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Abstract
Optimization and sampling based algorithms are
two branches of methods in machine learning,
while existing safe reinforcement learning (RL)
algorithms are mainly based on optimization, it
is still unclear whether sampling based methods
can lead to desirable performance with safe pol-
icy. This paper formulates the Langevin pol-
icy for safe RL, and proposes Langevin Actor-
Critic (LAC) to accelerate the process of pol-
icy inference. Concretely, instead of parametric
policy, the proposed Langevin policy provides
a stochastic process that directly infers actions,
which is the numerical solver to the Langevin dy-
namic of actions on the continuous time. Further-
more, to make Langevin policy practical on RL
tasks, the proposed LAC accumulates the tran-
sitions induced by Langevin policy and repro-
duces them with a generator. Finally, extensive
empirical results show the effectiveness and supe-
riority of LAC on the MuJoCo-based and Safety
Gym tasks. Our implementation is available at
https://github.com/Lfh404/LAC.

1. Introduction
Reinforcement learning (RL) has significantly boosted
its utilization in many challenging tasks, e.g., playing
games (Silver et al., 2017; Mnih et al., 2015), robot
control (Schulman et al., 2015), and discovering algo-
rithms (Mankowitz et al., 2023; Fawzi et al., 2022). How-
ever, when considering the deployment of RL in the real
world such as autonomous driving and surgical robots, en-
suring safety is a critical factor. These applications require
careful consideration of constraints to mitigate the risk of
causing harm to humans.
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Existing safe RL algorithms are classified into the following
categories: surrogate function methods (e.g, CPO (Achiam
et al., 2017), FOCOPS(Zhang et al., 2020), CUP(Yang
et al., 2022)), primal-dual methods (e.g., RCPO (Tessler
et al., 2018), PDO (Chow et al., 2017), RPD-PG(Ding et al.,
2023)), Lyapunov-based method (Chow et al., 2018), and
Barrier function method (Luo & Ma, 2021). All of the
above methods are based on optimization, which formu-
lates the policy as a parametric function. Optimization and
Monte Carlo sampling are the two main classes of algo-
rithms to solve machine learning problems, but it is still
unknown whether Monte Carlo sampling works well for RL
or not. More seriously, the folk wisdom is that Monte Carlo
sampling is necessarily inefficient than optimization based
methods and is only warranted in situations where estimates
of uncertainty are needed (Ma et al., 2019). However, recent
sampling based methods (e.g., diffusion model (Ho et al.,
2020), noise conditional score network (NCSN) (Song &
Ermon, 2019)) show its great success in a variety of do-
mains (e.g., image synthesis (Ramesh et al., 2022), video
generation (Ramesh et al., 2022)). It is still unclear whether
Monte Carlo sampling based methods can lead to desirable
performance in exploring safe policy, which is the main
focus of this paper.

This paper considers the safe RL under the background
of constrained policy optimization (CPO) (Achiam et al.,
2017). Zhang et al. (2020) shows the optimal update policy
of CPO as an energy-based model. In this work, we seek to
solve safe RL problem from a sampling perspective, which
introduces a new form of policy learning that approximates
safe optimal policy via Langevin dynamics, Langevin Pol-
icy. As all the issues in RL, there exists a classical trade-off
between exploitation and exploration in Langevin policy.
Langevin policy injects noise during the sampling process,
which naturally exhibits the capability of exploration. How-
ever, it is not trivial to naively apply Langevin policy to
RL tasks, due to the well-known limitation of Langevin
MCMC with its inherent inefficiency caused by the itera-
tive sampling process (Xie et al., 2018), which we consider
an exploitation problem since the valuable information ob-
tained through Langevin policy is conventionally discarded.

To address this issue, we propose Langevin Actor-Critic
(LAC), which is a practical implementation to tackle above
exploitation-exploration trade-off dilemma. Concretely,
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LAC accumulates transitions generated by the Langevin
policy and subsequently reproducing them using a generator.
This approach enhances exploitation while preserving the
ability to explore. Thus, the role of the generator in LAC can
be viewed as that of a direct and approximate sampler of the
optimal update policy. Finally, we test the proposed LAC
algorithm on Safety Gym and MuJoCo-based environments,
results show that LAC outperforms other state-of-the-art
methods in terms of improving reward performance and
satisfying constraints.

2. Preliminaries
This section presents notations and definitions related to safe
reinforcement learning and methods for solving CMDPs.

2.1. Reinforcement Learning

Reinforcement learning (RL) is formulated as a Markov
Decision Process (MDP) (Sutton & Barto, 2018), which
is denoted by a tuple (S,A, R, P, µ), where S is the state
space, A is the action space, P : S × A × S → [0, 1] is
the transition kernel, R : S × A → R is the reward func-
tion, µ : S → [0, 1] is the initial state distribution. Let
Π =: {π(a|s) : s ∈ S, a ∈ A} denote the policy space,
where each π(·|s) ∈ Π is a probability simplex on the ac-
tion space A. The value function is defined as V π

R (s) =:
Eτ∼π[

∑∞
t=0 γ

tR(st, at)|s0 = s] and action-value function
as Qπ

R(s, a) =: Eτ∼π[
∑∞

t=0 γ
tR(st, at)|s0 = s, a0 =

a]. The advantage function is defined as Aπ
R(s, a) =:

Qπ
R(s, a) − V π

R (s). Here τ = (s0, a0, . . . , ) is a trajectory
generated by policy π, where s0 ∼ µ, at ∼ π(·|st), st+1 ∼
P (·|st, at) and γ ∈ (0, 1) is the discount factor. Fi-
nally, let dπ(s) =: (1 − γ)

∑∞
t=0 γ

tP (st = s|π) be
the stationary discounted future state distribution of the
Markov chain (starting at s0) induced by policy π. The
goal of reinforcement learning is to find a stationary pol-
icy π ∈ Π that maximizes the expected discount return
JR(π) =: Eτ∼π [

∑∞
t=0 γ

tR(st, at)].

2.2. Safe Reinforcement Learning

This paper formulates safe reinforcement learning as a con-
strained MDP (CMDP)M∪ C problem (Altman, 1999), a
standard MDPM augmented with an additional constraint
set C. The set C = {(Ci, bi)}mi=1, where Ci are the cost
functions: Ci : S × A → R, and bi, i = 1, · · · ,m are the
cost thresholds. We define the value function, action-value
function, and advantage function w.r.t. cost as V π

Ci
, Qπ

Ci
,

and Aπ
Ci

analogous to the standard V π
R , Qπ

R, and Aπ
R. We

define the set of feasible stationary policies w.r.t. CMDP as

ΠC =: ∩mi=1{π ∈ Π : JCi
≤ bi},

where JC(π) =: Eτ∼π [
∑∞

t=0 γ
tC(st, at)]. Note that, we

primarily focus on scenarios with a single constraint. The

objective of safe reinforcement learning is to find an optimal
policy π⋆ ∈ ΠC that satisfies the following problem:

π⋆ = arg max
π∈ΠC

JR(π). (1)

2.3. Constrained Policy Optimization

In the classical setting of addressing optimal policy prob-
lems in continuous MDPs, local policy search (Peters &
Schaal, 2008) suggests iteratively updating the policy πϕ by
maximizing the objective function JR(πϕ) within a local
region of the previous policy πϕk

w.r.t. some distance mea-
sure D(πϕ, πϕk

), which is carried out over a parameterized
policy space denoted as Πϕ = {πϕ : ϕ ∈ Φ} ⊂ Π.

