
A Environment Details439

Here we provide additional details for our simulation environments. An unabridged version of the440

description from Section 5 is as follows:441

• Push (2D): Push a round puck using the tool such that it stops at the specified goal loca-442

tion. The goal space is a subset of 2D final puck locations G ⊂ R2, and the control action443

space AC ∈ R2 specifies the x and y tool velocities.444

• Catch balls (2D): Use the tool to catch three balls that fall from the sky. The agent’s445

goal is to catch all three balls, which start from varying locations on the x-y plane. We use446

a 1-dimensional control action space that specifies the x velocity of the tool at each step.447

• Scoop (2D): Use the tool to scoop balls out of a reservoir containing 40 total balls. Here448

we specify goals of scooping x ∈ {1, 2, ..., 7} balls. The control action space AC ∈ R3449

specifies the velocity of the rigid tool in x and y directions, along with its angular velocity.450

• Fetch cube (3D): Use the tool to retrieve an object randomly positioned beneath a ver-451

tical overhang. This task is additionally challenging because the position of the robot end452

effector is restricted to a rectangular region in the x-y plane of dimensions 0.8m × 0.2m to453

avoid collision with the overhang. The tool is a three-link chain where each link is a box454

parameterized by its width, length, and height. The design space also includes the relative455

angle between two connected links, with a total of n = 11 parameters. The control action456

space AC ∈ R3 represents a change in end-effector position.457

• Lift cup (3D): Use the tool to lift a cup of randomized geometry from the ground into458

the air. This task requires careful design of the tool to match cup geometry. The tool is a459

four-link fork with two prongs parameterized by the separation, tilt angle, width, length,460

and height of the prongs. The same parameters are applied to both prongs to maintain461

symmetry. The handle dimensions are fixed. The design space has n = 5 parameters.462

AC ∈ R3 represents a change in end-effector position.463

• Scoop (3D): A 3D analog of the 2D scoop task. This task has the same goal space as the464

2D scoop task, but the tool in 3D is a six-link scoop composed of a rectangular bottom465

plate parameterized by its width and length, and four rectangular side plates attached to466

each side of the bottom plate. Each side plate is parameterized by its height and relative467

angle to the bottom plate. A handle with fixed dimensions is attached to one of the side468

plates. There are n = 10 total design parameters. AC ∈ R6 represents a change in end-469

effector pose.470

B Experimental Details471

B.1 Training Hyperparameters & Architecture Details for Our Framework472

In Tables 5, 6, 7, 8, 9, and 10, we provide detailed hyperparameters for our framework for each473

environment. Unless otherwise specified, we use the neural network architectures for the design474

policy, control policy, and value function from [7].475

B.2 Training Hyperparameters & Architecture Details for Baselines476

For the CMA-ES baseline, we perform hyperparameter sweeps for a fair comparison with our frame-477

work. For the CMA-RL baseline, we use the same set of best performing hyperparameters for the478

outer CMA-ES loop. The tested hyperparameter configurations for each baseline are listed in Ta-479

ble 2. Except model architecture differences, we use the same optimization hyperparameters for480

Ours, Ours(shared arch.), and HWasP-minimal.481

B.3 Generalization to Unseen Goals Experiment Details482

For Fetch cube, the rectangular region of initial poses is defined by x ∈ [−0.395, 0.395] and483

y ∈ [0.4, 0.7]. The cutout region corresponds to two disconnected rectangular patches contained in484

12



(a) Tool 1 (b) Tool 2

(c) Tool 3 (d) Tool 4

Figure 10: Heatmaps of success and failures for trials where fixed tools are used for a range of
initializations. The grid here directly maps to the set of 2D initial cube locations tested for each tool,
from the point of view of the robot. Here green indicates a success, red indicates failure, and orange
indicates a failure where the final cube position is within 5cm of success.

Method Hyperparameters Values

CMA-ES

Population Size 10, 24, 100, 1000
Initial Stdev 0.1, 1.0, 10.0
Center Learning Rate 0.01, 0.1, 1.0
Covariance Learning Rate 0.01, 0.1, 1.0
Rank µ Learning Rate 0.01, 0.1, 1.0
Rank One Learning Rate 0.01, 0.1, 1.0

CMA-RL

Poicy Net (256, 256, 256, 256, 256)
Value Net (256, 256, 256, 256, 256)
Learning Rate 3e-4
Batch Size (50000, 20000(3D scoop))
Minibatch Size 2000

Ours(shared
arch.)

