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ABSTRACT

Diffusion is one of the leading approaches for image generation. Plug-and-play
token merge techniques have recently been introduced to mitigate the high com-
putation cost of transformer blocks in diffusion models. However, existing meth-
ods overlook two key factors: (1) the token selection process fails to account
for relationships among tokens, potentially discarding important information and
limiting image quality; 2) they do not take advantage of the modern, efficient
implementation of attention, so that, the overhead backfires the achieved algorith-
mic efficiency. In this paper, we propose Token Merge with Attention (ToMA)
with three major improvements. Firstly, we utilize a submodular-based token se-
lection method to identify diverse tokens as merge destinations, representative of
the entire token set. Secondly, we use efficient attention implementation for the
merge operation with negligible overhead. Also, we formalize the (un-)merge
as (inverse-)linear transformations, allowing shareable computation across lay-
ers/iterations. Finally, we utilize the image locality to further accelerate the com-
putation by performing all the operations on tokens in local tiles. ToMA achieves
the best trade-offs between speed-ups and generation quality compared to the
baselines.

1 INTRODUCTION

Figure 1: Variants of ToMA generated images: ToMA stripe, ToMA, ToMA tile, ToMA

Diffusion Ho et al. (2020); Song et al. (2021); Dhariwal & Nichol (2021) emerges as one of
the leading approaches for high-quality image generation. However, the increasing complexity
of diffusion models, driven by their core transformer-based architecture, presents significant
computational challenges. The design of the transformer leads to quadratic complexity with respect
to the number of tokens, making them inefficient and resource-intensive as token counts increase.

Methods with different approaches have been developed to mitigate this issue. Flash Attention Dao
et al. (2022); Dao (2023) introduces a more efficient attention mechanism that reduces memory
overhead, while xformers Lefaudeux et al. (2022) utilize sparse attention to lower memory usage
and improve scalability. Methods like Token Pruning Kim et al. (2022) reduce computation by
eliminating less relevant tokens during inference, albeit at the cost of potential quality degradation.

ToMeSD Bolya & Hoffman (2023) leverages token merging Bolya & Hoffman (2023); Kim et al.
(2023), consolidating similar tokens during the forward pass to reduce the token count in compu-
tational layers, thereby lowering complexity without requiring network retraining. Essentially, the
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original sequence of tokens gets merged before each layer in the transformer block, including atten-
tions and MLPs, and after the computation finishes, an unmerge is applied to transform the merged
tokens back to the original sequence length. Token merge shares the spirit with token pruning by re-
ducing the input size to transformers, and is orthogonal to other acceleration methods such as Flash
Attention and xformers.

Though ToMeSD has shown considerable theoretical speedups by significantly reducing the number
of tokens, it struggles to accelerate diffusion models in practice with modern attention implemen-
tation and advanced GPU architectures. This is because the merge algorithm of ToMeSD Bolya &
Hoffman (2023) requires relatively costly operations on GPU (e.g., sorting). This creates significant
overhead that overshadows the speedups gained from token reduction, especially with more effi-
cient implementations of attention (e.g., Flash Attention Dao (2023)) and GPU architectures better
optimized for attention-like operations.

In this paper, we propose Token Merge with Attention (ToMA) to get practical speedups for diffusion
models in a plug-and-play manner. Our method first utilizes a submodular function to identify
a representative subset of tokens as merge destinations with a vectorized optimization algorithm
that runs efficiently on GPUs. We then perform token merge by using an attention-like operation
between the destination tokens and all tokens in the sequence, resulting in a linear transformation.
For unmerge, we utilize the inverse or the transpose of such a linear transformation. The design of
ToMA carefully considers the advantages and limitations of GPU computations.

To further reduce the overhead of ToMA, we leverage the locality characteristics of the hidden states
within the latent space, which preserves image locality, so the tokens are more likely to be similar
within a local region. By partitioning the hidden states into local regions, we can run ToMA in each
region independently and mitigate the overhead costs by reducing the input size to ToMA while
enjoying the parallelism of computation. Moreover, we also find that the destination selection and
linear transformation of merge and unmerge can be shared across network layers and diffusion steps,
which further decreases the ToMA overhead costs. As a result, ToMA achieves 30%-50% speedups
without noticeable sacrifice in image quality.

2 RELATED WORK

Efficient Transformer: The core of Transformers’ Vaswani et al. (2017) quadratic time complexity
poses a bottleneck for both inference and training. Various methods have attempted to address this
problem. To reduce computation complexity, ReformerKitaev et al. (2020) uses locality-sensitive
hashing where LinformerWang et al. (2020), PerformerChoromanski et al. (2020), Low-Rank
TransformerWinata et al. (2020) leverage low-rank approximations of the self-attention matrix to
speed up computation. PerceiverJaegle et al. (2021), CharformerTay et al. (2021), and Funnel Trans-
formersDai et al. (2020) use different ways to downsample the input to reduce the computation cost.
Moreover, Sparse TransformerChild et al. (2019) and Big BirdZaheer et al. (2020) design different
sparse attention patterns to let each token attend to a subset of all tokens. FRDiff So et al. (2024)
accelerates diffusion inference by reusing feature maps across time steps but not merging the tokens.

