
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOMA: TOKEN MERGE WITH ATTENTION FOR IMAGE
GENERATION WITH DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion is one of the leading approaches for image generation. Plug-and-play
token merge techniques have recently been introduced to mitigate the high com-
putation cost of transformer blocks in diffusion models. However, existing meth-
ods overlook two key factors: (1) the token selection process fails to account
for relationships among tokens, potentially discarding important information and
limiting image quality; 2) they do not take advantage of the modern, efficient
implementation of attention, so that, the overhead backfires the achieved algorith-
mic efficiency. In this paper, we propose Token Merge with Attention (ToMA)
with three major improvements. Firstly, we utilize a submodular-based token se-
lection method to identify diverse tokens as merge destinations, representative of
the entire token set. Secondly, we use efficient attention implementation for the
merge operation with negligible overhead. Also, we formalize the (un-)merge
as (inverse-)linear transformations, allowing shareable computation across lay-
ers/iterations. Finally, we utilize the image locality to further accelerate the com-
putation by performing all the operations on tokens in local tiles. ToMA achieves
the best trade-offs between speed-ups and generation quality compared to the
baselines.

1 INTRODUCTION

Figure 1: Variants of ToMA generated images: ToMA stripe, ToMA, ToMA tile, ToMA

Diffusion Ho et al. (2020); Song et al. (2021); Dhariwal & Nichol (2021) emerges as one of
the leading approaches for high-quality image generation. However, the increasing complexity
of diffusion models, driven by their core transformer-based architecture, presents significant
computational challenges. The design of the transformer leads to quadratic complexity with respect
to the number of tokens, making them inefficient and resource-intensive as token counts increase.

Methods with different approaches have been developed to mitigate this issue. Flash Attention Dao
et al. (2022); Dao (2023) introduces a more efficient attention mechanism that reduces memory
overhead, while xformers Lefaudeux et al. (2022) utilize sparse attention to lower memory usage
and improve scalability. Methods like Token Pruning Kim et al. (2022) reduce computation by
eliminating less relevant tokens during inference, albeit at the cost of potential quality degradation.

ToMeSD Bolya & Hoffman (2023) leverages token merging Bolya & Hoffman (2023); Kim et al.
(2023), consolidating similar tokens during the forward pass to reduce the token count in compu-
tational layers, thereby lowering complexity without requiring network retraining. Essentially, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

original sequence of tokens gets merged before each layer in the transformer block, including atten-
tions and MLPs, and after the computation finishes, an unmerge is applied to transform the merged
tokens back to the original sequence length. Token merge shares the spirit with token pruning by re-
ducing the input size to transformers, and is orthogonal to other acceleration methods such as Flash
Attention and xformers.

Though ToMeSD has shown considerable theoretical speedups by significantly reducing the number
of tokens, it struggles to accelerate diffusion models in practice with modern attention implemen-
tation and advanced GPU architectures. This is because the merge algorithm of ToMeSD Bolya &
Hoffman (2023) requires relatively costly operations on GPU (e.g., sorting). This creates significant
overhead that overshadows the speedups gained from token reduction, especially with more effi-
cient implementations of attention (e.g., Flash Attention Dao (2023)) and GPU architectures better
optimized for attention-like operations.

In this paper, we propose Token Merge with Attention (ToMA) to get practical speedups for diffusion
models in a plug-and-play manner. Our method first utilizes a submodular function to identify
a representative subset of tokens as merge destinations with a vectorized optimization algorithm
that runs efficiently on GPUs. We then perform token merge by using an attention-like operation
between the destination tokens and all tokens in the sequence, resulting in a linear transformation.
For unmerge, we utilize the inverse or the transpose of such a linear transformation. The design of
ToMA carefully considers the advantages and limitations of GPU computations.

To further reduce the overhead of ToMA, we leverage the locality characteristics of the hidden states
within the latent space, which preserves image locality, so the tokens are more likely to be similar
within a local region. By partitioning the hidden states into local regions, we can run ToMA in each
region independently and mitigate the overhead costs by reducing the input size to ToMA while
enjoying the parallelism of computation. Moreover, we also find that the destination selection and
linear transformation of merge and unmerge can be shared across network layers and diffusion steps,
which further decreases the ToMA overhead costs. As a result, ToMA achieves 30%-50% speedups
without noticeable sacrifice in image quality.

2 RELATED WORK

Efficient Transformer: The core of Transformers’ Vaswani et al. (2017) quadratic time complexity
poses a bottleneck for both inference and training. Various methods have attempted to address this
problem. To reduce computation complexity, ReformerKitaev et al. (2020) uses locality-sensitive
hashing where LinformerWang et al. (2020), PerformerChoromanski et al. (2020), Low-Rank
TransformerWinata et al. (2020) leverage low-rank approximations of the self-attention matrix to
speed up computation. PerceiverJaegle et al. (2021), CharformerTay et al. (2021), and Funnel Trans-
formersDai et al. (2020) use different ways to downsample the input to reduce the computation cost.
Moreover, Sparse TransformerChild et al. (2019) and Big BirdZaheer et al. (2020) design different
sparse attention patterns to let each token attend to a subset of all tokens. FRDiff So et al. (2024)
accelerates diffusion inference by reusing feature maps across time steps but not merging the tokens.

Learned Token Reduction The majority of learned token reduction involve training auxiliary mod-
els to assess the importance of tokens in the input data. For example, DynamicViT Rao et al. (2021)
employs a lightweight MLP module to generate pruning masks based on input token features. These
masks are learned through a distillation process. GQA Ainslie et al. (2023) introduces an innovative
mechanism that shares key and value heads across multiple query heads, balancing between the flex-
ibility of multi-head attention and the efficiency of multi-query attention. A-ViT Yin et al. (2022)
efficiently computes halting probabilities using the first channel of features, guided by auxiliary
losses. Despite their effectiveness, these methods often require additional fine-tuning of auxiliary
modules, which can be seen as a limitation. Language-Vision Acceleration. CrossGET Shi et al.
(2024) combines token but on vision-language models with tasks like image captioning and image-
text retrieval. TRIPS Ye et al. (2024) proposes text-relevant image patch selection but it accelerates
the image-language model pertaining. DiffRate Chen et al. (2023) incorporates the compression rate
and merges tokens in the vision transformers but in the training stage.

