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In Appendix, we present proofs in Section A, illustrative diagrams for Theorem 4.1 in Section B,
experimental configurations in Section C, deferred results in Section D, and the demonstration of fair
vertex representation in Section E.

A PROOF

Proposition 4.1. For a link prediction function g(·, ·) modeled as inner product g(v, u) = v>Σu,
where Σ ∈ SM++ is a positive-definite matrix, ∃Q > 0,∀v ∼ V , ‖v‖2 ≤ Q, for Ev∼U [v] ∈ RM , for
dyadic fairness based on demographic parity, if ‖Ev∼U [v | v ∈ S0]− Ev∼U [v | v ∈ S1]‖2 ≤ δ,

∆DP := |E(v,u)∼U×U [g(v, u) | S(v) = S(u)]− E(v,u)∼U×U [g(v, u) | S(v) 6= S(u)]| ≤ Q‖Σ‖2 · δ.
(2)

Proof. To simplify the notations, we use p := Ev∼U [v | v ∈ S0] ∈ RM and q := Ev∼U [v | v ∈
S1] ∈ RM to denote the expectations in representations for S0 and S1 respectively.

|Eintra − Einter| =
∣∣E[v>Σu | v ∈ S0, u ∈ S1]− E[v>Σu | v ∈ S0, u ∈ S0 ∨ v ∈ S1, u ∈ S1]

∣∣
=

∣∣∣∣p>Σq −
(

|S0|2

|S0|2 + |S1|2
p>Σp+

|S1|2

|S0|2 + |S1|2
q>Σq

)∣∣∣∣
=

∣∣∣∣(q − p)>( |S0|2

|S0|2 + |S1|2
Σp− |S1|2

|S0|2 + |S1|2
Σq

)∣∣∣∣
To simplify the notation, we will use α := |S0|2/(|S0|2 + |S1|2) and β := |S1|2/(|S0|2 + |S1|2)

≤ ‖q − p‖2 · ‖αΣp− βΣq‖2
≤ δ · ‖Σ‖2 · (‖αp‖2 + ‖βq‖2)

= Q‖Σ‖2 · δ,

which completes the proof. The first inequality above is due to Cauchy-Schwarz, and the second
one is by the definition of spectral norm. The last equality holds by the linearity of expectation: if
∀v ∈ V, ‖v‖2 ≤ Q, then ‖E[v]‖2 ≤ E[‖v‖2] ≤ Q. �

Theorem 4.1. For an arbitrary graph with nonnegative link weights, after conducting one mean-
aggregation over the graph, the consequent representation discrepancy between two sensitive groups
∆Aggr

DP := ‖Ev∼U [Agg(v) | v ∈ S0]− Ev∼U [Agg(v) | v ∈ S1]‖2 is bounded by

max{αmin‖µ0 − µ1‖∞ − 2σ, 0} ≤ ∆Aggr
DP ≤ αmax‖µ0 − µ1‖2 + 2

√
Mσ, (3)

where αmin=min{α1, α2}, αmax=max{α1, α2}, α1=|1− mw
Dmax

( 1
|S0|+

1
|S1| )|, α2=|1− |S̃0|

|S0| −
|S̃1|
|S1| |.

Proof. The feature representation of v after conducting one mean-aggregation is

Agg(v) =
1

degw(v)

∑
u∈Γ(u)

avuu =
1

degw(v)
(

∑
u∈Γ(u)∩S0

avuu+
∑

u∈Γ(u)∩S1

avuu).

Here we separate the summation of neighbor features into two parts in terms of the sensitive attribute.

We use the bracket notation to abbreviate the range of a vector. That is, if a vector u satisfies
µ− σ ≤ u ≤ µ+ σ, we abbreviate this as u ∈ [µ± σ].

Consider the unilateral case v ∈ S0, we have

Agg(v) ∈ [

∑
u∈Γ(v)∩S0

degw(v)
avuµ0 +

∑
u∈Γ(v)∩S1

degw(v)
avuµ1 ± σ · 1]

∈ [(µ0 +

∑
u∈Γ(v)∩S1

avu

degw(v)
(µ1 − µ0))± σ · 1]

where 1 is the all-one vector with proper size.
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The first derivation is due to the fact that each u ∈ S0 lies in the range of [µ0±σ ·1] and each u ∈ S1

lies in the range of [µ1 ± σ · 1]. The second one is by the definition of weighted degree.

Using βv =
∑
v∈Γ(v)∩Sopp(v)

avu/degw(v) where Sopp(v) is the opposite sensitive group where v
belongs. The expectation of Agg(v) for S0 is

Ev∼U [Agg(v) | v ∈ S0] ∈ [(
1

|S0|
∑
v∈S0

(µ0 + βv(µ1 − µ0)))± σ · 1]

∈ [(µ0 +
1

|S0|
∑
v∈S0

βv(µ1 − µ0))± σ · 1].