Learned Token Reduction The majority of learned token reduction involve training auxiliary mod-
els to assess the importance of tokens in the input data. For example, DynamicViT Rao et al. (2021)
employs a lightweight MLP module to generate pruning masks based on input token features. These
masks are learned through a distillation process. GQA Ainslie et al. (2023) introduces an innovative
mechanism that shares key and value heads across multiple query heads, balancing between the flex-
ibility of multi-head attention and the efficiency of multi-query attention. A-ViT Yin et al. (2022)
efficiently computes halting probabilities using the first channel of features, guided by auxiliary
losses. Despite their effectiveness, these methods often require additional fine-tuning of auxiliary
modules, which can be seen as a limitation. Language-Vision Acceleration. CrossGET Shi et al.
(2024) combines token but on vision-language models with tasks like image captioning and image-
text retrieval. TRIPS Ye et al. (2024) proposes text-relevant image patch selection but it accelerates
the image-language model pertaining. DiffRate Chen et al. (2023) incorporates the compression rate
and merges tokens in the vision transformers but in the training stage.

Heuristic Token Reduction Unlike learned token reduction techniques, some works have intro-
duced heuristic token reduction strategies that can be directly applied to pre-trained ViTs without

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

requiring additional fine-tuning. For instance, Adaptive-Token Sampling Fayyaz et al. (2022) se-
lects tokens based on their similarity to the class token in the attention map, which outperforms the
top-k sampling. However, the requirement of the class token poses a limitation in dense prediction
tasks such as image generation. Token Pooling Marin et al. (2021) merges spatially adjacent tokens
within a local window to reduce the token count at various stages of the ViT. Token merge Bolya
et al. (2023) introduced a different pooling method that merges similar tokens based on an effi-
cient bipartite matching algorithm. ToMeSD Bolya & Hoffman (2023) randomly groups tokens into
source and destination groups and merges the source tokens with the destination tokens based on the
pair similarity score. This is one of our baselines.

Inverse

Same operation for the other chunks

Attention

Concat

In batches

Self Attention
or

Cross Attention
or

MLP

Split

In batches

Solve
Facility
Location

ConcatSplit

Figure 2: Overview of ToMA. Facility Location selects representative destination tokens D from the token
set N using submodular optimization. Attention computes a low-rank projection matrix mapping N to D,
followed by standard transformer operations (e.g., self-attention, cross-attention, or MLP) on D. Inverse
reconstructs N from D via a pseudo-inverse or transpose. These steps can be applied locally to latent space
regions as batch operations for efficiency.

3 PRELIMINARIES

Attention Computation and Notation. We denote the attention computation as SDPA(scaled dot
product attention). The input query is Q ∈ RN×d, key is K ∈ RN×d, and value is V ∈ RN×d. N
is sequence length and d is the hidden state dimension.

SDPA(Q,K,V ) = softmax
(
QKT

√
d

)
V (1)

Additionally, we denote D as the size of all destination tokens and B as the batch size, X as the
latent matrix of shape N×d that gets projected into Q,K and V (for simplicity, we assume the same
feature dimension in latents and attention). Matrices and vectors are in bold, while others are not.

Submodularity. A submodular function (Fujishige,
2005) is a set function f : 2V → R with the dimin-
ishing return property: f(v|A) ≥ f(v|B) if v ̸∈ B,
A ⊆ B, where f(v|A) := f(v ∪ A) − f(A). In-
tuitively, the property states that the gain of a smaller
subset is always greater or equal to that of a larger sub-
set. This makes submodular function f(A) very useful
in expressing the diversity of the input subset A relative
to the ground set V .

for i = 1 . . . k do
v∗ ∈ argmaxv′∈V \A f(v′|A);
A = A ∪ {v∗};

end
return A

Algorithm 1 Greedy

The submodular maximization problem with a cardinality constraint is shown below 2.

max
A⊆V

f(A) s.t. |A| ≤ k (2)

The greedy algorithm (Alg. 1) guarantees a (1 − 1/e)-approximation of the optimal solution. It
iteratively selects the element that maximizes the gain until the chosen set size reaches k.

3
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Conditional Diffusion Model. The conditional diffusion model is a variation from the diffusion
model. Different from the unconditional diffusion model, the conditional one estimates the data
distribution with the additional information. The forward noise process is defined in 3

q(xt|x0) := N (xt|
√
ᾱtx0, (1− ᾱt)I), (3)

The model gradually adds noise to the input image over steps t to transform input x0 to a latent noise
representation. ᾱt :=

∏t
s=0 αs =

∏t
s=0(1− βs) and βs represents the noise variance schedule Ho

et al. (2020). The denoising process below

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),σ
2
t I) (4)

is parameterized by the neural network µθ, where σ2
t denotes the transition variance. It aims to

iteratively reconstruct x0 from the random noise.

4 TOMA

Token merge selects several destination tokens from the full set. It merges the tokens into desti-
nations based on similarity scores, typically by assigning the merged destination as the average of
the merge tokens. If the merged tokens are very similar, e.g., regions of pixels that represent the
background with homogeneous colors, then the loss of information in the merge process can be
minimized. Compared to token pruning, which directly throws away tokens, the token merge retains
more information, thus achieving better image quality.

Token merge reduces the number of inputs processed in the transformer block, leading to significant
computational savings. Thus, we can achieve a theoretical speedup based on the token merge ratio
and the computational complexity of the transformer block (details in Appendix). In the unmerge
process, the values of the merged tokens are redistributed back to their original tokens to reverse
the merge process. This operation ensures that the information from the merged tokens is restored
while maintaining the shape of the output without token merge so that later layers can process
without any modifications.

