4

RandExp 30.4 42.0 48.6 59.1 70.2 74.6 22.7 34.8 42.0 45.9 57.9 61.2
ITQ 32.8 49.7 31.5 55.9 62.2 71.6 22.5 21.3 42.3 46.9 59.3 60.7
SH 18.0 30.6 36.0 48.8 56.9 75.8 21.9 27.4 41.8 51.2 58.8 58.0

PCAH 20.8 22.9 40.6 36.5 59.0 71.2 23.6 34.4 45.5 55.7 64.2 60.5

Table 8: Evaluation on word similarity datasets, analogous to Table 7, for 300d word2vec embed-
dings.

2pretrained embeddings: https://nlp.stanford.edu/projects/glove
3pretrained embeddings: https://code.google.com/archive/p/word2vec

14

Under review as a conference paper at ICLR 2021

Method Hash Length (k) Hash Length (k)
4 8 16 32 64 128 4 8 16 32 64 128

MEN (76.4) WS353 (72.2)
Ours 34.0 49.9 55.9 56.7 55.3 51.3 43.2 52.1 55.3 57.4 60.3 51.7
LSH 23.6 29.1 37.4 49.6 60.6 67.0 20.2 29.0 35.5 47.5 53.3 61.4

RandExp 28.4 40.3 52.3 62.5 67.7 71.0 30.5 40.0 48.1 57.9 63.3 67.5
ITQ 26.9 33.9 46.3 56.1 64.1 70.3 25.9 33.7 44.5 56.1 63.9 67.6
SH 23.8 28.7 44.1 54.7 62.1 69.7 18.1 25.7 40.1 51.8 60.9 62.9

PCAH 26.0 30.1 46.3 57.9 67.5 72.4 21.2 30.5 43.8 50.7 61.1 59.9
SIMLEX (34.0) RW (54.5)

Ours 13.4 16.5 22.8 22.1 21.1 17.0 11.0 22.6 25.8 36.9 38.6 35.2
LSH 8.0 16.8 19.0 24.8 26.7 32.9 16.2 21.0 26.1 33.6 40.8 47.0

RandExp 10.1 17.3 23.4 26.6 29.7 31.3 22.0 28.8 34.1 43.9 46.3 51.5
ITQ 7.3 13.8 14.4 20.9 25.3 30.3 24.5 26.8 34.8 43.2 49.1 51.5
SH 12.1 14.2 17.5 20.0 26.4 36.0 19.7 24.8 32.9 38.7 45.4 46.7

PCAH 11.5 13.8 16.4 22.6 31.1 38.6 19.7 24.8 32.9 38.7 45.4 46.7
RG (78.7) Mturk (71.1)

Ours 24.0 40.4 51.3 62.3 63.2 55.8 44.0 49.0 52.2 60.1 57.7 55.2
LSH 25.5 24.9 34.6 62.1 61.8 73.5 18.3 31.3 31.4 42.9 56.5 60.7

RandExp 28.7 45.6 47.3 63.7 67.8 70.8 28.3 41.3 50.1 56.5 65.4 67.1
ITQ 21.4 32.7 50.4 57.7 67.6 70.3 26.3 41.4 53.2 61.2 67.1 68.9
SH 39.8 45.6 50.0 50.2 62.3 68.6 20.3 35.9 51.9 61.9 59.1 61.3

PCAH 45.0 50.0 49.2 46.8 66.6 69.8 24.9 40.7 55.7 64.3 64.4 60.5

Table 9: Evaluation on word similarity datasets, analogous to Table 7. The 300d GloVe embeddings
trained from scratch on the same OpenWebText dataset as our algorithm.

8 APPENDIX C. DETAILS OF TECHNICAL IMPLEMENTATION.

From the practical perspective, efficient implementation of the learning algorithm for the fruit fly
network requires the use of sparse algebra, atomic updates, and block-sparse data access. Our
algorithm is implemented in CUDA as a back-end, while python is used as an interface with the
main functions.

The typical memory footprint of our approach is very small. About 100� 270MB GPU memory is
allocated for the operators Wµi,vA and temporary fields; while approximately 140GB CPU memory
is needed to store the input data, array of random numbers for shuffle operations and shuffled indices.
For GPU implementation, the model data is stored in the GPU’s memory, while the input data
is stored in the CPU memory. The parallelization strategy in our implementation is based on two
aspects. First, each minibatch of data is divided into smaller sub-minibatches which are processed on
different GPUs. Second, all the operations (dense-sparse matrix multiplications, argmax operation,
and weight updates) are executed in parallel using multiple threads.