When extending the local policy search to CMDPs, we op-
timize over Πϕ ∩ ΠC instead of Πϕ. However, directly
solving CMDPs is difficult due to the additional constraint
evaluation needed to judge whether an updated policy is fea-
sible. To tackle the issues above, CPO algorithm (Achiam
et al., 2017) proposes to use trust region method (Schulman
et al., 2015) for CMDPs as follows: starting with policy
πϕk

, it updates new policy πϕ by solving the optimization
problem in parameterized policy space Πϕ:

π† =: max
πϕ∈Πθ

E
s∼d

πϕk
a∼πϕ

[
A

πϕk
R (s, a)

]
(2)

s.t. JC(πϕk ) +
1

1− γ
E
s∼d

πϕk
a∼πϕ

[
A

πϕk
C (s, a)

]
≤ b (3)

D̄KL(πϕ||πϕk ) ≤ δ, (4)

where D̄KL(πϕ||πϕk
) =: Es∼d

πϕk [DKL(πϕ||πϕk
)[s]],

DKL(πϕ||πϕk
)[s] =:

∫
a∈A πϕ(a|s) log πϕ(a|s)

πϕk
(a|s)da.

However, CPO introduces several errors, namely (i) It lacks
a theory analysis to show the difference between the non-
convex problem (2)-(4) and its convex approximation. Typi-
cally, policy optimization is a non-convex problem (Yang
et al., 2021), its convex approximation may introduce some
error for its original issue; (ii) CPO updates parameters ac-
cording to conjugate gradient (Süli & Mayers, 2003), and
its solution involves the inverse Fisher information matrix,
which requires expensive computation for each update. To
solve this issue, Zhang et al. (2020) propose FOCOPS to
eliminate these two sources of error using a simple first-
order method. Instead of solving (2-4) explicitly, Zhang
et al. (2020) consider supervised learning to fit the optimal
policy of (2-4), we present it as follows.

Theorem 2.1 (Optimal Policy of CPO, Zhang et al. (2020,
Theorem 1)). Let πϕk

(a|s) be a feasible solution to the
CPO problem (2-4), then π† takes the following form

π†(a|s) = πϕk
(a|s)

Zλ⋆,ν⋆(s)
exp

(
1

λ

(
A

πϕk

R (s, a)− νA
πϕk

C (s, a)
))

,

(5)
where Zλ⋆,ν⋆(s) is the normalization term, λ⋆, ν⋆ are the
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solutions to the optimization problem:

(λ⋆, ν⋆) =: min
λ,ν≥0

{
λδ + νb̃+ λEs∼d

πϕk

a∼π†
[logZλ,ν(s)]

}
,

(6)
where b̃ = (1− γ)(b− J̃C(πϕk

)).

FOCOPS considers to project the policy π† back into the
parameterized policy space Πϕ via finding the πϕk+1

∈ Πϕ

that is closest to π† as follows,

πϕk+1
=: arg min

π∈Πϕ

Es∼d
πϕk

[
DKL(π

†∥π)[s]
]
.

3. Langevin Policy
In this section, we propose Langevin policy, which models
action sequences with Langevin chains as summarized in
Algorithm 1.

The policy (5) is a typical energy-based model (EBM) (Le-
Cun et al., 2006), we rewrite it as follows,

π†(a|s) = 1

Zk(ϕ)
exp{−Ek(s, a;ϕ)}, (7)

where

Ek(s, a;ϕ) =
1

λ
(νAπk

C (s, a)−Aπk

R (s, a))− log πk(a|s),
(8)

and Zk(ϕ) =
∫∫

s∈S,a∈A exp{−Ek(s, a;ϕ)}dsda is the
normalization term. However, directly sampling actions ac-
cording to policy (7) is difficult due to the unknown Zk(ϕ).
Langevin algorithm is a classic Markov chain Monte Carlo
(MCMC) method to solve the EBM (7), which generates an
action sequence {ãi}0≤i≤T as follows,

ãi = ãi−1 +
η

2
∇a log π

†(a|s)
∣∣∣
a=ãi−1

+
√
ηzi, (9)

where zi ∼ N (0, I), η > 0 is the step size, T is total step,
and the initial action ã0 ∼ p0, p0 is some initial distribution.
We provide the details of Langevin policy in Algorithm 1.

Theorem 3.1 (Convergence of Langevin Policy). Let the
action sequence {ãi}0≤i≤T be generated by (9), and πi(·|s)
denotes the distribution of ai under the state s. Let the
energy Ek(s, a;ϕ) be with l Lipschitz continuous gradients
and m strong convexity, i.e. for each s ∈ S, for each k:
mI ⪯ ∇2

aEk(s, a;ϕ) ⪯ lI. If π0(·|s) = N (0, 1
m ), and

η =:
mϵ

8dl2
, T =: 16

l2

m2

d log dl
mϵ

ϵ
,

where d is the dimension of the action (i.e., each action
a ∈ A satisfies a ∈ Rd), then

KL
(
πT (·|s)∥π†(·|s)

)
≤ ϵ.

Algorithm 1 Langevin Policy

1: Input: s, λ, ν,Qπ
R, Q

π
C , π, ã0

2: Initialization:, Langevin steps T , Langevin stepsize η,
3: for i = 1, · · · , T do
4: zi ∼ N (0, I);

E(s, a) =
1

λ
(νQπ

C(s, a)−Qπ
R(s, a))− log π(a|s);

ãi = ãi−1 −
η

2
∇aE(s, a)|a=ãi−1

+
√
ηzi;

5: end for
6: Output ãT

We show its proof in Appendix C. Theorem 3.1 illustrates
that the distribution of ãT is consistent with π†(·|s) (7)
when η → 0 and T → ∞, i.e., the action ãT becomes a
sample of the policy π†(·|s) (7). Additionally, Theorem 3.1
illustrates that Langevin policy produces a policy π with
KL
(
π(·|s)∥π†(·|s)

)
≤ ϵ in Õ

(
d
ϵ

)
steps, which depends

on the condition that energy function Ek(·, s;ϕ) is with
Lipschitz continuous gradients and strong convexity on the
action space A. Finally, we know Langevin policy is the
stationary distribution follows the next stochastic dynamic
of {A(t)}t≥0 on the continuous time t ∈ [0,+∞),

dA(t) = −∇aEk(a, s;ϕ)dt|a=A(t) +
√
2dB(t), (10)

with A0 ∼ ρ0, ρ0 is some initial distribution, and B(t) is
Brownian motion at time t.