ToMA consists of three key stages, where we achieve significant improvements: 1) Destination To-
ken Selection: Efficiently selecting the most representative tokens as destinations. 2) merge Tokens:
merge source tokens into their corresponding destination tokens based on similarity computed using
attention. 3) Unmerge Tokens: Restoring the merged tokens to their original forms by reversing the
merge process as a linear operation. We also get further speedups by a) utilizing the locality charac-
teristics of the latent space and b) sharing destination/merge/unmerge computations across iterations
and layers to reduce overhead.

4.1 SUBMODULAR-BASED DESTINATION SELECTION

Let S be the cosine similarity matrix between all token hidden representations. Si represents the
i-th row of the S matrix, and Si,j := cos(Xi,Xj). We denote the chosen destination token set as
T , and all the tokens (the ground set in submodular optimization) as V . L ∈ R|V | is the max cache
vector and Li is the max similarity score between the token i in the ground set to our chosen set T .

The submodular function we use for destination selection is the facility location function (FL) fFL
shown in Eq. 5. FL sums the similarity between every token vi ∈ V with its most similar neighbor
in the selected destination set vj ∈ T . Therefore, a high value for fFL(T ) means every token vi has
a similar neighbor in T , and T is representative of V , which perfectly matches the goal of merge
destination selection. We also note that our framework is general, and fFL could be potentially
replaced with any other submodular function.

fFL(T ) =
∑
vi∈V

max
vj∈T

Si,j (5)

When optimizing T using the greedy algorithm, we essentially need to identify the next best to-
ken with the largest gain fFL(v|T ′) relative to the so-far-selected set T ′. The largest gain can be
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decomposed (details in Appendix) as argmaxi/∈T ′
∑N

j=1 max(0,Si,j − cj(T
′)) with c as a vector

containing the cached max values of T ′ and updated incrementally as we select the next destination
token: cj(T ′) = maxvl∈T ′ Sj,l. We can perform all those operations in matrix forms, which makes
them a perfect fit for GPU computation. There are more efficient submodular optimization algo-
rithms compared to greedy, such as lazier-than-lazy greedy (Mirzasoleiman et al., 2015). However,
the more complicated algorithms introduce operations (e.g., random subset selection) that are not
ideal for GPU implementations.

4.1.1 WHY SUBMODULAR

The submodular function, particularly the facility location function, offers a theoretical guarantee
for optimizing the selection of elements with the highest information gain from a set. This character-
istic aligns well with our requirements for token selection, ensuring that we choose the most similar
tokens for merge with minimal information loss. Furthermore, facility location is highly compatible
with GPU implementations, as it takes advantage of matrix operations, significantly boosting com-
putational efficiency. Finally, facility location is compatible with an arbitrary similarity function,
where we use cosine similarity that more closely aligns with the attention computation (supposing
the input tokens are properly normalized using, e.g., Layernorm (Ba, 2016)).

We have also considered clustering-based methods such as k-means for token selection. However,
we opted against them for several reasons. First, k-means provides a soft target, which might
introduce artifacts and achieve suboptimal performance. Second, k-means assumes that clusters
have ball-like boundaries, which is not flexible and imposes extra assumptions on the latent space.
Third, the k-means method requires variable iterations to converge, and it is hard to control the
computational costs and trade-off with the clustering quality.

4.2 MERGE AND UNMERGE WITH ATTENTION

In ToMA, we achieve token merge through a linear transformation approach that uses attention
weights to assign tokens. This allows for a more generalized merge process. Accordingly, the
unmerge operation can be the inverse of the linear transformation.

4.2.1 MERGE

We first compute softmax similarity weights between all destination tokens and all source tokens.
This weight can be optionally sharpened or softened using the temperature parameter. Next, we
normalize the matrix by counting the sum of each row and dividing the corresponding row by that
value. Finally, we merge tokens together as a weighted average.

A = SDPA(XT ,X, I, τ) = softmax
(
XTX

⊤

τ

)
I

Ãij =
Aij∑
j Aij

(Normalize each row of A), Xmerged = ÃX

(6)

We describe the merge operation in Eq. 6. Here, XT is the hidden representation matrix for the
set of destinations (shape D × d), and τ is the temperature. XT are essentially sub-rows of X
so that the attention is between the destinations and all the tokens. The softmax is computed over
all the destinations for every source token, where intuitively, we can think every source token gets
distributed to some destinations, and the sum of the weights is 1. Because the source tokens include
the destinations, in the worst case, every destination gets assigned by itself (e.g., if the destination
is dissimilar to all other tokens). Note that we include the identity matrix to match the attention
notation, which can be ignored in implementation.

For extremely small temperature values, the attention linear projection A contains 1’s and 0’s, so our
attention-based merge recovers the hard discrete merge by approximating the average of the merged
tokens. Moreover, as we essentially compute an attention matrix and use it as a linear projection on
the source tokens, our merge can be highly efficient on modern GPU architecture. Also, the linear
transformation can be stored and reused later.

5
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4.2.2 UNMERGE

To unmerge tokens, we inverse the projection matrix of merge with the following two options (Eq. 7):

Transpose of the merge matrix A⊤: By multiplying the transpose of the merge matrix with the
output of the transformer block, we distribute the merged token values back to their original tokens.
When the temperature is extremely low, the transpose unmerge copies the computation result from
the destination token to the corresponding merged tokens. This incurs very little overhead.

Pseudo-inverse of the merge matrix A†: Viewing the merge as a linear transformation, the pseudo-
inverse minimizes the reconstruction error if the computation between merge and unmerge is close to
linear. It is much more computationally expensive than A⊤ and requires SVD or QR decomposition.