Poicy Net (256, 256, 256, 256, 256)
Value Net (256, 256, 256, 256, 256)
Learning Rate 1e-4
Batch Size (50000, 20000(3D scoop))
Minibatch Size 2000

Table 2: We tune over these values for hyperparameters of baseline methods. Bolded values indicate
the best performing settings for CMA-ES, which we use in our comparisons.

the training region defined by x1 ∈ [−0.350,−0.045], y1 ∈ [0.434, 0.666] and x2 ∈ [0.045, 0.350],485

y2 ∈ [0.434, 0.666] respectively.486

Zero-shot performance. We train six policies using our framework where the cutout region re-487

moves a fraction of the total training area equal to 0.1, 0.2, 0.4, 0.6, 0.8, and 0.9 respectively.488

Fine-tuning performance. For the fine-tuning experiment, we specifically select489

four initializations that we find our policies do not complete successfully zero-shot:490

{(−0.167, 0.367), (−0.129, 0.357), (0.430, 0.493), (0.415, 0.610)}.491
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B.4 Trading off Design and Control Complexity Experiment Details492

We train four agents independently on catch balls, setting the value of α, the tradeoff reward493

parameter defined in Equation 1, to 0, 0.3, 0.7, and 1.0 respectively.494

B.5 Real Robot Experiment Details495

For our real-world experiments, we use a Franka Emika Panda arm. We control the robot using an496

impedance controller from the Polymetis [38] library.497

Figure 11: Real world setup. We use a Franka
Panda arm and five RealSense D435 cameras for
tracking.

Tools are 3D printed using polylactic acid (PLA) on498

commercially available Ender 3 and Ender 5 printers499

with nozzle diameter 0.4mm. We print using a layer500

height of 0.3mm and 10% infill. We perform slicing501

using the Ultimaker CURA software.502

We roll out each policy for 100 environment steps or503

until a success is detected.504

For the fetch cube task, we measure the success505

based on whether the center of mass of the 5cm cube506

is closer than 0.5m from the base of the robot. Please507

see Table 3 for per-tool details. The tool images are508

shown in Figure 9, from left to right: Tools 4, 2, 3, 1509

respectively.510

Tool Initial cube position (x, y, z)
Tool 1 (-0.110, -0.803, 0.025)
Tool 2 (-0.339, -0.588, 0.025)
Tool 3 (0.155, -0.731, 0.025)
Tool 4 (0.211, -0.633, 0.025)

Table 3: Initial cube positions corresponding to tools fabricated in real experiments.

For the lift cup task, we measure success based on whether the cup has been lifted higher than511

0.4m off of the plane of the workspace. Please see Table 4 for per-tool details. The tool images are512

shown in Figure 9, from left to right: Tools 1, 2, 3, 4.513

Tool Cup geometry parameters
(length/width, height)

Tool 1 (0.3, 0.6)
Tool 2 (0.3, 0.9)
Tool 3 (0.5, 0.8)
Tool 4 (0.9, 0.6)

Table 4: Cup geometry parameters corresponding to tools fabricated in real experiments. Note that
the length and width parameters share a single value.

We also present detailed results for the fetch cube experiments using tools generated for a specific514

initial position for a range of initializations. Recall that we test the policies on a 3× 4 grid of initial515

positions that span a range of 12cm × 85.6cm, for a total of 12 trials per tool. We plot the successes516

and failures for each tool according to geometric position in Figure 10. We can see that the control517

policy is able to use each tool to solve the task for several initializations, but each tool is specialized518

for particular regions.519
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Hyperparameter Value
Tool Position Init. (20, 10)
Control Steps Per Action 1
Max Episode Steps 150
Slack Reward -0.001
Tool Length Ratio (-0.5, 0.5)
Tool Length Init. (2.0, 2.0, 2.0)
Tool Angle Init. (0.0, 0.0, 0.0)
Tool Angle Ratio (-1.0, 1.0)
Tool Angle Scale 90.0
Control GNN (64, 64, 64)
Control Index MLP (128, 128)
Design GNN (64, 64, 64)
Design Index MLP (128, 128)
Control Log Std. -1.0
Design Log Std. -2.3
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 1e-4
KL Divergence Threshold 0.005
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 5: Hyperparameters used for our framework on the push task.