And for v ∈ S1 we have

Ev∼U [Agg(v) | v ∈ S1] ∈ [(µ1 +
1

|S1|
∑
v∈S1

βv(µ0 − µ1))± σ · 1].

Based on the above two terms, the gap in expectation of two groups after passing one mean-
aggregation layer becomes

Ev∼U [Agg(v) | v ∈ S0]− Ev∼U [Agg(v) | v ∈ S1] ∈ [(1− (
1

|S0|
∑
v∈S0

βv +
1

|S1|
∑
v∈S1

βv)) · (µ0 − µ1) + 2σ · 1].

Next we study the range of α′ := 1− (|S0|−1
∑
v∈S0

βv + |S1|−1
∑
v∈S1

βv). First we consider the
term |S0|−1

∑
v∈S0

βv . Since degw(v) ≤ Dmax, ∀v ∈ V , we have∑
v∈S0

βv =
∑
v∈S0

∑
u∈Γ(v)∩S1

avu

degw(v)
≥ 1

Dmax

∑
v∈S0

∑
u∈Γ(v)∩S1

avu =
mw

Dmax
.

For non-negative weights,

Dmax ≥ degw(v) =
∑

u∈Γ(v)∩S0

avu +
∑

u∈Γ(v)∩S1

avu ≥
∑

u∈Γ(v)∩S1

avu.

This means for v ∈ S0,

βv =

∑
u∈Γ(u)∩S1

avu

degw(u)
≤ 1,

thus, ∑
v∈S0

βv =
∑
v∈S̃0

βv ≤ |S̃0|.

The first equality holds because βv = 0 when v ∈ S0/S̃0, meaning v doesn’t contain any inter-edges.

Since the analysis for S1 is similar, we derive the lower and upper bounds for |Si|−1
∑
v∈Si βv, i =

0, 1

1

|Si|
· mw

Dmax
≤ 1

|Si|
∑
v∈Si

βv ≤ (
|S̃i|
|Si|

), i = 0, 1.

Based on the above results, we give the bound for α′ as follows:

α′ ∈ [ 1− (
|S̃0|
|S0|

+
|S̃1|
|S1|

), 1− mw

Dmax
(

1

|S0|
+

1

|S1|
) ],

Let αmin and αmax be lower bound and upper bower of |α′|, we have

αmax = max{1− (
|S̃0|
|S0|

+
|S̃1|
|S1|

), 1− mw

Dmax
(

1

|S0|
+

1

|S1|
)}

αmin = min{1− (
|S̃0|
|S0|

+
|S̃1|
|S1|

), 1− mw

Dmax
(

1

|S0|
+

1

|S1|
)}
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Thus we give the upper bound of ∆Aggr
DP :

∆Aggr
DP ≤ αmax‖µ0 − µ1‖2 + 2

√
Mσ (8)

where the second part in RHS is due to 2σ · ‖1‖2 = 2
√
Mσ.

Next we consider i-th entrance of µ0 and µ1, denoted as µi0 and µi1 respectively. The i-the entrance
of Ev∼U [Agg(v) | v ∈ S0]− Ev∼U [Agg(v) | v ∈ S1] take nonzero values if and only if

|(1− (
1

|S0|
∑
v∈S0

βv +
1

|S1|
∑
v∈S1

βv)) · (µi0 − µi1)| ≥ 2σ

Thus we obtain the lower bound of ∆Aggr
DP :

∆Aggr
DP ≥ max{αmin‖µ0 − µ1‖∞ − 2σ, 0} (9)

which completes the proof. �

B COMPLEMENTARY DIAGRAMS TO THEOREM 4.1

We provide diagrams to help better understand the upper bound in Theorem 4.1.

Figure 3 provides a common case that the gap in expectation between two sensitive groups shrinks
after mean-aggregation. Here the maximal deviation term σ can be neglected since it is much smaller
than the expectation gap.

Figure 4 provides a case that the term σ is not negligible against the expectation gap between two
sensitive groups. Here σ = 100 and the gap equals to 0. After aggregation, we see the new expectation
gap becomes 20, showing that the discrepancy in representations increases.

Figure 5 provides another case that the contraction coefficient α equals to 1 due to the resistance
of α2. Here all vertices possess inter links, and the graph is a complete bipartite graph. Then
the aggregation fully exchanges the sensitive information, and thus the representation discrepancy
remains unchanged.

Cases in Figure 4 and 5 are also pointed out by the analysis in Section 4.