Heuristic Token Reduction Unlike learned token reduction techniques, some works have intro-
duced heuristic token reduction strategies that can be directly applied to pre-trained ViTs without

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

requiring additional fine-tuning. For instance, Adaptive-Token Sampling Fayyaz et al. (2022) se-
lects tokens based on their similarity to the class token in the attention map, which outperforms the
top-k sampling. However, the requirement of the class token poses a limitation in dense prediction
tasks such as image generation. Token Pooling Marin et al. (2021) merges spatially adjacent tokens
within a local window to reduce the token count at various stages of the ViT. Token merge Bolya
et al. (2023) introduced a different pooling method that merges similar tokens based on an effi-
cient bipartite matching algorithm. ToMeSD Bolya & Hoffman (2023) randomly groups tokens into
source and destination groups and merges the source tokens with the destination tokens based on the
pair similarity score. This is one of our baselines.

Inverse

Same operation for the other chunks

Attention

Concat

In batches

Self Attention
or

Cross Attention
or

MLP

Split

In batches

Solve
Facility
Location

ConcatSplit

Figure 2: Overview of ToMA. Facility Location selects representative destination tokens D from the token
set N using submodular optimization. Attention computes a low-rank projection matrix mapping N to D,
followed by standard transformer operations (e.g., self-attention, cross-attention, or MLP) on D. Inverse
reconstructs N from D via a pseudo-inverse or transpose. These steps can be applied locally to latent space
regions as batch operations for efficiency.

3 PRELIMINARIES

Attention Computation and Notation. We denote the attention computation as SDPA(scaled dot
product attention). The input query is Q ∈ RN×d, key is K ∈ RN×d, and value is V ∈ RN×d. N
is sequence length and d is the hidden state dimension.

SDPA(Q,K,V) = softmax
(
QKT

√
d

)
V (1)

Additionally, we denote D as the size of all destination tokens and B as the batch size, X as the
latent matrix of shape N×d that gets projected into Q,K and V (for simplicity, we assume the same
feature dimension in latents and attention). Matrices and vectors are in bold, while others are not.

Submodularity. A submodular function (Fujishige,
2005) is a set function f : 2V → R with the dimin-
ishing return property: f(v|A) ≥ f(v|B) if v ̸∈ B,
A ⊆ B, where f(v|A) := f(v ∪ A) − f(A). In-
tuitively, the property states that the gain of a smaller
subset is always greater or equal to that of a larger sub-
set. This makes submodular function f(A) very useful
in expressing the diversity of the input subset A relative
to the ground set V .

for i = 1 . . . k do
v∗ ∈ argmaxv′∈V \A f(v′|A);
A = A ∪ {v∗};

end
return A

Algorithm 1 Greedy

The submodular maximization problem with a cardinality constraint is shown below 2.

max
A⊆V

f(A) s.t. |A| ≤ k (2)

The greedy algorithm (Alg. 1) guarantees a (1 − 1/e)-approximation of the optimal solution. It
iteratively selects the element that maximizes the gain until the chosen set size reaches k.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Conditional Diffusion Model. The conditional diffusion model is a variation from the diffusion
model. Different from the unconditional diffusion model, the conditional one estimates the data
distribution with the additional information. The forward noise process is defined in 3

q(xt|x0) := N (xt|
√
ᾱtx0, (1− ᾱt)I), (3)

The model gradually adds noise to the input image over steps t to transform input x0 to a latent noise
representation. ᾱt :=

∏t
s=0 αs =

∏t
s=0(1− βs) and βs represents the noise variance schedule Ho

et al. (2020). The denoising process below

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),σ
2
t I) (4)

is parameterized by the neural network µθ, where σ2
t denotes the transition variance. It aims to

iteratively reconstruct x0 from the random noise.

4 TOMA

Token merge selects several destination tokens from the full set. It merges the tokens into desti-
nations based on similarity scores, typically by assigning the merged destination as the average of
the merge tokens. If the merged tokens are very similar, e.g., regions of pixels that represent the
background with homogeneous colors, then the loss of information in the merge process can be
minimized. Compared to token pruning, which directly throws away tokens, the token merge retains
more information, thus achieving better image quality.

Token merge reduces the number of inputs processed in the transformer block, leading to significant
computational savings. Thus, we can achieve a theoretical speedup based on the token merge ratio
and the computational complexity of the transformer block (details in Appendix). In the unmerge
process, the values of the merged tokens are redistributed back to their original tokens to reverse
the merge process. This operation ensures that the information from the merged tokens is restored
while maintaining the shape of the output without token merge so that later layers can process
without any modifications.

ToMA consists of three key stages, where we achieve significant improvements: 1) Destination To-
ken Selection: Efficiently selecting the most representative tokens as destinations. 2) merge Tokens:
merge source tokens into their corresponding destination tokens based on similarity computed using
attention. 3) Unmerge Tokens: Restoring the merged tokens to their original forms by reversing the
merge process as a linear operation. We also get further speedups by a) utilizing the locality charac-
teristics of the latent space and b) sharing destination/merge/unmerge computations across iterations
and layers to reduce overhead.

4.1 SUBMODULAR-BASED DESTINATION SELECTION

Let S be the cosine similarity matrix between all token hidden representations. Si represents the
i-th row of the S matrix, and Si,j := cos(Xi,Xj). We denote the chosen destination token set as
T , and all the tokens (the ground set in submodular optimization) as V . L ∈ R|V | is the max cache
vector and Li is the max similarity score between the token i in the ground set to our chosen set T .

The submodular function we use for destination selection is the facility location function (FL) fFL
shown in Eq. 5. FL sums the similarity between every token vi ∈ V with its most similar neighbor
in the selected destination set vj ∈ T . Therefore, a high value for fFL(T) means every token vi has
a similar neighbor in T , and T is representative of V , which perfectly matches the goal of merge
destination selection. We also note that our framework is general, and fFL could be potentially
replaced with any other submodular function.

fFL(T) =
∑
vi∈V

max
vj∈T

Si,j (5)

When optimizing T using the greedy algorithm, we essentially need to identify the next best to-
ken with the largest gain fFL(v|T ′) relative to the so-far-selected set T ′. The largest gain can be

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

decomposed (details in Appendix) as argmaxi/∈T ′
∑N

j=1 max(0,Si,j − cj(T
′)) with c as a vector

containing the cached max values of T ′ and updated incrementally as we select the next destination
token: cj(T ′) = maxvl∈T ′ Sj,l. We can perform all those operations in matrix forms, which makes
them a perfect fit for GPU computation. There are more efficient submodular optimization algo-
rithms compared to greedy, such as lazier-than-lazy greedy (Mirzasoleiman et al., 2015). However,
the more complicated algorithms introduce operations (e.g., random subset selection) that are not
ideal for GPU implementations.

