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In Appendix, we present proofs in Section [A] illustrative diagrams for Theorem [4.1]in Section [B]
experimental configurations in Section [C} deferred results in Section[D] and the demonstration of fair
vertex representation in Section[E]

A PROOF

Proposition 4.1. For a link prediction function g(-, -) modeled as inner product g(v,u) = v' Yu,
where ¥ € S, is a positive-definite matrix, 3Q > 0,Vv ~ V, |jv||2 < Q, for E,y[v] € RM, for
dyadic fairness based on demographic parity, if | E,~u[v | v € So] — Evvv | v € Si]ll2 < 0,

App = [E¢y v xu[9(v,u) | S) = S(u)] — Eqw~vxvlgv,u) | S(v) # Su)]| < QHZ‘Hz(-Z(z.

Proof. To simplify the notations, we use p := E,.y[v | v € So] € RM and ¢ := E,pyfv | v €
S1] € RM to denote the expectations in representations for Sy and S; respectively.

|Eintra — Einger| = |IE[UTEu |veSy,ueS]—Elv Su|veSy,ueSyVoeS,ue Sl]|

Sol? S1]?
= |p'2g— (|O|pT2p—|— |1|qTEq> ‘

ol + 5P Sl 1 ISP
T |So]? Eitk )‘

= - >p — >
‘(q P) <|so|2+|512 GO TR N

To simplify the notation, we will use o := [Sp|?/(|So|* + |S1]?) and B := |S1]?/(|So|* + |51 /%)

<llg =pll2 - [eXp — 5Xql|
<6 X2 - (lapllz + [184ll2)
= Q2 -9,
which completes the proof. The first inequality above is due to Cauchy-Schwarz, and the second

one is by the definition of spectral norm. The last equality holds by the linearity of expectation: if
Yo eV, |v]lz < Q. then [[E[v][[2 < E[fjv]l2] < Q. u

Theorem 4.1. For an arbitrary graph with nonnegative link weights, after conducting one mean-
aggregation over the graph, the consequent representation discrepancy between two sensitive groups

Agﬁgr = ||Eyu[Agg(v) | v € So] — Eyou[Agg(v) | v € Si]||2 is bounded by

max{amin|ltto — p1[|oe — 20,0} < ADEE < aumaxllpto — a2 + 2/ Mo, 3)
where amin=min{a1, a2}, amax=max{a1, a2}, ar=[1-F (157 + 57| a2:|1—% - %|

Proof. The feature representation of v after conducting one mean-aggregation is

1 1
Agg(v):degw(v) Z a”"u:degw(v)( Z Ay U + Z Ay ).

u€el (u) wel(u)NSy wel(u)NSy

Here we separate the summation of neighbor features into two parts in terms of the sensitive attribute.

We use the bracket notation to abbreviate the range of a vector. That is, if a vector u satisfies
uw—o <u < p+ o, we abbreviate this as u € [u + o].

Consider the unilateral case v € Sj, we have

Zuef‘(v)ﬁsl
deg,, (v)

(11 — po)) £ o - 1]

ZuGF(v)ﬂSg
deg,,(v)
ZuGF(v)ﬂS1 G
deg,, (v)

where 1 is the all-one vector with proper size.

Agg(’l}) € [ Ayu o + Ayy 1 +o- ]1]

€ [(po +
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The first derivation is due to the fact that each u € Sy lies in the range of [ o - 1] and each u € 54
lies in the range of [; & o - 1]. The second one is by the definition of weighted degree.

Using By = >~ er(u)n Sopp(y Lt /deg,,(v) where Sy, is the opposite sensitive group where v
belongs. The expectation of Agg(v) for Sy is

Eo~olAge(v) |ve Sol € (o1 3 (o + Bl — o)) £ 1]

|SO‘ UES
[(1o + Sl Z Bo( Y+o-1].
vESH
And for v € S; we have
Ev~vlAge(v) [v e S € [(m+ o Z B )+o-1).
vES]

Based on the above two terms, the gap in expectation of two groups after passing one mean-
aggregation layer becomes

EvvlAgg(v) | v € So] — Evnu[Agg(v) [v e Si] € \S g Z Bv + A Z Bu)) - (o — p1) + 20 - 1].
veS]

Next we study the range of o’ := 1 — (|So| ™" X2, cg, B + 517" X2, Bv)- First we consider the
term [So| ™! Y-, e g, Bo- Since deg,, (v) < Dmax, Yo € V, we have

_ Zuer‘(v)ﬂs Goy 1 My
Z By = Z degw(vs > Do Z Z Ayy = Doax

v€ESo v€ESo v€So uel'(v)NSy

For non-negative weights,
Dmax > degw(v) = Z Qyy + Z Ay > Z Ay -
u€l'(v)NSo w€l(v)NSy uw€el'(v)NSy

This means for v € Sy,
Zuel"(u)ﬂsl Avu

51):

deg, (u)  ~
thus, .
Z ﬁv = Z ﬁv S ‘SO|
vESo 1)6%

The first equality holds because 5, = 0 when v € Sp/ §6, meaning v doesn’t contain any inter-edges.