4. LAC: Langevin Actor-Critic
Although the Langevin policy provides a way to represent
the policy (7), in practice, it meets the following challenges
when applied to reinforcement learning.

(C1): The First Challenge. If we directly apply Langevin
policy (see Algorithm 1) to interact with the environment,
each action from π†(·|s) requests for T Langevin steps,
which is time-consuming. It is inefficient for the practical
application of Langevin policy to real-world scenarios.

(C2): The Second Challenge. By leveraging the reformula-
tion of Eq. (7) and the efficacious Langevin policy described
in Algorithm 1, it appears that there are no hindrances in
obtaining exact actions ã from π†(·|s) within the parametric
policy space Πϕ. It is crucial to notice that the assurance of
obtaining exact samples from π†(·|s) is contingent upon T
steps approaching infinity. However, running such a chain
is excessively time-consuming to be considered feasible.

(C3): The Third Challenge. Langevin policy needs to
calculate the gradient of E(s, a) with respect to a, namely
score. By leveraging the equality∇aA(s, a) = ∇aQ(s, a),
we substitute the advantage function A(s, a) in the energy
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function E(s, a) with Q(s, a). However, a well-known chal-
lenge arises in the form of estimating bias in Q-value func-
tion (as illustrated in Section 4.1), which significantly affects
the performance of Langevin policy.

Those three challenges are the main focus of this section.
Section 4.1 presents the details of our approach to address
these challenges. Section 4.2 presents the implementation
of our proposed method: Langevin Actor-Critic (LAC).

4.1. Approach to Address Challenges

Generator to Approximate Langevin Policy. To solve the
problem that appears in challenge (C1), instead of acquiring
each action aT from π†(·|s) through complete Langevin
chain, we consider a parameterized policy πϕ as a generator
to approximate the output of Langevin policy, where πϕ

plays the role of an estimator of Langevin policy. This
enables the agent to use πϕ to interact with the environment
to collect data, which reduces the training and testing time.

Informative-initializated Short-Run MCMC. To solve
the problem from the second challenge (C2), for each action
sequence {ãi}0≤i≤T generated by Langevin policy, we set
the following initialization ã0 ∼ πϕ, and a fixed small T .
We present those details as follows.

There exist two ways of initialization in MCMC meth-
ods (Nijkamp et al., 2020): noninformative and informative
initialization. The noninformative initialization is indepen-
dent of any model, where the initial action ã0 is generated
from an unrelated distribution (e.g., uniform or Gaussian
distribution). Since noninformative initialization loses the
prior and historical information, it is inefficient to be applied
to Langevin policy.

The central idea of informative initialization involves inherit-
ing the hidden information in the model. For a given Markov
chain initialized from its approximate steady distribution,
such an initialization makes MCMC methods converge and
learn faster than noninformative initialization. Thus, apply-
ing informative initialization to Langevin policy is an effi-
cient way to solve (C2). In this paper, we consider Langevin
policy with informative initialization of ã0 as follows,

a← Langevin Policy(s, λ, ν,QR, QC , ã0 = πϕ(·|s)).
(11)

We should emphasize that the distinction between Eq. (9)
and Eq. (11)) is that initialization in vanilla Langevin pol-
icy (9) draws ã0 from noninformative distribution such as
uniform or Gaussian, while initialization in our revised
Langevin policy (11) draws ã0 from a previously learned
model πϕ (which incorporates hidden information acquired
from past MCMC chains, hence speed up the convergence
rate of Langevin policy (9)).

Clipped Double Q-Learning. The Langevin policy (see

Algorithm 1) captures the underlying distribution by assign-
ing an unnormalized probability scalar to each possible data
point, which implies the policy π†(·|s) aims to assign lower
energies

E(s, a) =
1

λ
(νQπ

C(s, a)−Qπ
R(s, a))− log π(a|s)

to regions in the state-action space that correspond to higher
returns and lower costs. We use parametric Qθ to estimate
the state-action, and we use Langevin policy as the target:

LQ(θ) =
1

2
(r + γQθ(s

′, ãT )−Qθ(s, a))
2
, (12)

where the action ãT is the output of Langevin policy:

ãT = Langevin Policy(s = s′, λ, ν,QR, QC , πϕ(·|s′)).
Thus, as classical policy evaluation (e.g., DQN (Van Has-
selt et al., 2016)), the Langevin policy (see Algorithm 1)
involves estimating Q-value, which also suffers from the
well-known overestimate state-action values under certain
conditions (Van Hasselt et al., 2016). Thus we consider
the technique from TD3 (Fujimoto et al., 2018) to update
targets for reward and cost:

yR ← r + γ min
i=1,2

Qθ′R
i
(s′, ãT ),

yC ← c+ γ max
i=1,2

Qθ′C
i
(s′, ãT ).

(13)

We present the insights as follows. In the presence
of an error ϵ in the target, the “maximum” (or “mini-
mum”) over the value along with its error will tend to ex-
ceed the actual “maximum” (or “minimum”), for reward
Eϵ[maxãT

(QR(s
′, ãT )+ϵ)] ≥ maxãT

QR(s
′, ãT ) (for cost

is Eϵ[minãT
(QC(s

′, ãT ) + ϵ)] ≤ minãT
QC(s

′, ãT )). Re-
call that Langevin policy incorporates the estimation of Q-
value function for both reward and cost, which introduces
bias of overestimation and underestimation. This bias is
detrimental given that the effectiveness of Langevin policy
is heavily reliant on the unbiased estimation of energy func-
tion, specifically the Q-value function for reward and cost.
We follow the clipped variant of Double Q-learning (Fuji-
moto et al., 2018) to address the third challenge (C3), see
Eq.(13).

4.2. Practical Implementation of Langevin Actor-Critic

We show the detailed implementation of our proposed
Langevin Actor-Critic (LAC) in Algorithm 2.

Step1: Collect Transitions. As presented in Section 4.1,
πϕ approximates Langevin policy. LAC collects the tra-
jectories τ according to πϕ for estimation, see Line 3-4 in
Algorithm 2.