Hyperparameter Value
Tool Position Init. (20, 10)
Control Steps Per Action 1
Max Episode Steps 150
Slack Reward -0.001
Tool Length Ratio (-0.5, 2.0)
Tool Length Init. (2.0, 1.0, 1.0)
Tool Angle Init. (0.0, 0.0, 0.0)
Tool Angle Ratio (-1.0, 1.0)
Tool Angle Scale 60.0
Control GNN (64, 64, 64)
Control Index MLP (128, 128)
Design GNN (64, 64, 64)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 1e-4
KL Divergence Threshold 0.002
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 6: Hyperparameters used for our framework on the catch balls task.
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Hyperparameter Value
Tool Position Init. (15, 10)
Control Steps Per Action 5
Max Episode Steps 30
Slack Reward -0.001
Tool Length Ratio (-0.7, 0.2)
Tool Length Init. (6.0, 3.0, 3.0)
Tool Angle Init. (0.0, 0.0, 0.0)
Tool Angle Ratio (-0.1, 0.7)
Tool Angle Scale 90.0
Control GNN (64, 64, 64)
Control Index MLP (128, 128)
Design GNN (64, 64, 64)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 3e-4
KL Divergence Threshold 0.1
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 7: Hyperparameters used for our framework on the scoop task.

Hyperparameter Value
Tool Position Init. (0.0, 0.5, 0.02)
Control Steps Per Action 10
Max Episode Steps 100
Slack Reward -0.001
Success Reward 10.0
Box Dimensions Min (0.005, 0.05, 0.005)
Box Dimensions Max (0.015, 0.1, 0.02)
Tool Angle Min (-90.0, -90.0, -90.0)
Tool Angle Max (90.0, 90.0, 90.0)
Control Action Min (-1.0, -1.0, -1.0, -0.2, -0.2, -0.2)
Control Action Max (1.0, 1.0, 1.0, 0.2, 0.2, 0.2)
Control Action Scale 0.1
Control GNN (128, 128, 128)
Control Index MLP (128, 128)
Design GNN (128, 128, 128)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. False
Policy Learning Rate 1e-4
Entropy β 0.0
Value Learning Rate 3e-4
KL Divergence Threshold 0.5
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 10

Table 8: Hyperparameters used for our framework on the fetch cube task.
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Hyperparameter Value
Tool Position Init. (0.0, 1.2, 0.05)
Control Steps Per Action 10
Max Episode Steps 150
Slack Reward -0.001
Success Reward 10.0
Box Dimensions Min (0.005, 0.02, 0.01)
Box Dimensions Max (0.01, 0.1, 0.03)
Tool Angle Min (-30.0, -30.0, -30.0)
Tool Angle Max (30.0, 30.0, 30.0)
Control Action Min (-1.0, -1.0, -1.0, -1.57, -1.57, -1.57)
Control Action Max (1.0, 1.0, 1.0, 1.57, 1.57, 1.57)
Control Actioin Scale 0.1
Control GNN (128, 128, 128)
Control Index MLP (128, 128)
Design GNN (128, 128, 128)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. -1.0
Fix Design & Control Std. True
Policy Learning Rate 2e-5
Entropy β 0.01
Value Learning Rate 3e-4
KL Divergence Threshold 0.5
Batch Size 50000
Minibatch Size 2000
PPO Steps Per Batch 5

Table 9: Hyperparameters used for our framework on the lift cup task.
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Hyperparameter Value
Tool Position Init. (0.0, 0.05, 0.1)
Control Steps Per Action 10
Max Episode Steps 100
Slack Reward -0.001
Success Reward 10.0
Box Dimensions Min (0.04, 0.005, 0.02)
Box Dimensions Max (0.08, 0.005, 0.05)
Tool Angle Min (-15.0, -15.0, -15.0)
Tool Angle Max (15.0, 15.0, 15.0)
Control Action Min (-1.0, -1.0, -1.0, -1.57, -1.57, -1.57)
Control Action Max (1.0, 1.0, 1.0, 1.57, 1.57, 1.57)
Control Action Scale 0.05
Control GNN (128, 128, 128)
Control Index MLP (128, 128)
Design GNN (128, 128, 128)
Design Index MLP (128, 128)
Control Log Std. 0.0
Design Log Std. 0.0
Fix Design & Control Std. False
Policy Learning Rate 1e-4
Entropy β 0.01
Value Learning Rate 3e-4
KL Divergence Threshold 0.5
Batch Size 20000
Minibatch Size 2000
PPO Steps Per Batch 5

Table 10: Hyperparameters used for our framework on the 3D scoop task.
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