X ′
unmerged = A⊤X ′ or X ′

unmerged = A†X ′ = A⊤(AA⊤)−1X ′ (7)

A⊤ and A† are the same if the rows of the merge matrix A are independent, e.g., source tokens
are not overlapping among different destinations. Intuitively, this means that the destinations should
be as diverse as possible, which also matches the objective of the submodular optimization. Also,
when the temperature is extremely low, every source token gets assigned to a single destination
token, so the two options are identical. Concerning efficiency, we opt to use the transpose as the
default unmerge method for ToMA.

4.3 FURTHER SPEEDUP

The overhead of ToMA consists of 1) the computation of destination tokens using submodular opti-
mization, 2) the computation of the attention merge and unmerge matrix, and 3) applying the merge
and unmerge matrices before and after layers in the transformer block. We further reduce all three
overheads by considering the locality of the feature space so we can perform the computations lo-
cally in every region. We also decrease the frequency to compute 1) and 2) by sharing destinations
and merge matrices across iterations and layers.

4.3.1 LOCAL REGION

Denoising Timestep

U
N

et
 T

ra
ns

fo
rm

er
 B

lo
ck

s

Figure 3: Recolored K-means results on UNet
hidden states, across blocks/ denoising steps.

A crucial aspect ignored in ToMe for SD is the
locality of the latent space (Fig. 3). The spa-
tial relationship between the generated image
and the hidden states within the UNet model be-
comes evident when examining this figure. We
apply K-means to the tokens and recolor them
based on their class affiliation. Specifically, by
projecting the color from the generated image
onto the hidden state feature map, we observe
clear spatial coherence. The tokens in the la-
tent space consistently demonstrate the greatest
similarity with their neighboring tokens, creat-
ing distinct localized regions.

This observation aligns with the intuition that
images exhibit local consistency and smooth-
ness. Therefore, we hypothesize that the most
likely merge destination for any token resides
within its local tile. This allows us to focus ex-
clusively on the near tokens token while ignor-
ing more distant ones.

To exploit this property, we limit operations to local regions, performing token selection and
(un)merge within each region. We propose two region selections:

Tile-shape region: The tile region approach is particularly effective because it comprehensively
captures the local characteristics by considering the image’s locality.
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Stripe-shape region: The stripe region focuses on tokens on the same row, which misses the prox-
imity in the vertical direction.

Both locality options can significantly reduce the computational overhead as we perform all oper-
ations in ToMA with a smaller number of input tokens in parallel. The tile-shape region is more
coherent with the nature of the image and we find it performs better in experiments. However, turn-
ing a 2D matrix into tile-shape regions requires reshuffling, which brings additional overhead on
GPUs. On the contrary, the stripe-shape option is faster as it only requires re-shaping of the 2D
matrix while keeping its contiguous memory layout intact. We include both options in ToMA to
provide trade-offs between speed and quality. Also, note that the tile-shape computation can be po-
tentially accelerated as the low-level GPU operations are all in tiles, but it would require substantial
re-implementation of the attention kernel. We defer this to future work.

We want to emphasize that the local region only affects components of ToMA, the computations in
the transformer blocks always operate on the D × d matrix of the merged destinations. Please refer
to Appendix Alg. 3 for the detailed algorithm of ToMA with local regions.

4.3.2 SHARING OVERHEAD COMPUTATION

Figure 4: Intersection percentage of selected tokens between
each step and the first step of its corresponding 10-step in-
terval. Different curves refer to different layers in SDXL.

Our observations of the diffusion
denoising process reveal that hidden
states show substantial similarity
across steps, meaning the selected
destinations are also quite alike. As
shown in Fig. 4, destination tokens
have a significant intersection with
the ones chosen in previous steps.
Therefore, we can share destination
selections across steps. Additionally,
the linear (un)merge operations
enable us to reuse the matrices across
layers with minimal quality loss.
By sharing both destinations and
attention weights across steps and
layers, we significantly reduce the
number of times for destination
computation and attend merge matrix
computation while maintaining high
output quality.

5 EXPERIMENTS

We evaluated ToMA on the SDXL stable-diffusion-xl-base-1.0 model using the Diffusers framework
to generate 1024× 1024 images. The prompts were sourced from the GEMRec dataset (Guo et al.,
2024) and ImageNet 1K (Deng et al., 2009). To assess image quality, we used three primary metrics:
CLIP, DINO, and FID (Radford et al., 2021; Caron et al., 2021; Heusel et al., 2017). For the CLIP
and DINO evaluations, we generated images using 50 different prompts, each with 3 distinct seeds,
and calculated the average score across all prompts and seeds. For measuring inference time, we
reported the lowest wall-clock time over 100 runs.

Diffusion Models. We focus on the Stable Diffusion XL with the checkpoint of stable-diffusion-xl-
base-1.0. SDXL is capable of generating very high-quality images and is popular in the community
with abundant LoRAs available. Note that ToMA can generally apply to any transformer architec-
ture. Thus, we can simply extend ToMA to other diffusion models like SD3 and SD2.

Baseline. ToMeSD (Bolya & Hoffman, 2023) selects tokens either in fixed or random small tiles,
using a rigid approach. ToMeSD then discretely merges tokens by recording token pairs based on
their computed similarity. In the unmerge phase, ToMeSD restores the original tokens by copying
the values of the merged tokens back to their corresponding original tokens. We note that ToFu (Kim
et al., 2023) is another relevant method that dynamically selects whether to prune or merge tokens
based on the function’s linearity to accelerate diffusion models. The work done by ToFu is orthogo-

7
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nal to our research, meaning our methods can be seamlessly integrated with ToFu to further enhance
its performance. Therefore, we don’t include ToFu in our comparison.