4.1.1 WHY SUBMODULAR

The submodular function, particularly the facility location function, offers a theoretical guarantee
for optimizing the selection of elements with the highest information gain from a set. This character-
istic aligns well with our requirements for token selection, ensuring that we choose the most similar
tokens for merge with minimal information loss. Furthermore, facility location is highly compatible
with GPU implementations, as it takes advantage of matrix operations, significantly boosting com-
putational efficiency. Finally, facility location is compatible with an arbitrary similarity function,
where we use cosine similarity that more closely aligns with the attention computation (supposing
the input tokens are properly normalized using, e.g., Layernorm (Ba, 2016)).

We have also considered clustering-based methods such as k-means for token selection. However,
we opted against them for several reasons. First, k-means provides a soft target, which might
introduce artifacts and achieve suboptimal performance. Second, k-means assumes that clusters
have ball-like boundaries, which is not flexible and imposes extra assumptions on the latent space.
Third, the k-means method requires variable iterations to converge, and it is hard to control the
computational costs and trade-off with the clustering quality.

4.2 MERGE AND UNMERGE WITH ATTENTION

In ToMA, we achieve token merge through a linear transformation approach that uses attention
weights to assign tokens. This allows for a more generalized merge process. Accordingly, the
unmerge operation can be the inverse of the linear transformation.

4.2.1 MERGE

We first compute softmax similarity weights between all destination tokens and all source tokens.
This weight can be optionally sharpened or softened using the temperature parameter. Next, we
normalize the matrix by counting the sum of each row and dividing the corresponding row by that
value. Finally, we merge tokens together as a weighted average.

A = SDPA(XT ,X, I, τ) = softmax
(
XTX

⊤

τ

)
I

Ãij =
Aij∑
j Aij

(Normalize each row of A), Xmerged = ÃX

(6)

We describe the merge operation in Eq. 6. Here, XT is the hidden representation matrix for the
set of destinations (shape D × d), and τ is the temperature. XT are essentially sub-rows of X
so that the attention is between the destinations and all the tokens. The softmax is computed over
all the destinations for every source token, where intuitively, we can think every source token gets
distributed to some destinations, and the sum of the weights is 1. Because the source tokens include
the destinations, in the worst case, every destination gets assigned by itself (e.g., if the destination
is dissimilar to all other tokens). Note that we include the identity matrix to match the attention
notation, which can be ignored in implementation.

For extremely small temperature values, the attention linear projection A contains 1’s and 0’s, so our
attention-based merge recovers the hard discrete merge by approximating the average of the merged
tokens. Moreover, as we essentially compute an attention matrix and use it as a linear projection on
the source tokens, our merge can be highly efficient on modern GPU architecture. Also, the linear
transformation can be stored and reused later.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2.2 UNMERGE

To unmerge tokens, we inverse the projection matrix of merge with the following two options (Eq. 7):

Transpose of the merge matrix A⊤: By multiplying the transpose of the merge matrix with the
output of the transformer block, we distribute the merged token values back to their original tokens.
When the temperature is extremely low, the transpose unmerge copies the computation result from
the destination token to the corresponding merged tokens. This incurs very little overhead.

Pseudo-inverse of the merge matrix A†: Viewing the merge as a linear transformation, the pseudo-
inverse minimizes the reconstruction error if the computation between merge and unmerge is close to
linear. It is much more computationally expensive than A⊤ and requires SVD or QR decomposition.

X ′
unmerged = A⊤X ′ or X ′

unmerged = A†X ′ = A⊤(AA⊤)−1X ′ (7)

A⊤ and A† are the same if the rows of the merge matrix A are independent, e.g., source tokens
are not overlapping among different destinations. Intuitively, this means that the destinations should
be as diverse as possible, which also matches the objective of the submodular optimization. Also,
when the temperature is extremely low, every source token gets assigned to a single destination
token, so the two options are identical. Concerning efficiency, we opt to use the transpose as the
default unmerge method for ToMA.

4.3 FURTHER SPEEDUP

The overhead of ToMA consists of 1) the computation of destination tokens using submodular opti-
mization, 2) the computation of the attention merge and unmerge matrix, and 3) applying the merge
and unmerge matrices before and after layers in the transformer block. We further reduce all three
overheads by considering the locality of the feature space so we can perform the computations lo-
cally in every region. We also decrease the frequency to compute 1) and 2) by sharing destinations
and merge matrices across iterations and layers.

4.3.1 LOCAL REGION

Denoising Timestep

U
N

et
 T

ra
ns

fo
rm

er
 B

lo
ck

s

Figure 3: Recolored K-means results on UNet
hidden states, across blocks/ denoising steps.

A crucial aspect ignored in ToMe for SD is the
locality of the latent space (Fig. 3). The spa-
tial relationship between the generated image
and the hidden states within the UNet model be-
comes evident when examining this figure. We
apply K-means to the tokens and recolor them
based on their class affiliation. Specifically, by
projecting the color from the generated image
onto the hidden state feature map, we observe
clear spatial coherence. The tokens in the la-
tent space consistently demonstrate the greatest
similarity with their neighboring tokens, creat-
ing distinct localized regions.

This observation aligns with the intuition that
images exhibit local consistency and smooth-
ness. Therefore, we hypothesize that the most
likely merge destination for any token resides
within its local tile. This allows us to focus ex-
clusively on the near tokens token while ignor-
ing more distant ones.

To exploit this property, we limit operations to local regions, performing token selection and
(un)merge within each region. We propose two region selections:

Tile-shape region: The tile region approach is particularly effective because it comprehensively
captures the local characteristics by considering the image’s locality.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Stripe-shape region: The stripe region focuses on tokens on the same row, which misses the prox-
imity in the vertical direction.