Since the analysis for Sy is similar, we derive the lower and upper bounds for [S;[~! ", . g, Bus 1=
0,1

1 mw ISI .
’ v 1= 07 1.
S B S PR
Based on the above results, we give the bound for o’ as follows:
Sol 151 My 1 1
o efl- | 1-— — 4+ —)],
AT AL N TR AL
Let apip and Qupax ’|, we have
S0l , IS1] me 11
amax:maX]-_ ¥ t+ =), — — 4+ —
R CA R TA LR WAl AR AL
. |SO| |Sl‘ My 1 1
Omin = Min{l — (5= + 75+), 1 — _— 4 —
UG T 5 Do 0] TS
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Thus we give the upper bound of ApEE":

Aglg’gr < Qmaxl|pto — pall2 + 2V Mo 8)
where the second part in RHS is due to 20 - ||1]|2 = 2V Mo.

Next we consider i-th entrance of 1o and y1, denoted as ) and ji¢ respectively. The i-the entrance
of E,~u[Agg(v) | v € So] — UNU[Agg( ) \ v € Sy] take nonzero values if and only if

S Z ﬂv S Z /Bv : N’ZI)| 2 20
sl 22 Pt 2
Thus we obtain the lower bound of Agggf:

AR > max{oumin | fto — p1|0e — 20,0} ©)

which completes the proof. |

B COMPLEMENTARY DIAGRAMS TO THEOREM [4.1]

We provide diagrams to help better understand the upper bound in Theorem [&.1]

Figure 3| provides a common case that the gap in expectation between two sensitive groups shrinks
after mean-aggregation. Here the maximal deviation term o can be neglected since it is much smaller
than the expectation gap.

Figure ] provides a case that the term o is not negligible against the expectation gap between two
sensitive groups. Here o = 100 and the gap equals to 0. After aggregation, we see the new expectation
gap becomes 20, showing that the discrepancy in representations increases.

Figure [5] provides another case that the contraction coefficient « equals to 1 due to the resistance
of ap. Here all vertices possess inter links, and the graph is a complete bipartite graph. Then
the aggregation fully exchanges the sensitive information, and thus the representation discrepancy
remains unchanged.

Cases in Figure [ and [5] are also pointed out by the analysis in Section 4]

(12) (-12) (5.6)

mean- agg

(10) ®) -8) (-10) an

(10) (-10)

—— intra link —— inter link

Figure 3: An illustrative graph example with two protected groups Sy and S7. All vertices have self-
loop. The expectation gap shrinks after mean aggregation. Here, |E, .y [v|v € So] — E,~u[v|v €
Si1]] = 20, 0 = 2 and all link weights are equal. After aggregation, |E,.y[Agg(v)|v € So] —
E,~u[Agg(v)|v € S1]] = |6.15 — (—6.15)| = 12.3 < 20.

(100) (20)
mean- agg
(0) 0) (50) (50
(-100)

Figure 4: Case 1: The maximal deviation term O(o) is not neghglble. Here o = 100 and all link
weights are equal. All vertices have self-loop. |E,y[v|v € So] — Eyu[v|v € S1]| = 0. But after
mean-aggregation, |E,y[Agg(v)|v € So] — Eyu[Agg(v)|v € S1]| = |5 — 25| =20 > 0.
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Figure 5: Case 2: The contraction coefficient o equals to 1. This happens when the graph is a
complete bipartite graph. Mean-aggregation fully exchanges the sensitive information and the gap of
two groups remains unchanged.

C EXPERIMENTAL CONFIGURATIONS

For all experiments, we set 77 = 50 and the total epochs which contain 73 and 75 equal to 4. Graph
neural networks are applied with two hidden layers with size 32 and 16 respectively. 7y is set to 0.01.
For n 7 for different datasets, we have: Oklahoma97: 0.1; UNC28: 0.1; Cora: 0.2; Citeseer: 0.5.
Experiments are conducted on Nvidia Titan RTX graphics card.

D ADDITIONAL RESULTS

We present experimental results for Citeseer and UNC28 in this section. All the results deliver similar
conclusions as we state in the main body of this paper. Additionally, we include another dataset
Facebook#1684 in response to the second limitation as indicated in Section E[ In this case, App,
Ague, Araise are already small as given by VGAE, and FairAdj is not able to further minimize the gap.