9 APPENDIX D. QUALITATIVE EVALUATION OF CONTEXTUAL
EMBEDDINGS.

In order to evaluate the quality of contextualized embeddings we have created an online tool, which
we are planning to release with the paper, that allows users to explore the representations learned by
our model for various inputs (context-target pairs). For a given query the tool returns the word cloud
visualizations for each of the four top activated Kenyon cells. We show some examples of the outputs
produced by this tool in Fig. 6. Each query is used to generate a bag of words input vector vA. This
vector is then used to compute the activations of KCs using

D
Wµ,vA

E
. Top four KCs with the

highest activations are selected. The corresponding four weight vectors are used to generate four
probability distributions of individual words learned by those KCs by passing the weights through a
softmax function. For example, for one of those vectors with index µ, the probability distribution is
computed as probi = SM(Wµi). These probability distributions for the top four activated KCs are
visualized as word clouds. In computing the softmax only the target block of the weight vector was
used (we have checked that using only the context block gives qualitatively similar word clouds).

15

Under review as a conference paper at ICLR 2021

Query: Senate majority leader discussed the issue with the members of the committee

Query: European Court of Human Rights most compelling cases

Query: Entertainment industry shares rise following the premiere of the

 mass destruction weapon documentary

Figure 6: Examples of three queries and corresponding word cloud visualization for top four activated KCs
(by each query).

The results indicate that the fruit fly network indeed has learned meaningful representations. Con-
sider for example the first query. The sentence: “Entertainment industry shares rise following the
premiere of the mass destruction weapon documentary” results in the four top activated KCs shown
in Fig. 6. The top activated KC has the largest weights for the words “weapon”, “mass”, etc. The
second activated KC is sensitive to the words “market”, “stock”, etc. This illustrates how the fruit fly
network processes the queries. In this example the query refers to several distinct combinations of
concepts: “weapon of mass destruction”, “stock market”, “movie industry”. Each of those concepts
has a dedicated KC responsible for it. As one can see the responses are not perfect. For example
in this case one would expect to have the 4-th highest activated KC, which is responsible for the
“movie industry” concept to have a higher activation than the 3-rd highest KC, which is responsible
for the types of “weapons of mass destruction”. But overall all the concepts picked by the KCs are
meaningful and related to the query.

10 APPENDIX E. DETAILS OF GLOVE RETRAINING

To directly compare our method to GloVe, we trained an uninitialized GloVe model on the same
OpenWebText corpus using the code provided by the original GloVe authors (Pennington et al.,
2014)4. This model was optimized to have the same vocab size as our model (the 20k most frequent
tokens), used an embedding size of 300, and a window size of 15. The model was trained for 180
iterations at about 3 minutes, 20 seconds per iteration on 16 threads, resulting in the total training
time of approximately 10 hours.

4
https://nlp.stanford.edu/projects/glove/

16

Under review as a conference paper at ICLR 2021

11 APPENDIX F. RELATED WORK.

Our work builds on several ideas previously discussed in the literature. The first idea is that fruit
fly olfactory network can generate high quality hash codes for the input data in random (Dasgupta
et al., 2017) and data-driven (Ryali et al., 2020) cases. There are two algorithmic differences of our
approach compared to these previous studies. First, our network uses representational contraction,
rather than expansion when we go from the PN layer to the KCs layer. Second, (Dasgupta et al.,
2017; Ryali et al., 2020) construct hash codes for data coming from a single modality (e.g., images,
or word vectors), while the goal of the present paper is to learn correlations between two different
“modalities”: target word and its context. The second idea pertains to the training algorithm for
learning the PN�!KCs synapses. We use a biologically plausible algorithm of (Krotov & Hopfield,
2019) to do this, with modifications that take into account the wide range of frequencies of different
words in the training corpus (we discuss these differences in section 2.1). Also, similarly to (Das-
gupta et al., 2017; Ryali et al., 2020) the algorithm of (Krotov & Hopfield, 2019) is used for learning
the representations of the data, and not correlations between two types of data (context and target)
as we do in this paper.

17