Both locality options can significantly reduce the computational overhead as we perform all oper-
ations in ToMA with a smaller number of input tokens in parallel. The tile-shape region is more
coherent with the nature of the image and we find it performs better in experiments. However, turn-
ing a 2D matrix into tile-shape regions requires reshuffling, which brings additional overhead on
GPUs. On the contrary, the stripe-shape option is faster as it only requires re-shaping of the 2D
matrix while keeping its contiguous memory layout intact. We include both options in ToMA to
provide trade-offs between speed and quality. Also, note that the tile-shape computation can be po-
tentially accelerated as the low-level GPU operations are all in tiles, but it would require substantial
re-implementation of the attention kernel. We defer this to future work.

We want to emphasize that the local region only affects components of ToMA, the computations in
the transformer blocks always operate on the D × d matrix of the merged destinations. Please refer
to Appendix Alg. 3 for the detailed algorithm of ToMA with local regions.

4.3.2 SHARING OVERHEAD COMPUTATION

Figure 4: Intersection percentage of selected tokens between
each step and the first step of its corresponding 10-step in-
terval. Different curves refer to different layers in SDXL.

Our observations of the diffusion
denoising process reveal that hidden
states show substantial similarity
across steps, meaning the selected
destinations are also quite alike. As
shown in Fig. 4, destination tokens
have a significant intersection with
the ones chosen in previous steps.
Therefore, we can share destination
selections across steps. Additionally,
the linear (un)merge operations
enable us to reuse the matrices across
layers with minimal quality loss.
By sharing both destinations and
attention weights across steps and
layers, we significantly reduce the
number of times for destination
computation and attend merge matrix
computation while maintaining high
output quality.

5 EXPERIMENTS

We evaluated ToMA on the SDXL stable-diffusion-xl-base-1.0 model using the Diffusers framework
to generate 1024× 1024 images. The prompts were sourced from the GEMRec dataset (Guo et al.,
2024) and ImageNet 1K (Deng et al., 2009). To assess image quality, we used three primary metrics:
CLIP, DINO, and FID (Radford et al., 2021; Caron et al., 2021; Heusel et al., 2017). For the CLIP
and DINO evaluations, we generated images using 50 different prompts, each with 3 distinct seeds,
and calculated the average score across all prompts and seeds. For measuring inference time, we
reported the lowest wall-clock time over 100 runs.

Diffusion Models. We focus on the Stable Diffusion XL with the checkpoint of stable-diffusion-xl-
base-1.0. SDXL is capable of generating very high-quality images and is popular in the community
with abundant LoRAs available. Note that ToMA can generally apply to any transformer architec-
ture. Thus, we can simply extend ToMA to other diffusion models like SD3 and SD2.

Baseline. ToMeSD (Bolya & Hoffman, 2023) selects tokens either in fixed or random small tiles,
using a rigid approach. ToMeSD then discretely merges tokens by recording token pairs based on
their computed similarity. In the unmerge phase, ToMeSD restores the original tokens by copying
the values of the merged tokens back to their corresponding original tokens. We note that ToFu (Kim
et al., 2023) is another relevant method that dynamically selects whether to prune or merge tokens
based on the function’s linearity to accelerate diffusion models. The work done by ToFu is orthogo-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

nal to our research, meaning our methods can be seamlessly integrated with ToFu to further enhance
its performance. Therefore, we don’t include ToFu in our comparison.

5.1 RESULTS ON QUALITY AND EFFICIENCY

The primary objective of this comprehensive experiment is to evaluate the trade-off between the
quality of generated images and the computational efficiency across different token merge methods.
Specifically, we compare ToMA with ToMeSD, using three key metrics: CLIP, DINO, and FID.
These metrics measure visual similarity, attention mechanisms, and image fidelity, respectively.
Additionally, we assess the generation time and speed-up ratio for each method, offering insights
into computational gains.

We introduce three versions of ToMA to explore the impact of different attention mechanisms and
facility location strategies:

ToMA(Stripe Facility Location + Global Attention): Combines stripe-based facility location with
global attention for token merge.

ToMA stripe (Stripe Facility Location + Stripe Attention): Utilizes both stripe-based facility
location and stripe attention for localized merge.

ToMA tile (Tile Facility Location + Tile Attention): Applies tile-based facility location and at-
tention for tile-wise merge.

For the Stripe Attention and Tile Attention versions, a tile size of 16 is used, while the Global
Attention version uses 256 tiles. We compute facility location every 10 steps and attention weights
every 5 steps over a total of 50 steps. The ToMeSD method serves as a baseline for comparison
across all versions, using the same CLIP, DINO, and FID metrics.

8 9 10 11 12 13 14 15
Sec/img (Time per Image)

20

25

30

35

40

45

50

55

60

65

FI
D

FID vs Time ()
ToMA strip
ToMA tile
ToMA *
ToMA
ToMeSD

8 9 10 11 12 13 14 15
Sec/img (Time per Image)

25

26

27

28

29

30

31

32

33

CL
IP

CLIP vs Time ()
ToMA strip
ToMA tile
ToMA *
ToMA
ToMeSD

8 9 10 11 12 13 14 15
Sec/img (Time per Image)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

DI
NO

DINO vs Time ()
ToMA strip
ToMA tile
ToMA *
ToMA
ToMeSD

Figure 5: Quality metrics vs. generation time for SDXL-base on Nvidia V100. The merge ratio progresses
from 0 to 0.75, moving from right to left following the directions of the arrows. Metrics are denoted as (↑:
higher is better, ↓: lower is better).

In most cases, ToMeSD either increases computation costs or achieves minor speed-ups. Both ver-
sions of ToMA—stripe facility location with global attention and stripe facility location with stripe
attention—maintain high image quality while delivering significant speed-ups. Tile facility location
with tile attention achieves the best image quality, but the overhead is substantial, indicating great
potential for further improvement through optimized low-level implementations.

In addition to evaluating image quality, we examine the generation time and speed-up ratio more
variances. The token merge methods include ToMeSD, ToMA (with stripe and tile variations),
and ToMA*, which employs a ”merge-once” strategy (merge and unmerge once for the entire
transformer block instead of applying ToMA on every component of the transformer individually).
Furthermore, we compare these methods to the LB (lower bound for speed-up), which is the best
speedup we can get with a linear project merge and unmerge approach (apply random merge and
unmerge projections without other overhead computations).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

This comprehensive experiment, conducted under the same experimental setup (including dataset,
tile size, and step scheduler), allows us to test the trade-off between time and quality across different
token merge methods.