Step2: Run Langevin Policy. For each iteration, LAC
runs Langevin policy according to Algorithm 1 to get ac-
tion ãT . Concretely, for each action ãT , LAC starts with
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Algorithm 2 LAC (Langevin Actor-Critic)

1: Initialization: λ, ν, reward critic networks QθR
{1,2}

,
cost critic networks QθC

{1,2}
, actor networks πϕ, target

networks θ′R{1,2} ← θR{1,2}, θ
′C
{1,2} ← θC{1,2}, ϕ

′ ← ϕ,
replay buffer B;

2: for k = 0, 1, · · · ,K − 1 do
3: Generate trajectories τ ∼ πϕ;
4: Store transitions tuple (s, a, r, c, s′) in B;
5: Update ν according to (14);
6: for mini-batch of transitions (s, a, r, c, s′) in B do
7: ã← Langevin Policy(s′, λ, ν,QθR

i
, QθC

i
, πϕ′(·|s′));

8: Calculate target value yR, yC according to (13);
9: Update critic θR{1,2} and θC{1,2} according to (12);

10: Update actor ϕ according to (15);
11: Update target networks:
12: θ′Ri ← τθi + (1− τ)θ′Ri ;
13: θ′Ci ← τθi + (1− τ)θ′Ci ;
14: ϕ′ ← τϕ+ (1− τ)ϕ′;
15: end for
16: end for

ã0 ∼ πϕ and takes a fixed Langevin steps T , see line 4
in Algorithm 1. To overcome overestimation (or under-
estimation) of Q-value function, LAC considers Qπ

R =
mini∈{1,2} QθR

i
, Qπ

C = maxi∈{1,2} QθC
i

.

Additionally, since Langevin policy depends on λ, ν, LAC
considers the following update rule. We adopt a fixed
value for λ throughout the training process, which has been
shown able to obtain comparable results (Zhang et al., 2020).
Recall that the optimal (λ⋆, ν⋆) minimizes the dual func-
tion (6), which is denoted as

L(π†(·|s), λ, ν) =: λδ + νb̃+ λEs∼d
πϕk

a∼π†
[logZλ,ν(s)].

Since (λ⋆, ν⋆) = minν≥0,λ{L(π†(·|s), λ, ν)}, LAC con-
siders gradient decent method to obtain ν.

Proposition 4.1. The derivative of L(π†(·|s), λ, ν) w.r.t. ν:

∂L(π†, λ, ν)

∂ν
= b̃− Es∼d

πϕk ,a∼π†(·|s)[A
πϕk (s, a)].

We show its proof in Appendix B. With proper parame-
ter tuning, it is reasonable to consider that πϕk

is close to
π†(·|s), which implies for any s ∈ S,

Ea∼π†(·|s)[A
πϕk (s, a)] ≈ Ea∼πϕk

[Aπϕk (s, a)] = 0.

Thus, in practice, we update ν as follows,

ν ← {ν − η(b− JC(πϕk
)}+, (14)

where {·}+ denotes the positive part operator, i.e., if x ≤ 0,
{x}+ = 0, else {x}+ = x, η > 0 is step-size.

Step3: Update Actor and Critic. For actor πϕ, recall
that πϕ plays the role of a generator that approximates the
Langevin policy. Furthermore, inspired by that negative log
probability of the action ãT , i.e., − log πϕ(ãT |s) is propor-
tional to the energy function E(s, a) in Algorithm 1, LAC
considers a heuristic method that resembles the maximum
likelihood learning to update πϕ by gradient ascent on

LA(ϕ) = − log πϕ(ãt|s) (15)

to make πϕ(·|s) close to π†(·|s). For critic QθR and QθC ,
LAC updates the pair of critics towards the minimum and
maximum target value of actions selected by Langevin pol-
icy as described by Eq. (13).
Remark 4.2 (Regularization for Policy Update). The pro-
posed heuristic loss (15) for actor πϕ in LAC raises concerns
regarding potential fluctuations in policy updates and their
potential impact on performance. To make the LAC update
stable, we make use of KL-regularization to penalize the
discrepancy between new policy πϕ and target policy πϕ′ ,
which results in a new loss function as follows,

LKL
A (ϕ) = − log πϕ(ãt|s) + βDKL(πϕ(ãt|s)∥πϕ′(ãt|s)).

(16)
Section 6.3 shows that LAC achieves stable and comparative
performance with KL-regularization.

5. Related Work
Safe RL is a fast-growing field, the recent work (Gu et al.,
2022) provides a comprehensive review of safe RL from
the perspectives of methods, theory, and applications. This
section mainly reviews the works with respect to CPO-based
safe RL and RL with generative or sampling methods.

CPO-based Safe RL. CPO (Achiam et al., 2017) (2)-(4) is
the first approach that utilizes policy gradient to solve safe
RL problems. It approximates the constrained optimization
problem with surrogate functions, making it a convex op-
timization problem. Existing recent works (e.g., (Vuong
et al., 2019; Yang et al., 2020; Han et al., 2020; Bisi et al.,
2020; Bharadhwaj et al., 2021)) try to find some convex ap-
proximations to replace the term Aπ(s, a) and DKL(π, πϕ)
in (2)-(4). FOCOPS (Zhang et al., 2020) first gives a near-
closed form solution for the best policy in the nonparamet-
ric policy space and then projects the policy back into the
parametric policy space by minimizing the KL-divergence.
Then, CUP (Yang et al., 2022) provides a non-convex im-
plementation via only first-order optimizers, which does not
require any convex approximation on the convexity of the
objectives. P3O (Zhang et al., 2022) and APPO (Dai et al.,
2023) are also non-convex implementations to solve safe
RL problems.

RL with Generative or Sampling Methods. Several recent
works (Chen et al., 2021; Janner et al., 2022; Yang et al.,
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2023) have investigated the application of generative mod-
els in RL. Derived from Decision Transformer (DT) (Chen
et al., 2021), Liu et al. (2023) leverages the modeling ca-
pability of Transformer to solve offline safe RL problems.
Zheng et al. (2024) study safe offline reinforcement learning
with feasibility-guided diffusion model (Ho et al., 2020).
Instead of solving safe RL in the context of planning. Some
other works adopt sampling methods to serve as dynamics
model, thereby enhancing the exploration ability in online
safe RL. Maeda et al. (2019) sample trajectories from a gen-
erative model to learn threat function to determine whether a
given action is safe. HasanzadeZonuzy et al. (2021) sample
a safe action according to safety critic via rejection sampling.
Wang et al. (2023) introduce a generative-model-based soft
barrier function that leverages the generative model to learn
the dynamics and stochasticity of the environment. Rather
than learning the world model, Kamalaruban et al. (2020)
introduces a sampling perspective to solve the robust rein-
forcement learning problem by leveraging Stochastic Gra-
dient Langevin Dynamics. However, none of the above
methods consider a sampling based policy to solve safe
RL, which we demonstrate in our framework as a powerful
method for effectively exploring the safe optimal policy and
resulting in comparative performance.

6. Experiments
In this section, we perform extensive experiments to demon-
strate that: (1) LAC outperforms current state-of-the-art
benchmarks on various high-dimensional tasks. (2) LAC
balances the exploitation-exploration trade-off resulting in
faster convergence towards the safe optimal policy com-
pared to the selected baseline methods.