Figure 3: An illustrative graph example with two protected groups S0 and S1. All vertices have self-
loop. The expectation gap shrinks after mean aggregation. Here, |Ev∼U [v|v ∈ S0]− Ev∼U [v|v ∈
S1]| = 20, σ = 2 and all link weights are equal. After aggregation, |Ev∼U [Agg(v)|v ∈ S0] −
Ev∼U [Agg(v)|v ∈ S1]| = |6.15− (−6.15)| = 12.3 < 20.

Figure 4: Case 1: The maximal deviation term O(σ) is not negligible. Here σ = 100 and all link
weights are equal. All vertices have self-loop. |Ev∼U [v|v ∈ S0]− Ev∼U [v|v ∈ S1]| = 0. But after
mean-aggregation, |Ev∼U [Agg(v)|v ∈ S0]− Ev∼U [Agg(v)|v ∈ S1]| = |5− 25| = 20 > 0.
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Figure 5: Case 2: The contraction coefficient α equals to 1. This happens when the graph is a
complete bipartite graph. Mean-aggregation fully exchanges the sensitive information and the gap of
two groups remains unchanged.

C EXPERIMENTAL CONFIGURATIONS

For all experiments, we set T1 = 50 and the total epochs which contain T1 and T2 equal to 4. Graph
neural networks are applied with two hidden layers with size 32 and 16 respectively. ηθ is set to 0.01.
For ηÃ for different datasets, we have: Oklahoma97: 0.1; UNC28: 0.1; Cora: 0.2; Citeseer: 0.5.
Experiments are conducted on Nvidia Titan RTX graphics card.

D ADDITIONAL RESULTS

We present experimental results for Citeseer and UNC28 in this section. All the results deliver similar
conclusions as we state in the main body of this paper. Additionally, we include another dataset
Facebook#1684 in response to the second limitation as indicated in Section 4. In this case, ∆DP,
∆true, ∆false are already small as given by VGAE, and FairAdj is not able to further minimize the gap.

Table 4: Experimental results on Oklahoma97.
Method AUC ↑ AP ↑ ∆DP ↓ ∆true ↓ ∆false ↓ ∆FNR ↓ ∆TNR ↓
VGAE 90.13 ± 0.32 91.24 ± 0.37 8.73 ± 0.38 8.56 ± 0.44 0.40 ± 0.32 36.51 ± 1.41 2.26 ± 0.92

node2vec 86.49 ± 0.35 84.09 ± 0.50 7.23 ± 0.64 3.35 ± 0.45 1.08 ± 0.97 32.55 ± 1.32 2.36 ± 0.69

Fairwalk 86.56 ± 0.32 84.23 ± 0.44 7.31 ± 0.62 3.49 ± 0.47 1.13 ± 0.85 32.77 ± 1.20 2.18 ± 0.69

FairAdjT2=5 84.92 ± 0.81 85.07 ± 0.92 3.60 ± 0.35 0.40 ± 0.32 0.33 ± 0.28 4.00 ± 0.88 2.02 ± 0.76

FairAdjT2=20 81.01 ± 1.01 80.79 ± 0.93 2.96 ± 0.30 0.38 ± 0.31 0.32 ± 0.25 5.61 ± 1.06 2.03 ± 0.92

Table 5: Experimental results on Cora.
Method AUC ↑ AP ↑ ∆DP ↓ ∆true ↓ ∆false ↓ ∆FNR ↓ ∆TNR ↓
VGAE 88.48 ± 0.88 90.81 ± 0.78 26.74 ± 1.51 9.99 ± 2.32 10.26 ± 1.59 28.25 ± 4.46 26.71 ± 3.83

node2vec 87.93 ± 0.75 87.82 ± 1.06 39.99 ± 2.75 6.63 ± 3.58 27.86 ± 4.94 23.66 ± 4.73 32.96 ± 5.24

Fairwalk 88.04 ± 0.84 88.10 ± 1.20 40.49 ± 2.58 7.30 ± 3.28 29.43 ± 4.86 23.74 ± 4.19 33.79 ± 5.08

FairAdjT2=5 86.00 ± 1.12 88.32 ± 0.86 21.05 ± 1.26 6.99 ± 2.24 6.14 ± 1.59 20.72 ± 3.62 19.46 ± 3.62

FairAdjT2=20 83.85 ± 1.07 86.08 ± 0.93 17.87 ± 1.18 5.40 ± 2.23 3.74 ± 1.46 16.75 ± 4.87 15.37 ± 3.84