Token Merge Method
Generation Time / Speed Up Ratio

0.25 0.5 0.75

Baseline (ratio=0) 6.07s / 0.0% 6.07s / 0.0% 6.07s / 0.0%

ToMeSD 8.66s / +42.7% 8.73s / +43.8% 8.16s / +34.4%

ToMA 6.03s / -0.7% 5.04s / -17.0% 4.34s / -28.5%

ToMA stripe 5.56s / -8.4% 4.62s / -23.9% 4.48s / -26.2%

ToMA tile 6.20s / +2.1% 6.27s / +3.3% 6.23s / +2.6%

ToMA* 5.45s / -10.2% 4.91s / -19.1% 4.87s / -19.8%

LB 5.16s / -15.0% 4.01s / -33.9% 3.13s / -48.4%

Table 1: Comparison of Token Merge Methods and their Generation Time / Speed Up Ratios
(RTX6000Ada). Negative percentages indicate faster times than the baseline, while positive per-
centages indicate slower times.

From Tab. 1, we find that ToMeSD exhibits increased generation times and negative speed-up ratios
compared to the baseline across all token reduction ratios, ranging from +34.4% to +43.8%. This
indicates that ToMeSD actually adds computational overhead rather than improving speed, making
it less efficient than the baseline. We find that all ToMA variations, except ToMA tile, deliver sig-
nificant speed improvements over ToMeSD ranging from -28.5% to -0.7% . Moreover, methods like
ToMA* and the ToMA stripe variants approach the theoretical speed limit, showcasing remarkable
computational efficiency gains.

5.2 ABALATION TEST

In this section, we demonstrate on how we decide our default setting and other variances by com-
paring the image quality or speeds of combinations of different units in token merge.

5.2.1 FACILITY LOCATION & TILE FOR DESTINATION SELECTION

Destination Selection CLIP DINO Time (s)
Global Facility 30.9486 0.0688 33.2
Tile Facility 31.0185 0.0550 5.1
Stripe Facility 30.9861 0.0740 5.16
Random 30.5527 0.0904 4.55

Table 2: Comparison of generated image metrics
using different destination selection methods.

num tiles CLIP DINO MSE sec/img
4 30.7747 0.0690 1564.0227 11.36
16 30.9914 0.0566 1345.3114 6.44
64 31.0185 0.0550 1274.1736 5.04
256 31.0273 0.0569 1296.3734 5.01

Table 3: Tile facility comparison with 50 recom-
pute steps, ratio=0.5, global attention

From Tab. 2, we find that the facility location demonstrates great performance in the generated image
metric, which proves our theory that we should find the most representative tokens during selection.
Also, the tile facility achieves the best CLIP and DINO score which aligns with our observation of
the hidden states locality. By restricting the token merge process in a local region, we get a better
image quality. Thus, we utilize the tile facility as our default setting for ToMA.

From Tab. 3, we examine the influence of different tile sizes. We find that the tile sizes of 64 achieve
the best score in DINO and MSE while 256 shows great performance in CLIP and time. Generally,
the metric difference is not significant between these two tile sizes. Thus, we select 256 as our
default setting due to its lead in speed. We report ablation results on comparison between transpose
and pseudo-inverse as well as different sharing schedules in the Appendix.

5.3 MERGE AND UNMERGE SPEED

In this section, we compare the speed ToMA (un)merge which generalizes this process as linear
transformation, and the discrete (un)merge of ToMeSD. In this experiment, we utilize the transpose
strategy as the unmerge of the merge matrix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

N = 4096 0.25 0.5 0.75
ToMeSD Merge 0.2107 0.2048 0.2028
ToMA Merge 0.0437 0.0403 0.0421
ToMeSD Unmerge 0.1607 0.1811 0.1579
ToMA Unmerge 0.0399 0.0483 0.0451

Table 4: Comparison of ToMeSD and ToMA
speeds for size 4096.

N = 1024 0.25 0.5 0.75
ToMeSD Merge 0.2022 0.2021 0.1932
ToMA Merge 0.0390 0.0388 0.0388
ToMeSD Unmerge 0.1605 0.1601 0.1440
ToMA Unmerge 0.0402 0.0405 0.0396

Table 5: Comparison of ToMeSD and ToMA
speeds for size 1024.

Tab. 4 and Tab. 5 clearly demonstrate that the ToMA method significantly outperforms ToMeSD
in both merge and unmerge speeds across all token reduction ratios (0.25, 0.5, and 0.75). For
size 4096, ToMA achieves merge speeds approximately 80% faster than ToMeSD, with the lowest
recorded merge time being 0.0403s compared to 0.2048s for ToMeSD. Similarly, the unmerge times
for ToMA are consistently lower, with improvements ranging from 72% to 75% across the different
token reduction ratios. This trend is mirrored in the 1024 size table, where ToMA again demonstrates
its advantage, with merge and unmerge times consistently around 80% faster than ToMeSD. These
results highlight the clear efficiency gains of the ToMA method in terms of both merge and unmerge
processes, making it a more computationally efficient solution.

Figure 6: Image generated from left to right: original, ToMA stripe, ToMA*, ToMA tile, ToMA

5.4 DISCUSSION

Although the combination of tile facility location and tile merge produces high-quality images,
it still falls short in speed. Optimizing this operation at a lower level could significantly reduce
computational costs. Additionally, improving the implementation of the pseudo-inverse API would
allow us to apply it to larger matrices, potentially enhancing image quality. Moreover, we utilize
linear transformation, specifically SDPA, for token merge, where the parameter V is currently set as
an identity matrix and ignored during inference. This V matrix holds potential for future training,
which could further boost image quality.

Broader impact. ToMA enables speed improvements across a wide range of GPU architectures.
On one hand, it accelerates image generation without compromising quality, making the process
more efficient. On the other hand, it broadens the accessibility of diffusion models, allowing even
those with less powerful or outdated GPUs to benefit from advanced techniques. ToMA reduces
computational demands, making high-quality image generation feasible on a wider variety of
hardware, thus making diffusion models more accessible to a larger audience.