5.1 RESULTS ON QUALITY AND EFFICIENCY

The primary objective of this comprehensive experiment is to evaluate the trade-off between the
quality of generated images and the computational efficiency across different token merge methods.
Specifically, we compare ToMA with ToMeSD, using three key metrics: CLIP, DINO, and FID.
These metrics measure visual similarity, attention mechanisms, and image fidelity, respectively.
Additionally, we assess the generation time and speed-up ratio for each method, offering insights
into computational gains.

We introduce three versions of ToMA to explore the impact of different attention mechanisms and
facility location strategies:

ToMA(Stripe Facility Location + Global Attention): Combines stripe-based facility location with
global attention for token merge.

ToMA stripe (Stripe Facility Location + Stripe Attention): Utilizes both stripe-based facility
location and stripe attention for localized merge.

ToMA tile (Tile Facility Location + Tile Attention): Applies tile-based facility location and at-
tention for tile-wise merge.

For the Stripe Attention and Tile Attention versions, a tile size of 16 is used, while the Global
Attention version uses 256 tiles. We compute facility location every 10 steps and attention weights
every 5 steps over a total of 50 steps. The ToMeSD method serves as a baseline for comparison
across all versions, using the same CLIP, DINO, and FID metrics.
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Figure 5: Quality metrics vs. generation time for SDXL-base on Nvidia V100. The merge ratio progresses
from 0 to 0.75, moving from right to left following the directions of the arrows. Metrics are denoted as (↑:
higher is better, ↓: lower is better).

In most cases, ToMeSD either increases computation costs or achieves minor speed-ups. Both ver-
sions of ToMA—stripe facility location with global attention and stripe facility location with stripe
attention—maintain high image quality while delivering significant speed-ups. Tile facility location
with tile attention achieves the best image quality, but the overhead is substantial, indicating great
potential for further improvement through optimized low-level implementations.

In addition to evaluating image quality, we examine the generation time and speed-up ratio more
variances. The token merge methods include ToMeSD, ToMA (with stripe and tile variations),
and ToMA*, which employs a ”merge-once” strategy (merge and unmerge once for the entire
transformer block instead of applying ToMA on every component of the transformer individually).
Furthermore, we compare these methods to the LB (lower bound for speed-up), which is the best
speedup we can get with a linear project merge and unmerge approach (apply random merge and
unmerge projections without other overhead computations).
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This comprehensive experiment, conducted under the same experimental setup (including dataset,
tile size, and step scheduler), allows us to test the trade-off between time and quality across different
token merge methods.

Token Merge Method
Generation Time / Speed Up Ratio

0.25 0.5 0.75

Baseline (ratio=0) 6.07s / 0.0% 6.07s / 0.0% 6.07s / 0.0%

ToMeSD 8.66s / +42.7% 8.73s / +43.8% 8.16s / +34.4%

ToMA 6.03s / -0.7% 5.04s / -17.0% 4.34s / -28.5%

ToMA stripe 5.56s / -8.4% 4.62s / -23.9% 4.48s / -26.2%

ToMA tile 6.20s / +2.1% 6.27s / +3.3% 6.23s / +2.6%

ToMA* 5.45s / -10.2% 4.91s / -19.1% 4.87s / -19.8%

LB 5.16s / -15.0% 4.01s / -33.9% 3.13s / -48.4%

Table 1: Comparison of Token Merge Methods and their Generation Time / Speed Up Ratios
(RTX6000Ada). Negative percentages indicate faster times than the baseline, while positive per-
centages indicate slower times.

From Tab. 1, we find that ToMeSD exhibits increased generation times and negative speed-up ratios
compared to the baseline across all token reduction ratios, ranging from +34.4% to +43.8%. This
indicates that ToMeSD actually adds computational overhead rather than improving speed, making
it less efficient than the baseline. We find that all ToMA variations, except ToMA tile, deliver sig-
nificant speed improvements over ToMeSD ranging from -28.5% to -0.7% . Moreover, methods like
ToMA* and the ToMA stripe variants approach the theoretical speed limit, showcasing remarkable
computational efficiency gains.

5.2 ABALATION TEST

In this section, we demonstrate on how we decide our default setting and other variances by com-
paring the image quality or speeds of combinations of different units in token merge.

5.2.1 FACILITY LOCATION & TILE FOR DESTINATION SELECTION

Destination Selection CLIP DINO Time (s)
Global Facility 30.9486 0.0688 33.2
Tile Facility 31.0185 0.0550 5.1
Stripe Facility 30.9861 0.0740 5.16
Random 30.5527 0.0904 4.55

Table 2: Comparison of generated image metrics
using different destination selection methods.

num tiles CLIP DINO MSE sec/img
4 30.7747 0.0690 1564.0227 11.36
16 30.9914 0.0566 1345.3114 6.44
64 31.0185 0.0550 1274.1736 5.04
256 31.0273 0.0569 1296.3734 5.01

Table 3: Tile facility comparison with 50 recom-
pute steps, ratio=0.5, global attention

From Tab. 2, we find that the facility location demonstrates great performance in the generated image
metric, which proves our theory that we should find the most representative tokens during selection.
Also, the tile facility achieves the best CLIP and DINO score which aligns with our observation of
the hidden states locality. By restricting the token merge process in a local region, we get a better
image quality. Thus, we utilize the tile facility as our default setting for ToMA.