Table 4: Experimental results on Oklahoma97.
Method ‘ AUC 1t AP 1 ‘ App | Ague 4 Afaise 4 JANSN Arng 4

VGAE 90.13 +032 91.24 +037 | 8.73 +038 856 +044 0404032 3651 +141 226 +092
node2vec 86.49 +035 84.09 +050 | 7.23 +064 3.35+045 1.08 £097 32554132 2.36+069
Fairwalk 86.56 +032 84.23 +044 | 731 £062 3.49 +047 1.13 +o085 3277 +120 2.18 £0.69

3.60 +035 0.40+032 033 +028 4.00 £088 2.02 +0.76
296 +030 038 +o031 0.32+025 5.61+106 2.03+09

84.92 + 081  85.07 £0.92
81.01 101 80.79 +093

FairAdj,_s
FairAdjr,_y

Table 5: Experimental results on Cora.
Method | AUC? APT | Appl Agrue 4 Afagse | ApNr | Amg |

VGAE 88.48 + 088 90.81 o078 | 26.74 £151 999 232 10.26 £159 28.25 +446 26.71 +£3.83
node2vec 87.93 +075 87.82 +106 | 39.99 +275 6.63 £358 27.86 +494 23.66 +473 32.96 +524
Fairwalk 88.04 o084 88.10+120 | 4049 +258 7.30+328 29.43 +486 23.74 +419 33.79 £508

21.05+126 6.99 +224 6.14 +159 20.72 +362 19.46 +3.62
1787 +1.18 540 +223  3.74 +146  16.75 +487 15.37 +384

FairAdj,_s
FairAdjp,_,,

86.00 +1.12  88.32 +0.86
83.85 £1.07 86.08 £093

Table 6: Experimental results on Pubmed.
Method | AUC*H APt | Appl Agre 1 Afarse | Apnr | Ang

VGAE 91.20 + 085 91.26 +080 | 20.88 + 148 4.19 093 8.04 +18 12.01 +292 19.18 +4.16
node2vec T427 +123 7924 +£129 | 19.14 +093 338 +257 890 +256 6.65 +221 10.91 + 1.88
fairwalk 7343 111 7896 +124 | 1842 +165 3.11 £184 7.79 £349 6.61 +£228 10.93 +2.54

88.64 +1.09 88.21 £1.22
87.53 +103 87.10 +1.17

16.06 +098 1.96 +o082 4.40+128 893 +20 12.75 +1.56
14.73 +098 1.39 +092 317 +110 9.09 +210 10.46 +1.73

FairAdjr, _ 5
FairAdjr, _ 5
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Figure 6: Compare to adversarial training on vertex representations. Left: Oklahoma97; Right: Cora.
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Figure 7: Diversity and utility in recommendations. Left: Oklahoma97; Right: Cora.

Table 7: Experimental results on Facebook#1684.

Method | AUC AP | App Agrue AV ApNR ATNR

VGAE 94.66 +55 9391 +63 | 203 +81 059+49 090+57 448+157 494 +132
node2vec 90.57 +.74 85.61 +1.09 | 1.70 +143 0.52 + 49 247 +152 651 +204 5.06 +136
fairwalk 90.56 +.63 8558 +87 | 1.97 +151 0.62+47 214+177 6924219 5.03 +146
FairAdjpr,_, | 9468 +48 9394 +62 | 202+ 82 0.60+£s50 093+60 442+157 4821154
FairAdjry_5p | 94.63 £49 9384 +64 | 1.77+81 053+41 092+.49 500+152 4.86+141

E FAIR VERTEX REPRESENTATION

As an intermediate result, we inspect the fairness in vertex representation in Figure[8] To quantify
that, we conduct K-means clustering on vertex representation and evaluate the ratio of samples from
different sensitive groups within each clusters, and the ratio is called balance. We range the number
of clusters from 4 to 8 and report the average balance across all clusters. In general, the higher the
balance, the fairer in vertex representations. Overall the series of FairAdj achieves a higher balance,
which shows the invariant representations on vertices across different sensitive groups.
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Figure 8: Evaluations on balance of clusters. Left: Oklahoma97; Right: UNC28.
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F EXTEND COROLLARY [4.1]TO TWO-LAYER GNNS

For Ag}a on vertices after passing two layer GNNéQ) (X, A) = (Z(GNN((,I)(X, E))WOQ)) =
p(gp(gXWH(I))We(z)). Here we denote ) := EUNU[GNNS)(U,Z) | v € S, = 0,1,
Q' = sup{|GNN{" (v, A)||2 | v € V}. puf = Epur/[GNN (v, A) | v € Si], i = 0,1,
Q" = sup{||GNNf92)(v,Z)H2 | v € V}. Let g1 be the maximal deviation of {v|v € V},
and o2 be the maximal deviation of {GNN((,I)(U,Z)\U € V}. We have Q' < LHW@(I)HQQ,
Q" < LIWP Q' < LW 12| W§ Q.

Then

ABE < QIR - g — i llo < QAW 1BIW, " la el — w2 + 2/ M)

And
It = will2 < LWV lla(ello = o ll2 + 2V o)

Finally we have:

2 2 1 2 1 1
AD < QLYWW a2 o — a2+ 2VDIQLAWD |2 W (LW 2 - 01+ 00)
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