6 CONCLUSION

In this work, we propose ToMA to enhance the existing token merge method in three key areas: 1)
more representative token selection, 2) a more flexible and efficient merge and unmerge operation,
and 3) the introduction of locality and sharing strategies. As a result, we achieve significant speedup
while maintaining high image quality. For future work, we aim to further speed up the low-level tile
region computation as well as fine-tune the merge attention for better generation quality.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized Multi-Query transformer models from Multi-Head check-
points. In arXiv, May 2023.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion, 2023. URL https:
//arxiv.org/abs/2303.17604.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your ViT but faster. In ICLR, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Ar-
mand Joulin. Emerging properties in self-supervised vision transformers. CoRR, abs/2104.14294,
2021. URL https://arxiv.org/abs/2104.14294.

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji,
Yu Qiao, and Ping Luo. Diffrate : Differentiable compression rate for efficient vision transform-
ers, 2023. URL https://arxiv.org/abs/2305.17997.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Jared Davis, Tamas
Sarlos, David Belanger, Lucy Colwell, and Adrian Weller. Masked language modeling for pro-
teins via linearly scalable long-context transformers. Proceedings of ICLR, 2020.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le. Funnel-transformer: Filtering out sequen-
tial redundancy for efficient language processing. Proceedings of NeurIPS, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems (NIPS/NeurIPS), 34:8780–8794, 2021.

Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush Rezaei Jafari, Sunando Sengupta, Hamid
Reza Vaezi Joze, Eric Sommerlade, Hamed Pirsiavash, and Jürgen Gall. Adaptive token sampling
for efficient vision transformers. In ECCV, pp. 396–414, 2022.

Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.

Yuanhe Guo, Haoming Liu, and Hongyi Wen. Gemrec: Towards generative model recommendation.
In Proceedings of the 17th ACM International Conference on Web Search and Data Mining,
volume 9 of WSDM ’24, pp. 1054–1057. ACM, March 2024. doi: 10.1145/3616855.3635700.
URL http://dx.doi.org/10.1145/3616855.3635700.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 30,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems (NIPS/NeurIPS), 33:6840–6851, 2020.

11

https://arxiv.org/abs/2303.17604
https://arxiv.org/abs/2303.17604
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2305.17997
http://dx.doi.org/10.1145/3616855.3635700

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridg-
ing the gap between token pruning and token merging, 2023. URL https://arxiv.org/
abs/2312.01026.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers, 2022. URL https://arxiv.org/
abs/2107.00910.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable trans-
former modelling library. https://github.com/facebookresearch/xformers,
2022.

Dmitrii Marin, Jen-Hao Rick Chang, Anurag Ranjan, Anish Prabhu, Mohammad Rastegari, and
Oncel Tuzel. Token pooling in vision transformers. In arxiv, October 2021.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. DynamicViT:
Efficient vision transformers with dynamic token sparsification. In NeurIPS, November 2021.

Dachuan Shi, Chaofan Tao, Anyi Rao, Zhendong Yang, Chun Yuan, and Jiaqi Wang. Crossget:
Cross-guided ensemble of tokens for accelerating vision-language transformers, 2024. URL
https://arxiv.org/abs/2305.17455.

Ethan Smith, Nayan Saxena, and Aninda Saha. Todo: Token downsampling for efficient generation
of high-resolution images. arXiv preprint arXiv:2402.13573, 2024.

Junhyuk So, Jungwon Lee, and Eunhyeok Park. Frdiff : Feature reuse for universal training-free
acceleration of diffusion models, 2024. URL https://arxiv.org/abs/2312.03517.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021. URL https://openreview.
net/forum?id=PxTIG12RRHS.

Yi Tay, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character transformers via
gradient-based subword tokenization. arXiv preprint arXiv:2106.12672, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems (NIPS/NeurIPS), 30, 2017.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

12

https://arxiv.org/abs/2312.01026
https://arxiv.org/abs/2312.01026
https://arxiv.org/abs/2107.00910
https://arxiv.org/abs/2107.00910
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://github.com/facebookresearch/xformers
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2305.17455
https://arxiv.org/abs/2312.03517
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang Lin, Zihan Liu, and Pascale Fung. Lightweight
and efficient end-to-end speech recognition using low-rank transformer. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6144–
6148. IEEE, 2020.

Wei Ye, Chaoya Jiang, Haiyang Xu, Chenhao Ye, Chenliang Li, Ming Yan, Shikun Zhang, Songhang
Huang, and Fei Huang. Efficient vision-and-language pre-training with text-relevant image patch
selection, 2024. URL https://arxiv.org/abs/2403.07883.

Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-ViT:
Adaptive tokens for efficient vision transformer. In CVPR, pp. 10809–10818, June 2022.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer
sequences. Proceedings of NeurIPS, 2020.

13

https://arxiv.org/abs/2403.07883

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS ABOUT FACILITY LOCATION OPTIMIZATION

A.1 GAIN FUNCTION COMPUTATION IN FL

In the greedy algorithm we select the token v∗ from V \ A that maximizes the following gain
function:

v∗ = argmax
v∈(V−A)

f(v|A)

where f(v|A) is defined as:

f(v∗|A) = f({v∗} ∪A)− f(A)

=
∑
v∈V

max
v′∈({v∗}∪A)

sim(v, v′)−
∑
v∈V

max
v′′∈A

sim(v, v′′)

Since for each v ∈ V , find the maximum corresponding v′ in the updated representatative set {v∗}∪
A is equivalent to compare v′ in A and v∗, namely:

∑
v∈V

max
v′∈({v∗}∪A)

sim(v, v′) =
∑
v∈V

max

[(
max
v′∈A

sim(v, v′), sim(v, v∗)

)]

Therefore

f(v∗|A) =
∑
v∈V

max

[(
max
v′∈A

sim(v, v′), sim(v, v∗)

)]
−

∑
v∈V

max
v′′∈A

sim(v, v′′)

=
∑
v∈V

max

[(
max
v′∈A

sim(v, v′), sim(v, v∗)

)
− max

v′′∈A
sim(v, v′′)

]
=

∑
v∈V

max

(
0, sim(v, v∗)− max

v′′∈A
sim(v, v′′)

)

Eventually,

v∗ = argmax
v′∈(V−A)