Baselines. We compare LAC against baseline methods, in-
cluding CPO (Achiam et al., 2017), FOCOPS (Zhang et al.,
2020), CUP (Yang et al., 2022), PCPO (Yang et al., 2020),
P3O (Zhang et al., 2022) and RESPO (Ganai et al., 2023).
In addition, we incorporate PPO-L and TRPO-L into our
evaluation, which represents the Lagrangian-based approach
with PPO (Schulman et al., 2017) and TRPO (Schulman
et al., 2015) as demonstrated by Ray et al. (2019).

Tasks. We compare the proposed algorithm with existing
approaches on four kinds of tasks as described in the caption
of Figure 1. Velocity and Circle tasks are implemented using
OpenAI Gym API (Brockman et al., 2016) for MuJoCo
physical simulator (Todorov et al., 2012). The other two
tasks Button and Goal are implemented in Safety Gym
benchmark suite (Ray et al., 2019).

We conduct two sets of experiments to verify the perfor-
mance of our algorithm. For the MuJoCo tasks, we train
three agents (i.e., Ant-v3, Swimmer-v3, Humanoid-v3) to
run across Velocity and Circle tasks. For the Safety Gym

(a) Velocity (b) Circle (c) Button (d) Goal

Figure 1. The velocity, circle, button and goal tasks. (a) Velocity
task: The agent is rewarded for moving as quickly as possible
while adhering to velocity limits. (b) Circle task: The agent is re-
warded for circling the center of the circle and penalized for going
outside the boundaries. (c) Button tasks: The agent is rewarded
for pressing a goal button while avoiding hazards, gremlins, and
pressing the wrong buttons. (d) Goal tasks: The agent is rewarded
for entering a goal area while avoiding hazards.

tasks, we train two agents (i.e., Point and Car) across Goal
and Button tasks with Level 1 difficulty setting. Implementa-
tion details for all experiments can be found in Appendix D.

6.1. MuJoCo Tasks with Constraint

Table 1 lists the comparison results on MuJoCo tasks. It is
observed that LAC consistently outperforms other baseline
methods in terms of satisfying the imposed cost limits and
achieving a higher reward across all evaluated tasks.

Figure 2 shows the learning curves, it can be seen that LAC
outperforms other baselines by a large margin (particularly
evident in Humanoid-v3 and HumanoidCircle-v0) in terms
of reward on all tasks while satisfying the cost limits. In
the Humanoid-v3 task, LAC initially exhibits an aggressive
exploring policy (in terms of cost) at the beginning. How-
ever, as the training proceeds and reaches the 0.5 million
step mark, LAC gradually converges towards a safe policy
and substantially improves reward performance. Although
achieving the highest reward performance in Swimmer-v3
task, PPO-L and TRPO-L incur significant constraint vio-
lations and experience degradation in reward performance
when successfully approaching safe policy (e.g., Ant-v3,
HumanoidCircle-v0 and Humanoid-v3). Similarly, Table 1
reveals that LAC consistently outperforms other approaches
in terms of satisfying the imposed cost limits and achieving
a higher reward across all evaluated tasks.

6.2. Safety Gym Tasks with Constraint

Safety Gym tasks introduce randomized safety-relevant en-
vironmental elements (e.g., Hazards, Gremlins, and Buttons)
at the beginning of each episode, posing a higher level of
difficulty compared to MuJoCo tasks.

We provide learning curves in Figure 3 and numerical sum-
maries in Table 2. Overall, LAC exhibits a favorable trade-
off between improving reward performance and adhering
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Table 1. Average results for CPO, CUP, FOCOPS, PPO-L, TRPO-L and LAC after 2.5 million steps. Cost limits are in brackets under the
environment names. Bold: Safe agents with the cost under cost limit. Blue: Safe agents with the highest reward.

Environment CPO CUP FOCOPS PPO-L TRPO-L LAC (ours)

Ant-v3 Reward 994.50± 27.44 1159.81± 84.08 1803.86± 42.90 −24.32± 8.26 −15.38± 11.13 1940.71 ± 16.31
(103.12) Cost 113.87± 7.24 100.68 ± 1.80 102.91 ± 3.12 5.48 ± 1.82 6.70 ± 2.63 103.04 ± 0.12

Swimmer-v3 Reward −2.45± 13.88 30.42± 4.48 34.46± 3.35 49.07± 3.33 47.07± 5.74 34.56 ± 4.94
(24.52) Cost 27.75± 6.21 23.65 ± 0.61 25.51± 3.04 69.65± 2.61 70.22± 4.56 24.45 ± 1.30

Humanoid-v3 Reward 375.93± 21.19 1795.83± 1099.19 3196.58± 909.07 233.74± 52.49 144.92± 16.72 5023.27 ± 107.99
(20.14) Cost 24.58± 2.12 19.21 ± 0.62 19.83 ± 0.91 5.98 ± 2.10 3.42 ± 0.70 20.12 ± 0.58

HumanoidCircle-v0 Reward 174.96± 19.76 390.39± 51.27 862.92± 67.24 0.01± 0.04 1.90± 4.06 925.03 ± 111.95
(50.00) Cost 40.00 ± 5.19 38.11 ± 2.05 48.61 ± 2.47 9.72 ± 0.63 10.65 ± 0.62 49.57 ± 1.16

Table 2. Average results for P3O, RESPO, CPO, PPO-L, TRPO-L, FOCOPS, PCPO and LAC after 2.5 million steps. Cost limits are in
brackets under the environment names. Bold: Safe agents with the cost under cost limit. Blue: Safe agents with the highest reward.

Environment P3O RESPO CPO PPO-L TRPO-L FOCOPS PCPO LAC (ours)

PointGoal Reward 0.94± 1.04 13.71± 3.44 23.16± 2.09 11.36± 4.23 16.34± 4.96 6.01± 3.59 9.00± 2.09 14.20 ± 3.35
(25.00) Cost 30.53± 29.50 35.51± 35.90 46.00± 15.85 16.48 ± 10.95 28.40± 16.14 38.08± 12.63 46.21± 12.60 22.21 ± 3.03

PointButton Reward −0.43± 0.34 3.52± 3.23 18.42± 3.04 0.90± 1.98 7.61± 1.98 2.79± 2.12 1.14± 0.91 2.45 ± 1.36
(25.00) Cost 35.21± 6.05 45.08± 51.49 114.50± 32.53 17.76 ± 17.49 54.10± 26.55 31.11± 12.74 38.29± 5.43 21.11 ± 6.74