From Tab. 3, we examine the influence of different tile sizes. We find that the tile sizes of 64 achieve
the best score in DINO and MSE while 256 shows great performance in CLIP and time. Generally,
the metric difference is not significant between these two tile sizes. Thus, we select 256 as our
default setting due to its lead in speed. We report ablation results on comparison between transpose
and pseudo-inverse as well as different sharing schedules in the Appendix.

5.3 MERGE AND UNMERGE SPEED

In this section, we compare the speed ToMA (un)merge which generalizes this process as linear
transformation, and the discrete (un)merge of ToMeSD. In this experiment, we utilize the transpose
strategy as the unmerge of the merge matrix.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

N = 4096 0.25 0.5 0.75
ToMeSD Merge 0.2107 0.2048 0.2028
ToMA Merge 0.0437 0.0403 0.0421
ToMeSD Unmerge 0.1607 0.1811 0.1579
ToMA Unmerge 0.0399 0.0483 0.0451

Table 4: Comparison of ToMeSD and ToMA
speeds for size 4096.

N = 1024 0.25 0.5 0.75
ToMeSD Merge 0.2022 0.2021 0.1932
ToMA Merge 0.0390 0.0388 0.0388
ToMeSD Unmerge 0.1605 0.1601 0.1440
ToMA Unmerge 0.0402 0.0405 0.0396

Table 5: Comparison of ToMeSD and ToMA
speeds for size 1024.

Tab. 4 and Tab. 5 clearly demonstrate that the ToMA method significantly outperforms ToMeSD
in both merge and unmerge speeds across all token reduction ratios (0.25, 0.5, and 0.75). For
size 4096, ToMA achieves merge speeds approximately 80% faster than ToMeSD, with the lowest
recorded merge time being 0.0403s compared to 0.2048s for ToMeSD. Similarly, the unmerge times
for ToMA are consistently lower, with improvements ranging from 72% to 75% across the different
token reduction ratios. This trend is mirrored in the 1024 size table, where ToMA again demonstrates
its advantage, with merge and unmerge times consistently around 80% faster than ToMeSD. These
results highlight the clear efficiency gains of the ToMA method in terms of both merge and unmerge
processes, making it a more computationally efficient solution.

Figure 6: Image generated from left to right: original, ToMA stripe, ToMA*, ToMA tile, ToMA

5.4 DISCUSSION

Although the combination of tile facility location and tile merge produces high-quality images,
it still falls short in speed. Optimizing this operation at a lower level could significantly reduce
computational costs. Additionally, improving the implementation of the pseudo-inverse API would
allow us to apply it to larger matrices, potentially enhancing image quality. Moreover, we utilize
linear transformation, specifically SDPA, for token merge, where the parameter V is currently set as
an identity matrix and ignored during inference. This V matrix holds potential for future training,
which could further boost image quality.

Broader impact. ToMA enables speed improvements across a wide range of GPU architectures.
On one hand, it accelerates image generation without compromising quality, making the process
more efficient. On the other hand, it broadens the accessibility of diffusion models, allowing even
those with less powerful or outdated GPUs to benefit from advanced techniques. ToMA reduces
computational demands, making high-quality image generation feasible on a wider variety of
hardware, thus making diffusion models more accessible to a larger audience.

6 CONCLUSION

In this work, we propose ToMA to enhance the existing token merge method in three key areas: 1)
more representative token selection, 2) a more flexible and efficient merge and unmerge operation,
and 3) the introduction of locality and sharing strategies. As a result, we achieve significant speedup
while maintaining high image quality. For future work, we aim to further speed up the low-level tile
region computation as well as fine-tune the merge attention for better generation quality.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized Multi-Query transformer models from Multi-Head check-
points. In arXiv, May 2023.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion, 2023. URL https:
//arxiv.org/abs/2303.17604.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your ViT but faster. In ICLR, 2023.
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A DETAILS ABOUT FACILITY LOCATION OPTIMIZATION

A.1 GAIN FUNCTION COMPUTATION IN FL

In the greedy algorithm we select the token v∗ from V \ A that maximizes the following gain
function:

v∗ = argmax
v∈(V−A)

f(v|A)

where f(v|A) is defined as:

f(v∗|A) = f({v∗} ∪A)− f(A)

=
∑
v∈V

max
v′∈({v∗}∪A)

sim(v, v′)−
∑
v∈V

max
v′′∈A

sim(v, v′′)

Since for each v ∈ V , find the maximum corresponding v′ in the updated representatative set {v∗}∪
A is equivalent to compare v′ in A and v∗, namely:

∑
v∈V

max
v′∈({v∗}∪A)

sim(v, v′) =
∑
v∈V

max

[(
max
v′∈A

sim(v, v′), sim(v, v∗)

)]

Therefore

f(v∗|A) =
∑
v∈V

max

[(
max
v′∈A

sim(v, v′), sim(v, v∗)

)]
−

∑
v∈V

max
v′′∈A

sim(v, v′′)

=
∑
v∈V

max

[(
max
v′∈A

sim(v, v′), sim(v, v∗)

)
− max

v′′∈A
sim(v, v′′)

]
=

∑
v∈V

max

(
0, sim(v, v∗)− max

v′′∈A
sim(v, v′′)

)

Eventually,

v∗ = argmax
v′∈(V−A)

∑
v∈V

max

(
0, sim(v′, v∗)− max

v′′∈A
sim(v, v′′)

)
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A.2 FACILITY LOCATION OPTIMIZATION ALGORITHM

Algorithm 2: Facility Location Token Selection Algorithm

Input: Similarity matrix S ∈ RN×N , number of tokens to select D
Output: Selected token indices T
Initialize: T ← {};
for i = 1 to N do