Table 6: Experimental results on Pubmed.
Method AUC ↑ AP ↑ ∆DP ↓ ∆true ↓ ∆false ↓ ∆FNR ↓ ∆TNR ↓
VGAE 91.20 ± 0.85 91.26 ± 0.80 20.88 ± 1.48 4.19 ± 0.93 8.04 ± 1.83 12.01 ± 2.92 19.18 ± 4.16

node2vec 74.27 ± 1.23 79.24 ± 1.29 19.14 ± 0.93 3.38 ± 2.57 8.90 ± 2.56 6.65 ± 2.21 10.91 ± 1.88

fairwalk 73.43 ± 1.11 78.96 ± 1.24 18.42 ± 1.65 3.11 ± 1.84 7.79 ± 3.49 6.61 ± 2.28 10.93 ± 2.54

FairAdjT2 = 5 88.64 ± 1.09 88.21 ± 1.22 16.06 ± 0.98 1.96 ± 0.82 4.40 ± 1.28 8.93 ± 2.90 12.75 ± 1.56

FairAdjT2 = 20 87.53 ± 1.03 87.10 ± 1.17 14.73 ± 0.98 1.39 ± 0.92 3.17 ± 1.10 9.09 ± 2.10 10.46 ± 1.73
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Figure 6: Compare to adversarial training on vertex representations. Left: Oklahoma97; Right: Cora.

Figure 7: Diversity and utility in recommendations. Left: Oklahoma97; Right: Cora.

Table 7: Experimental results on Facebook#1684.
Method AUC AP ∆DP ∆true ∆false ∆FNR ∆TNR

VGAE 94.66 ± .55 93.91 ± .68 2.03 ± .81 0.59 ± .49 0.90 ± .57 4.48 ± 1.57 4.94 ± 1.32

node2vec 90.57 ± .74 85.61 ± 1.09 1.70 ± 1.43 0.52 ± .49 2.47 ± 1.52 6.51 ± 2.04 5.06 ± 1.36

fairwalk 90.56 ± .63 85.58 ± .87 1.97 ± 1.51 0.62 ± .47 2.14 ± 1.77 6.92 ± 2.19 5.03 ± 1.46

FairAdjT2 = 1 94.68 ± .48 93.94 ± .62 2.02 ± .82 0.60 ± .50 0.93 ± .60 4.42 ± 1.57 4.82 ± 1.54

FairAdjT2 = 20 94.63 ± .49 93.84 ± .64 1.77 ± .81 0.53 ± .41 0.92 ± .49 5.00 ± 1.52 4.86 ± 1.41

E FAIR VERTEX REPRESENTATION

As an intermediate result, we inspect the fairness in vertex representation in Figure 8. To quantify
that, we conduct K-means clustering on vertex representation and evaluate the ratio of samples from
different sensitive groups within each clusters, and the ratio is called balance. We range the number
of clusters from 4 to 8 and report the average balance across all clusters. In general, the higher the
balance, the fairer in vertex representations. Overall the series of FairAdj achieves a higher balance,
which shows the invariant representations on vertices across different sensitive groups.

Figure 8: Evaluations on balance of clusters. Left: Oklahoma97; Right: UNC28.
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F EXTEND COROLLARY 4.1 TO TWO-LAYER GNNS

For ∆
(2)
DP on vertices after passing two layer GNN(2)

θ (X, Ã) := (Ã(GNN(1)
θ (X, Ã))W

(2)
θ ) =

ρ (Ãρ (ÃXW
(1)
θ )W

(2)
θ ). Here we denote µ′i := Ev∼U [GNN(1)

θ (v, Ã) | v ∈ Si], i = 0, 1,
Q′ := sup{‖GNN(1)

θ (v, Ã)‖2 | v ∈ V}. µ′′i := Ev∼U [GNN(2)
θ (v, Ã) | v ∈ Si], i = 0, 1,

Q′′ := sup{‖GNN(2)
θ (v, Ã)‖2 | v ∈ V}. Let σ1 be the maximal deviation of {v|v ∈ V},

and σ2 be the maximal deviation of {GNN(1)
θ (v, Ã)|v ∈ V}. We have Q′ ≤ L‖W (1)

θ ‖2Q,
Q′′ ≤ L‖W (2)

θ ‖2Q′ ≤ L2‖W (1)
θ ‖2‖W

(2)
θ ‖2Q.

Then

∆
(2)
DP ≤ Q

′′||Σ||2 · ‖µ′′0 − µ′′1‖2 ≤ QL3||W (2)
θ ||

2
2‖W

(1)
θ ‖2(α‖µ′0 − µ′1‖2 + 2

√
Mσ2)

And
‖µ′0 − µ′1‖2 ≤ L||W

(1)
θ ||2(α‖µ0 − µ1‖2 + 2

√
Mσ1)

Finally we have:

∆
(2)
DP ≤ QL

4||W (2)
θ ||

2
2‖W

(1)
θ ‖

2
2α

2‖µ0−µ1‖2 +2
√
MQL3||W (2)

θ ||
2
2‖W

(1)
θ ‖2(L||W (1)

θ ||2 ·σ1 +σ2)
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