CarGoal Reward −0.11± 1.17 15.23± 3.55 25.24± 4.80 12.38± 4.21 18.68± 2.31 7.91± 7.70 10.42± 4.11 24.01 ± 2.21
(25.00) Cost 112.75± 92.75 21.44 ± 30.35 45.42± 19.30 19.50 ± 16.92 27.44± 10.99 20.09 ± 9.20 41.71± 18.74 22.15 ± 4.71

CarButton Reward −4.52± 4.76 0.75± 1.24 10.16± 2.54 0.71± 0.42 0.80± 1.02 0.65± 0.60 0.01± 0.30 1.50 ± 1.44
(25.00) Cost 90.10± 28.59 32.01± 47.79 155.92± 70.06 73.40± 73.48 49.04± 53.23 39.67± 7.28 60.70± 13.67 16.54 ± 13.83
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Figure 2. Comparison of the average rewards and costs in MuJoCo tasks. Each column corresponds to a task. The x-axis represents the
total environment step. The first row shows the performance in terms of reward (higher is better), and the second row shows the evaluated
cost (lower is better) under different cost thresholds, which are represented by the dashed line in the second row. Each.The solid line
represents the mean and the shaded area represents the confidence interval for one standard deviation. The plots are smoothed with a
moving average window of 5.

to the imposed constraint limits (set as 25) across all tasks.
When comparing the cumulative reward under satisfying
constraints, LAC outperforms all other methods. Given the
increased difficulty of these tasks, most of the chosen base-
line methods face a significant challenge in exploring a safe
policy that satisfies the predetermined cost limits within 2.5
million steps. It is evident that CPO, TRPO-L, and PCPO

struggle to satisfy cost limits, only PPO-L (excluding Car-
Button tasks), FOCOPS (in CarGoal task) and RESPO (in
CarGoal task) achieve relatively better reward performance
while maintaining satisfied constraint violations. The infe-
rior performance of these baselines compared to MuJoCo
tasks highlights the complexity of Safety Gym tasks and
demonstrates the efficacy of LAC.
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Figure 3. Comparison of the average rewards and costs on Safety Gym Tasks. The x-axis represents the total environment step.

Table 3. Average rewards and costs after 2.5 million environment
steps. Comparison ablation over noninformative initialization
(NI), varying Langevin steps T (VT) and policy KL-regularization
(PR). We run T among {30,50,100,200,500} for NI, T among
{10,20,30,40,50,100} for VT and β among {0,1,5,10,20} for PR.
We choose the best performance for NI, VT and PR.

Method PointGoal CarGoal

LAC Reward 14.20± 3.35 24.01± 2.21
Cost 22.21± 3.03 22.15± 4.71

NI Reward 5.58± 1.65 13.25± 7.92
Cost 29.62± 18.33 16.02± 5.88

VT Reward 15.33± 2.03 23.00± 1.33
Cost 21.53± 3.03 22.98± 8.20

PR Reward 13.63± 1.36 19.75± 5.07
Cost 17.93± 2.60 18.33± 2.26

PR (1e7) Reward 14.71± 0.70 21.85± 4.47
Cost 20.85± 7.61 17.27± 5.58

6.3. Ablation Study

Additionally, we perform ablation studies (without any other
hyperparameters tuning) to validate the design choices of
informative initialization and analyze the effects of policy
regularization and varying Langevin steps. To fully explore
the potential of LAC, we conduct experiments on Goal tasks,
where LAC has already exhibited remarkable performance.

In contrast to LAC with informative initialization, nonin-
formative initialization (NI) fails to effectively exploit the
latent information acquired from the Langevin policy. As
shown in the second row of Table 3, LAC with noninfor-
mative initialization (NI) undergoes a degradation both in

reward performance and constraint satisfaction. It is worth
to mention that the best performance for NI is achieved
when T is set to 500. However, the large T results in a con-
siderable computational cost. For varying T (VT), the best
performance is observed with T=50 for the PointGoal task
and T=100 for the CarGoal task. VT outperforms LAC in
PointGoal, while it performs worse on CarGoal task. This
indicates that a larger T is not always essential for LAC
with informative initialization. For policy KL-regularization
(PR), we provide the best performance both after 2.5 million
and 10 million steps. We observe that PR does not yield a
substantial performance improvement in LAC, which can
be attributed to the inherent stability of LAC. However, PR
does contribute to a lower cost while maintaining a relatively
comparative performance. For a detailed and comprehensive
comparison of the results, please refer to Appendix D.1.

7. Limitations and Future Works
Although we have demonstrated the effectiveness of LAC
in both MuJoCo-based and Safety Gym tasks, there are
limitations that future work can improve. First, our im-
plementation for LAC incorporates a generator πϕ as an
intermediary actor between Langevin policy and the envi-
ronment, to reduce the time consumed by sampling process
and accumulate the transitions induced by Langevin policy.
Such a compromise may introduce errors that can poten-
tially undermine the capabilities of LAC. Second, we choose
Gaussian policy as the generator to ensure the tractability of
policy distribution, which is crucial for calculating energy
function in Langevin policy. However, this may constrain
the capability of Langevin policy due to its limited expres-
siveness, potentially leading to inferior performance. Future
work can focus on substituting the Gaussian generator with
a more expressive model to fully explore LAC’s capability.
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8. Conclusion
In this work, we formulate the Langevin policy for safe RL,
which can directly access the safe optimal update policy
through an iterative sampling way to achieve higher reward
and lower cost. We further propose LAC to effectively
balances the exploitation-exploration trade-off introduced
by Langevin policy. We hope that our work will stimu-
late further exploration and development of sampling based
methods in the field of safe reinforcement learning.
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A. Comments on FOCOPS (Zhang et al., 2020)
In this section, we present necessary details about FOCOPS (Zhang et al., 2020) that provides the optimal policy of CPO,
which is the foundation for us to propose LAC.

A.1. Optimal Policy of CPO

For a given policy πϕk
, firstly, FOCOPS finds an optimal update policy π† by solving the optimization problem (2-4) in the

non-parameterized policy space, which substitutes πϕ ∈ Πθ to π ∈ Π.

π† = maximize
πϕ∈Πϕ

Es∼d
πϕk

a∼π
[Aπϕk (s, a)], (17)

subject to JC(πϕk
) +

1

1− γ
Es∼d

πϕk

a∼π
[A

πϕk

C (s, a)] ≤ b, (18)

D̄KL(π||πϕk
) ≤ δ. (19)

If πϕk
is feasible, then optimal policy for (17-19) takes the form

π†(a|s) = πϕk (a|s)
Zλ,ν(s)

exp

(
1

λ

(
Aπϕk (s, a)− νA

πϕk
C (s, a)

))
, (20)

where Zλ,ν(s) is the partition function which ensures (20) is a valid probability distribution, λ and ν are solutions to the
optimization problem:

min
λ,ν≥0

{
λδ + νb̃+ λEs∼d

πϕk

a∼π†
[logZλ,ν(s)]

}
(21)

where b̃ = (1− γ)(b− J̃C(πϕk
)).