∑
v∈V

max

(
0, sim(v′, v∗)− max

v′′∈A
sim(v, v′′)

)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 FACILITY LOCATION OPTIMIZATION ALGORITHM

Algorithm 2: Facility Location Token Selection Algorithm

Input: Similarity matrix S ∈ RN×N , number of tokens to select D
Output: Selected token indices T
Initialize: T ← {};
for i = 1 to N do

Compute row sums: si =
∑N

j=1 Si,j ;
end
Select the first token: t1 ← argmaxi si;
Add t1 to T : T ← T ∪ {t1};
Initialize the largest row: c← St1 ;
Set St1 ← 0;
for k = 2 to D do

for each token i not in T do
Compute gain: gi =

∑N
j=1 max(0,Si,j − cj);

end
Select next token: tk ← argmaxi/∈T gi;
Add tk to T : T ← T ∪ {tk};
Update largest row: cj ← max(cj ,Stk,j) for all j = 1 to N ;
Set Stk ← 0;

end
return T

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B OVERALL DETAILED ALGORITHM OF TOMA

Algorithm 3: ToMA with local regions

Input: Tensor X ∈ RB×N×d (input tensor), D (number of destinations), τ (attention
temperature), F (computational layer)

1 X ← (X1, . . . ,XP) ; /* Reorganize X as local regions */
where Xp ∈ RB×Nlocal×d for p = 1 . . . P and Nlocal × P = N ;

2 Dlocal ← D/P ; X ←X.reshape(B × P,Nlocal, d);
Step 1: Facility Location

3 GPU Greedy to get: (T1, T2, . . . , TB×P)← Greedy(fFL, Dlocal,X);
4 Gather XT ← (X1,T1 ,X2,T2 , . . . ,XB×P,TB×P

) ; /* Shape: B × P,Dlocal, d */
Step 2: Merge

5 A← SDPA(XT ,X, I, τ) ; /* Shape: B × P,Dlocal, Nlocal */

6 Ã← A/A.sum(-1) ; /* Normalize each row */

7 Xmerged ← ÃX ; /* Apply Merge, Shape: B × P,Dlocal, d */
Computational Layer:

8 X ′ ← F (Xmerged.reshape(B,D, d)) ;
Step 3: Unmerge

9 X ′
unmerged ← Ã⊤X ′;

10 Group X ′
unmerged back to reverse the local region split;

11 return X ′
unmerged

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C MORE ABLATION RESULTS

C.1 UNMERGE COMPARISON(TRANSPOSE VS PSEUDO-INVERSE)

Unmerge method CLIP DINO MSE Time (s)
transpose 31.0273 0.0569 1296.3734 4.75
pseudo-inverse 30.9972 0.0571 1288.2609 10.07

Table 6: Comparison of unmerge methods (transpose vs. pseudo-inverse) under the condition: 50
recompute steps, ratio=0.5, global attention (globalAttn)

From Tab. 6, we find the difference between transpose and pseudo-inverse method of unmerge
shows similar outcome in scores while transpose is significantly faster than pseudo-inverse, we then
set transpose as our default setting.

C.2 SCHEDULE

In this section, we compare the metric of different sharing schedules of destination selections and
attention weights computation

Dst steps Attn steps CLIP DINO MSE

first step first step 30.0429 0.0773 2488.5682

every 10 steps every 10 steps 30.8171 0.0729 1735.4429

every 10 steps every 5 steps 30.8652 0.0699 1632.3441

every 10 steps every 1 step 30.9971 0.0668 1524.6436

every 5 steps every 5 steps 30.8923 0.0692 1608.6099

every 1 step every 1 step 30.9196 0.0668 1551.5814

Table 7: Recompute schedule comparison with CLIP, DINO, and MSE metrics

From Tab. 7, we observe that recomputing attention and destination (Dst) steps more frequently gen-
erally results in slightly improved performance across the CLIP, DINO, and MSE metrics. Specif-
ically, recomputing attention every step yields the best scores in all metrics, while less frequent
recomputation (e.g., every 10 steps) results in slightly worse scores but still competitive results.
The difference between recomputation frequencies becomes more noticeable in the MSE metric,
where recomputing more frequently leads to lower error values. We select a recomputation schedule
of computing attention every 5 steps and destinations every 10 steps because this provides nearly
similar performance to the most frequent recomputation (every step) while likely being faster due
to reduced computation overhead. This approach strikes a good balance between performance and
efficiency.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D THEORETICAL COMPLEXITY

We keep necessary constants for the complexity estimate as they are essential factors in practical
speedup calculation. Also, we count the total number of multiplications by treating matrix mul-
tiplication as multiple dot products, ignoring algorithms with better theoretical complexity. The
complexity is 7d2N + 2dN2 for a self-attention block. After using token merge, the complexity
is: (7d2D + 2dD2) as we reduce the input size from N to D. We also define r := D/N as the
reduction ratio. Thus, the speedup in terms of the reduction ratio is Speedup = 7d+2N

7d·r+2N ·r2 .

The overhead of submodular optimization is: N2d

The overhead of computing merge attention projection is: NDd+Nd

The overhead of merge is: NDd

The overhead of unmerge with transpose is: NDd

E DETAILED RESULTS ON GEMREC & IMAGENET1K

Method Ratio FID CLIP DINO MSE RTX6000 V100 RTX8000
baseline SDXL 0 25.265 29.889 0.000 0.000 6.1 14.5 16.1

ToMe
0.25 25.650 29.861 0.054 1716.131 8.7 15.0 16.9
0.5 26.726 29.712 0.071 2279.389 8.7 12.9 14.6
0.75 41.227 29.091 0.084 2344.868 8.2 11.2 12.4

ToMA strip
0.25 25.168 29.903 0.054 1604.185 5.6 12.6 14.5
0.5 29.110 29.524 0.074 2199.760 4.6 10.1 12.0
0.75 89.932 26.973 0.110 3185.344 4.5 8.0 9.5

ToMA tile
0.25 25.432 29.856 0.045 1348.644 6.2 13.6 15.7
0.5 29.192 29.629 0.063 1912.216 6.3 11.1 13.2
0.75 58.896 28.174 0.091 2802.324 6.2 9.1 10.7

ToMA *
0.25 26.311 29.696 0.052 1866.684 5.5 12.3 13.5
0.5 38.138 29.061 0.080 3451.150 4.9 9.7 11.5
0.75 123.366 24.963 0.106 5440.233 4.9 7.6 8.9

ToMA
0.25 25.718 29.858 0.048 1432.562 6.0 14.3 15.9
0.5 28.875 29.640 0.068 2012.134 5.0 11.0 12.8
0.75 58.592 27.961 0.098 2785.680 4.3 8.5 9.8

LTB
0.25 – – – – 5.2 12.1 3.1
0.5 – – – – 4.0 9.9 7.8
0.75 – – – – 3.1 8.3 6.5

Table 8: Comparison of different methods with respect to FID, CLIP, DINO, MSE, and various GPU
performance metrics (RTX6000Ada, V100, RTX8000).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F QUALITATIVE RESULT

F.1 MORE ON TOMA

Please refer to Fig. 7 for more qualitative result of ToMA.