Compute row sums: si =
∑N

j=1 Si,j ;
end
Select the first token: t1 ← argmaxi si;
Add t1 to T : T ← T ∪ {t1};
Initialize the largest row: c← St1 ;
Set St1 ← 0;
for k = 2 to D do

for each token i not in T do
Compute gain: gi =

∑N
j=1 max(0,Si,j − cj);

end
Select next token: tk ← argmaxi/∈T gi;
Add tk to T : T ← T ∪ {tk};
Update largest row: cj ← max(cj ,Stk,j) for all j = 1 to N ;
Set Stk ← 0;

end
return T
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B OVERALL DETAILED ALGORITHM OF TOMA

Algorithm 3: ToMA with local regions

Input: Tensor X ∈ RB×N×d (input tensor), D (number of destinations), τ (attention
temperature), F (computational layer)

1 X ← (X1, . . . ,XP ) ; /* Reorganize X as local regions */
where Xp ∈ RB×Nlocal×d for p = 1 . . . P and Nlocal × P = N ;

2 Dlocal ← D/P ; X ←X.reshape(B × P,Nlocal, d);
Step 1: Facility Location

3 GPU Greedy to get: (T1, T2, . . . , TB×P )← Greedy(fFL, Dlocal,X);
4 Gather XT ← (X1,T1 ,X2,T2 , . . . ,XB×P,TB×P

) ; /* Shape: B × P,Dlocal, d */
Step 2: Merge

5 A← SDPA(XT ,X, I, τ) ; /* Shape: B × P,Dlocal, Nlocal */

6 Ã← A/A.sum(-1) ; /* Normalize each row */

7 Xmerged ← ÃX ; /* Apply Merge, Shape: B × P,Dlocal, d */
Computational Layer:

8 X ′ ← F (Xmerged.reshape(B,D, d)) ;
Step 3: Unmerge

9 X ′
unmerged ← Ã⊤X ′;

10 Group X ′
unmerged back to reverse the local region split;

11 return X ′
unmerged
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C MORE ABLATION RESULTS

C.1 UNMERGE COMPARISON(TRANSPOSE VS PSEUDO-INVERSE)

Unmerge method CLIP DINO MSE Time (s)
transpose 31.0273 0.0569 1296.3734 4.75
pseudo-inverse 30.9972 0.0571 1288.2609 10.07

Table 6: Comparison of unmerge methods (transpose vs. pseudo-inverse) under the condition: 50
recompute steps, ratio=0.5, global attention (globalAttn)

From Tab. 6, we find the difference between transpose and pseudo-inverse method of unmerge
shows similar outcome in scores while transpose is significantly faster than pseudo-inverse, we then
set transpose as our default setting.

C.2 SCHEDULE

In this section, we compare the metric of different sharing schedules of destination selections and
attention weights computation

Dst steps Attn steps CLIP DINO MSE

first step first step 30.0429 0.0773 2488.5682

every 10 steps every 10 steps 30.8171 0.0729 1735.4429

every 10 steps every 5 steps 30.8652 0.0699 1632.3441

every 10 steps every 1 step 30.9971 0.0668 1524.6436

every 5 steps every 5 steps 30.8923 0.0692 1608.6099

every 1 step every 1 step 30.9196 0.0668 1551.5814

Table 7: Recompute schedule comparison with CLIP, DINO, and MSE metrics

From Tab. 7, we observe that recomputing attention and destination (Dst) steps more frequently gen-
erally results in slightly improved performance across the CLIP, DINO, and MSE metrics. Specif-
ically, recomputing attention every step yields the best scores in all metrics, while less frequent
recomputation (e.g., every 10 steps) results in slightly worse scores but still competitive results.
The difference between recomputation frequencies becomes more noticeable in the MSE metric,
where recomputing more frequently leads to lower error values. We select a recomputation schedule
of computing attention every 5 steps and destinations every 10 steps because this provides nearly
similar performance to the most frequent recomputation (every step) while likely being faster due
to reduced computation overhead. This approach strikes a good balance between performance and
efficiency.
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D THEORETICAL COMPLEXITY

We keep necessary constants for the complexity estimate as they are essential factors in practical
speedup calculation. Also, we count the total number of multiplications by treating matrix mul-
tiplication as multiple dot products, ignoring algorithms with better theoretical complexity. The
complexity is 7d2N + 2dN2 for a self-attention block. After using token merge, the complexity
is: (7d2D + 2dD2) as we reduce the input size from N to D. We also define r := D/N as the
reduction ratio. Thus, the speedup in terms of the reduction ratio is Speedup = 7d+2N

7d·r+2N ·r2 .

The overhead of submodular optimization is: N2d

The overhead of computing merge attention projection is: NDd+Nd

The overhead of merge is: NDd

The overhead of unmerge with transpose is: NDd

E DETAILED RESULTS ON GEMREC & IMAGENET1K

Method Ratio FID CLIP DINO MSE RTX6000 V100 RTX8000
baseline SDXL 0 25.265 29.889 0.000 0.000 6.1 14.5 16.1

ToMe
0.25 25.650 29.861 0.054 1716.131 8.7 15.0 16.9
0.5 26.726 29.712 0.071 2279.389 8.7 12.9 14.6
0.75 41.227 29.091 0.084 2344.868 8.2 11.2 12.4

ToMA strip
0.25 25.168 29.903 0.054 1604.185 5.6 12.6 14.5
0.5 29.110 29.524 0.074 2199.760 4.6 10.1 12.0
0.75 89.932 26.973 0.110 3185.344 4.5 8.0 9.5