A.2. Projection

FOCOPS considers to project the policy π† found in the previous step back into the parameterized policy space Πθ by
solving for the closest policy πϕ ∈ Πθ to π† in order to obtain πϕk+1

. Minimizing the loss function:

L(θ) = Es∼d
πϕk

[
DKL(πϕ||π†)[s]

]
(22)

Here πϕ ∈ Πθ is some projected policy which we will use to approximate the optimal update policy. We can use first-order
methods to minimize this loss function where we make use of the following result:

Corollary A.1. The gradient of L(θ) takes the form

∇θL(θ) = Es∼d
πϕk

[
∇θDKL(πϕ||π†)[s]

]
(23)

where

∇θDKL(πϕ ∥ π†)[s] = ∇θDKL(πϕ||πϕk )[s]−
1

λ
Ea∼πϕk

[
∇θπϕ(a|s)
πϕk (a|s)

(
Aπϕk (s, a)− νA

πϕk
C (s, a)

)]
. (24)

B. Proof of Proposition 4.1
Proposition 4.1 The derivative of L(π†(·|s), λ, ν) w.r.t. ν:

∂L(π†, λ, ν)

∂ν
= b̃− Es∼d

πϕk ,a∼π†(·|s)[A
πϕk (s, a)].

We also provide a proof of (14) as follows.
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Proof. First note that L(π†, λ, ν) = λδ + νb̃+ λEs∼d
πϕk

a∼π†
[logZλ,ν(s)]. We first calculate the derivative of π† w.r.t. ν,

∂π†(a|s)
∂ν

=
πϕk

(a|s)
Z2
λ,ν(s)

[
Zλ,ν(s)

∂

∂ν
exp

(
1

λ

(
Aπϕk (s, a)− νA

πϕk

C (s, a)
))

− exp

(
1

λ

(
Aπϕk (s, a)− νA

πϕk

C (s, a)
)) ∂Zλ,ν(s)

∂ν

]
= −A

πϕk

C (s, a)

λ
π†(a|s)− π†(a|s)∂ logZλ,ν(s)

∂ν

Therefore the derivative of the expectation in the last term of L(π⋆, λ, ν) can be written as

∂

∂ν
Es∼d

πϕk

a∼π†
[logZλ,ν(s)]

=Es∼d
πϕk

a∼π†

[
∂

∂ν

(
π†(a|s)
πϕk

(a|s) logZλ,ν(s)

)]
=Es∼d

πϕk

a∼π†

[
1

πϕk
(a|s)

(
∂π†(a|s)

∂ν
logZλ,ν(s) + π†(a|s)∂ logZλ,ν(s)

∂ν

)]
=Es∼d

πϕk

a∼π†

[
π†(a|s)
πϕk

(a|s)

(
−A

πϕk

C (s, a)

λ
logZλ,ν(s)−

∂ logZλ,ν(s)

∂ν
logZλ,ν(s) +

∂ logZλ,ν(s)

∂ν

)]

=Es∼d
πϕk

a∼π†

[
−A

πϕk

C (s, a)

λ
logZλ,ν(s)−

∂ logZλ,ν(s)

∂ν
logZλ,ν(s) +

∂ logZλ,ν(s)

∂ν

]
.

(25)

Also,
∂Zλ,ν(s)

∂ν
=

∂

∂ν

∑
a

πϕk
(a|s) exp

(
1

λ

(
Aπϕk (s, a)− νA

πϕk

C (s, a)
))

=
∑
a

−πϕk
(a|s)A

πϕk

C (s, a)

λ
exp

(
1

λ

(
Aπϕk (s, a)− νA

πϕk

C (s, a)
))

=
∑
a

−A
πϕk

C (s, a)

λ

πϕk
(a|s)

Zλ,ν(s)
exp

(
1

λ

(
Aπϕk (s, a)− νA

πϕk

C (s, a)
))

Zλ,ν(s)

= −Zλ,ν(s)

λ
Ea∼π†(·|s)

[
A

πϕk

C (s, a)
]
.

(26)

Therefore,
∂ logZλ,ν(s)

∂ν
=

∂Zλ,ν(s)

∂ν

1

Zλ,ν(s)
= − 1

λ
Ea∼π†(·|s)

[
A

πϕk

C (s, a)
]
. (27)

Plugging (27) into the last equality in (25) gives us

∂

∂ν
Es∼d

πϕk

a∼π†
[logZλ,ν(s)] = Es∼d

πϕk

a∼π†

[
−A

πϕk

C (s, a)

λ
logZλ,ν(s) +

A
πϕk

C (s, a)

λ
logZλ,ν(s)−

1

λ
A

πϕk

C (s, a)

]

= − 1

λ
Es∼d

πϕk

a∼π†

[
A

πϕk

C (s, a)
]
.

(28)

Combining (28) with the derivatives of the affine term gives us the final desired result.

C. Convergence of Langevin Policy
In this section, we provide a proof to analyze the convergence of Langevin policy.
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C.1. Auxiliary Result from (Cheng & Bartlett, 2018)

Langevin Diffusion. Let us consider sampling from a density

p⋆(x) = exp{−U(x) + C}
where C is the normalizing term but unknown the normalizing constant, U is known. One way to sample from p⋆ is to
consider the Langevin diffusion:

x̄0 ∼ p̄0,

dx̄t = −∇U(x̄t)dt+
√
2dBt, (29)

where p̄0 is some initial distribution, and Bt is Brownian motion. The stationary distribution of the above SDE is p⋆.

Langevin MCMC Algorithm. For a given initial distribution p0, and for a given stepsize h, the Langevin MCMC Algorithm
is given by the following:

u0 ∼ p0,

ui+1 = ui − h∇U(ui)dt+
√
2hzi, (30)

where zi
i.i.d∼ N (0, 1).

For a given initial distribution p0 and stepsize h, the Discretized Langevin Diffusion is given by the following SDE:

x0 ∼ p0,

dxt = −∇U(xτ(t))dt+
√
2dBt, (31)

where τ(t) = ⌊ th⌋ (note that τ(t) is parametrized by h). It is easily verified h that for any i, xih from (30) is equivalent to
ui in (31).
Theorem C.1 ((Cheng & Bartlett, 2018, Theorem 3)). Let U(x) be with l Lipschitz continuous gradients and m strong
convexity, i.e. for all x: mI ⪯ ∇2U(x) ⪯ lI. Let xt be defined according to (31) with p0 = N (0, 1

m ), and let pt denote the
distribution of xt. Let

h =:
mϵ

16dl2
, k =: 16

l2

m2

d log dl
mϵ

ϵ
where d is the dimension of sampling space. Then

KL(pkh|p⋆) ≤ ϵ.