F.2 COMPARISON WITH OTHER BASELINE MODELS

Please refer to Fig. 8 for more qualitative result of ToMA and other baseline models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Visual examples of ToMA. Even with half of the tokens merged, ToMA consistently preserves
image quality and often demonstrates greater robustness compared to other methods (ToDo, ToMeSD).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: Qualitative comparison between Baseline SDXL-base, ToMeSD, and ToMA.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G RESULT ON MORE BASELINE MODELS

We have compared ToMA with other baselines(eg. ToMeSD, ToFu, ToDoSmith et al. (2024)) and
from the result we find that across all the ratios the ToMA achieve the most speedup and get better
image quality compared to ToFu and ToDo.

Ratio Method FID↓ CLIP↑ DINO↓ MSE↓ Sec/img↓

Baseline SDXL-base 25.27 29.889 0 0 6.07

0.25
ToMA 25.72 29.858 0.048 1,433 6.03

ToMeSD 25.65 29.861 0.054 1,716 8.66
ToFu 35.15 29.340 0.072 2,639 6.92

0.50
ToMA 28.88 29.640 0.068 2,012 5.04

ToMeSD 26.73 29.712 0.071 2,279 8.73
ToFu 142.08 25.039 0.134 7,408 6.83

0.75

ToMA 58.59 27.961 0.098 2,786 4.34
ToMeSD 41.23 29.091 0.084 2,345 8.16

ToFu 161.47 24.126 0.148 5,318 6.76
ToDo 68.59 27.635 0.093 3,694 5.67

Table 9: Comparison of SDXL-base and various methods for generating 1024x1024 images for 50
denoising steps. ToDo is given a consistent ratio of 0.75 since it applies a 4x downsample for KV.
Metrics are denoted as (↑: higher is better, ↓: lower is better), with the best performance highlighted.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

H DIFFUSION TRANSFORMERS (DITS)

H.1 DIT LOCALITY

We examined the hidden states of DiT models, focusing specifically on the FLUX.1-dev setting.
Using visualization techniques, we analyzed the hidden states at the start of each block and across
the denoising timesteps. As shown in Figure 9, the hidden states, despite the lack of convolutional
layers, appear to closely represent the true image. Our analysis indicates that this locality is in-
troduced apart from the VAE through the positional embeddings incorporated in DiT models, such
as rotary embeddings in Flux and sin/cos embeddings in SD3 and SD3.5. Practically, through our
experiments, we applied submodular-based token selection within local regions, which resulted in
high-quality images.

F
l
u
x
J
o
i
n
t
T
r
a
n
s
f
o
r
m
e
r
B
l
o
c
k

Denosing Timestep

Figure 9: Recolored K-means results on hidden states of Flux.1-dev, across blocks & denoising
steps.

H.2 SPECIAL DESIGN OF TRANSFORMER BLOCKS AND POSITIONAL EMBEDDING

Due to the unique design of the transformer blocks in DiT models, which combine attention blocks
and MLPs differently compared to the traditional setup of self-attention, cross-attention, and MLP,
existing token merging methods such as ToMeSD, ToFu, and ToDo cannot be directly applied which
would lead to all black or pure white noise. Additionally, the influence of positional embeddings
further complicates their applicability since the naive application of token merging can lead to the
selection of tokens that are not the most similar, which significantly degrades performance.

To address these issues, we implemented specific adaptations to the transformer blocks and po-
sitional embeddings, allowing our approach to successfully generate correct images with minimal
quality loss which is shown in Tab. FIXME. Our method was selectively skip the first 10 transformer
blocks in FLUX.1 to enable better the blend of text and image.

H.3 RESULTS ON DIT

23

https://huggingface.co/black-forest-labs/FLUX.1-dev

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 10: Qualitative comparison between Baseline Flux1.0-dev and ToMA.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Method Ratio FID↓ CLIP↑ DINO↓ MSE↓ Sec/img↓

Baseline Flux.1-dev 31.56 29.026 0 0 21.03

ToMA
0.25 30.80 29.068 0.043 1,340 20.14
0.50 31.70 29.091 0.051 1,579 18.58
0.75 33.39 28.976 0.064 2,041 16.12

Table 10: Performance of Flux.1-dev and various methods for generating 1024x1024 images for
35 denoising steps. Metrics are denoted as (↑: higher is better, ↓: lower is better). No other model
works on DiT models.

25

	introduction
	related work
	Preliminaries
	ToMA
	Submodular-Based Destination Selection
	Why Submodular

	Merge and Unmerge with Attention
	Merge
	Unmerge

	Further Speedup
	Local Region
	Sharing Overhead Computation

	experiments
	Results on Quality and Efficiency
	Abalation Test
	Facility Location & tile for destination selection

	Merge and Unmerge Speed
	discussion

	conclusion
	Details about Facility Location Optimization
	Gain Function Computation in FL
	Facility location optimization algorithm

	Overall Detailed Algorithm of ToMA
	More Ablation Results
	Unmerge comparison(transpose vs pseudo-inverse)
	Schedule

	Theoretical Complexity
	Detailed Results on GEMRec & ImageNet1k
	Qualitative Result
	More on ToMA
	Comparison with other baseline models

	Result on more Baseline Models
	Diffusion Transformers (DiTs)
	DiT Locality
	Special Design of Transformer Blocks and Positional Embedding
	Results on DiT