ToMA tile
0.25 25.432 29.856 0.045 1348.644 6.2 13.6 15.7
0.5 29.192 29.629 0.063 1912.216 6.3 11.1 13.2
0.75 58.896 28.174 0.091 2802.324 6.2 9.1 10.7

ToMA *
0.25 26.311 29.696 0.052 1866.684 5.5 12.3 13.5
0.5 38.138 29.061 0.080 3451.150 4.9 9.7 11.5
0.75 123.366 24.963 0.106 5440.233 4.9 7.6 8.9

ToMA
0.25 25.718 29.858 0.048 1432.562 6.0 14.3 15.9
0.5 28.875 29.640 0.068 2012.134 5.0 11.0 12.8
0.75 58.592 27.961 0.098 2785.680 4.3 8.5 9.8

LTB
0.25 – – – – 5.2 12.1 3.1
0.5 – – – – 4.0 9.9 7.8
0.75 – – – – 3.1 8.3 6.5

Table 8: Comparison of different methods with respect to FID, CLIP, DINO, MSE, and various GPU
performance metrics (RTX6000Ada, V100, RTX8000).
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F QUALITATIVE RESULT

F.1 MORE ON TOMA

Please refer to Fig. 7 for more qualitative result of ToMA.

F.2 COMPARISON WITH OTHER BASELINE MODELS

Please refer to Fig. 8 for more qualitative result of ToMA and other baseline models.
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Figure 7: Visual examples of ToMA. Even with half of the tokens merged, ToMA consistently preserves
image quality and often demonstrates greater robustness compared to other methods (ToDo, ToMeSD).
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Figure 8: Qualitative comparison between Baseline SDXL-base, ToMeSD, and ToMA.
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G RESULT ON MORE BASELINE MODELS

We have compared ToMA with other baselines(eg. ToMeSD, ToFu, ToDoSmith et al. (2024)) and
from the result we find that across all the ratios the ToMA achieve the most speedup and get better
image quality compared to ToFu and ToDo.

Ratio Method FID↓ CLIP↑ DINO↓ MSE↓ Sec/img↓

Baseline SDXL-base 25.27 29.889 0 0 6.07

0.25
ToMA 25.72 29.858 0.048 1,433 6.03

ToMeSD 25.65 29.861 0.054 1,716 8.66
ToFu 35.15 29.340 0.072 2,639 6.92

0.50
ToMA 28.88 29.640 0.068 2,012 5.04

ToMeSD 26.73 29.712 0.071 2,279 8.73
ToFu 142.08 25.039 0.134 7,408 6.83

0.75

ToMA 58.59 27.961 0.098 2,786 4.34
ToMeSD 41.23 29.091 0.084 2,345 8.16

ToFu 161.47 24.126 0.148 5,318 6.76
ToDo 68.59 27.635 0.093 3,694 5.67

Table 9: Comparison of SDXL-base and various methods for generating 1024x1024 images for 50
denoising steps. ToDo is given a consistent ratio of 0.75 since it applies a 4x downsample for KV.
Metrics are denoted as (↑: higher is better, ↓: lower is better), with the best performance highlighted.
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H DIFFUSION TRANSFORMERS (DITS)

H.1 DIT LOCALITY

We examined the hidden states of DiT models, focusing specifically on the FLUX.1-dev setting.
Using visualization techniques, we analyzed the hidden states at the start of each block and across
the denoising timesteps. As shown in Figure 9, the hidden states, despite the lack of convolutional
layers, appear to closely represent the true image. Our analysis indicates that this locality is in-
troduced apart from the VAE through the positional embeddings incorporated in DiT models, such
as rotary embeddings in Flux and sin/cos embeddings in SD3 and SD3.5. Practically, through our
experiments, we applied submodular-based token selection within local regions, which resulted in
high-quality images.
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Figure 9: Recolored K-means results on hidden states of Flux.1-dev, across blocks & denoising
steps.

H.2 SPECIAL DESIGN OF TRANSFORMER BLOCKS AND POSITIONAL EMBEDDING

Due to the unique design of the transformer blocks in DiT models, which combine attention blocks
and MLPs differently compared to the traditional setup of self-attention, cross-attention, and MLP,
existing token merging methods such as ToMeSD, ToFu, and ToDo cannot be directly applied which
would lead to all black or pure white noise. Additionally, the influence of positional embeddings
further complicates their applicability since the naive application of token merging can lead to the
selection of tokens that are not the most similar, which significantly degrades performance.

To address these issues, we implemented specific adaptations to the transformer blocks and po-
sitional embeddings, allowing our approach to successfully generate correct images with minimal
quality loss which is shown in Tab. FIXME. Our method was selectively skip the first 10 transformer
blocks in FLUX.1 to enable better the blend of text and image.

H.3 RESULTS ON DIT
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Figure 10: Qualitative comparison between Baseline Flux1.0-dev and ToMA.
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Method Ratio FID↓ CLIP↑ DINO↓ MSE↓ Sec/img↓

Baseline Flux.1-dev 31.56 29.026 0 0 21.03

ToMA
0.25 30.80 29.068 0.043 1,340 20.14
0.50 31.70 29.091 0.051 1,579 18.58
0.75 33.39 28.976 0.064 2,041 16.12

Table 10: Performance of Flux.1-dev and various methods for generating 1024x1024 images for
35 denoising steps. Metrics are denoted as (↑: higher is better, ↓: lower is better). No other model
works on DiT models.
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