C.2. Application to Langevin Policy

Recall Langevin policy (9)

ãi =ãi−1 +
η

2
∇a log π

†(ãi−1|s) +
√
ηzi (32)

=ãi−1 −
η

2
Ek(s, ãi−1;ϕ) +

√
ηzi, (33)

where zi ∼ N (0, I), η > 0 is the step size, T is total step, and the initial action ã0 ∼ p0, p0 is some initial distribution.
Furthermore, we know the Langevin policy is the stationary distribution follows the next stochastic dynamic of {A(t)}t≥0

on the continuous time t ∈ [0,+∞),

dA(t) = −∇aEk(a, s;ϕ)dt|a=A(t) +
√
2dB(t), (34)

with A0 ∼ p0,and B(t) is Brownian motion at time t.

Let πi(·|s) denotes the distribution of ãi that generates by (32), the according to Theorem C.1, if

η

2
=:

mϵ

16dl2
, T =: 16

l2

m2

d log dl
mϵ

ϵ

for any state s, we obtain
KL
(
πT (·|s)∥π†(·|s)

)
≤ ϵ.
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D. Implementation Details for Experiments
We implement CPO, TRPO-L, and PPO-L based on https://github.com/openai/safety-starter-agents,
which was released by OpenAI. FOCOPS is implemented based on https://github.com/ymzhang01/
focops. RESPO is based on https://github.com/milanganai/milanganai.github.io/tree/main/
NeurIPS2023/code. The other baseline methods are implemented based on Omnisafe (Ji et al., 2023) with the default
hyperparameters to ensure a fair comparison. For the simulations in all tasks, we employ a neural network consisting of two
hidden layers with a size of (256, 256) to represent our Gaussian policies πϕ. We conduct 10 runs for MuJoCo tasks and no
fewer than 3 runs for Safety Gym tasks to get the mean and standard deviation for both reward and cost value over the policy
updates. We run our experiments on Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz with 8 cores.

D.1. Additional Experiment Results
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Figure 4. Ablation study of T with noninformative initialization (ã0 ∼ N (0, 1)). The box plots show the convergence cost.

Ablation on Initialization Methods. We conduct ablation studies to investigate the non-informative initialization with
Langevin policy in LAC. As shown in Figure 4, it requires a large T for LAC with noninformative initialization (i.e.,
Gaussian distribution) to approach a safe policy, which aligns with our earlier discussion on initialization methods in
Section 4.1. Although with a smaller T (i.e., 30,50,100, in this case), LAC with non-informative initialization still improves
reward performance and reduces constraint violations. However, we notice that the cost limit is never satisfied with a smaller
T . In both PointGoal and CarGoal tasks, the imposed cost limit is only met when the value of T is set to either 200 or 500.
Under this condition, LAC achieves a relatively higher reward. However, a larger T is accompanied by more computational
cost. In contrast, LAC with informative initialization demonstrates superior performance, which can be attributed to the
generator’s ability to preserve previously acquired knowledge and information.
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Figure 5. Learning curves for maximum likelihood actor loss (ML-loss) and policy KL-regularization loss (KL-divergence).

Ablation on Policy Regularization. As shown in Figure 5, we find that the second term (KL-divergence) in Eq. (16) is
relatively small compared to the first term (vanilla maximum likelihood actor loss). To fully examine the effect of policy
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Figure 6. Ablation study of β with policy KL-regularization. The box plots show the convergence cost.

KL-regularization, we conduct an ablation study on hyperparameter β among {0,1,5,10,20}. In Figure 6, we compare the
performance of LAC with (β > 0) and without (β = 0) policy KL-regularization. LAC demonstrates increased stability
with β = {10, 20}. However, this also results in a slightly slower convergence towards a safe policy. It is also important to
point out that the proposed policy KL-regularization measures the distance from the distribution πϕ to the target distribution
πϕ′ rather than the current policy distribution πϕk

. The rationale behind not penalizing discrepancy between new policy
πϕ and old policy πϕk

during the policy update is rooted in the observation that during the sampling process of Langevin
policy 1 the acquired ãT from policy π†(·|s) is close to πϕk

, which is attributed to the energy function E(s, a) assigns
lower energies to regions in the state-action space that correspond to higher log πϕk

(a|s) and plays a role of penalizing the
distance between distribution π†(·|s) and distribution πϕk

.
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Figure 7. Ablation study of T on selected tasks. The box plots show the convergence cost.

Ablation on Langevin Steps. In Figure 7, we conduct an ablation study on varying Langevin steps T . In PointGoal
task, smaller T results in higher cost violations. However, this does not indicates that short-run Langevin policy cannot
achieve a comparative performance. As shown in CarGoal task, LAC demonstrates robustness to varying T . Compared to
the noninformative initialization (as shown in 4), informative initialization has exhibited its superiority in terms of both
performance and efficiency within the LAC.
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D.2. Algorithmic Hyperparameters

Table 4. Hyperparameters for MuJoCo tasks.

Hyperparameter Ant-v3 Swimmer-v3 Humanoid-v3 Humanoid-Circle

State space dimension 27 8 376 376
Action space dimension 8 2 17 17

Activation tanh tanh tanh tanh
Initial log std -0.5 -0.5 -0.5 -0.5
Discount for reward γ 0.99 0.99 0.99 0.99
Discount for cost γC 0.99 0.99 0.99 0.99
Batch size 5000 5000 5000 5000
Replay buffer 50000 50000 50000 50000
Minibatch size 256 256 256 256
No. of optimization epochs 1 1 1 1
Maximum episode length 1000 1000 1000 1000
Learning rate for actor 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for reward/cost critic 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for ν 0.01 0.01 0.01 0.01
Temperature λ 0.001 0.001 0.001 0.001
Initial ν 0 0 0 0
Steps for Langevin Policy 30 30 30 30
Stepsize for Langevin Policy 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Table 5. Hyperparameters for Safety Gym tasks.

Hyperparameter PointGoal1-v0 PointButton1-v0 CarGoal1-v0 CarButton1-v0

State space dimension 60 76 72 88
Action space dimension 2 2 2 2

Activation tanh tanh tanh tanh
Initial log std -0.5 -0.5 -0.5 -0.5
Discount for reward γ 0.99 0.99 0.99 0.99
Discount for cost γC 1 1 1 1
Batch size 20000 20000 20000 20000
Replay buffer 50000 50000 50000 50000
Minibatch size 256 256 256 256
No. of optimization epochs 1 1 1 1
Maximum episode length 1000 1000 1000 1000
Learning rate for actor 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for reward/cost critic 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Learning rate for ν 0.01 0.01 0.01 0.01
Temperature λ 0.001 0.001 0.001 0.001
Initial ν 0 0 0 0
Steps for Langevin Policy 30 50 30 50
Stepsize for Langevin Policy 1× 10−4 1× 10−4 1× 10−4 1× 10−4
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