Under review as a conference paper at ICLR 2025

A DETAILS ABOUT FACILITY LOCATION OPTIMIZATION

A.1 GAIN FUNCTION COMPUTATION IN FL

In the greedy algorithm we select the token v* from V' \ A that maximizes the following gain
function:
v* = argmax f(v|A)

ve(V—-A)

where f(v|A) is defined as:

f'A) = f({v" U A) = f(4)
= Z max sim(v,v’) — max sim(v,v")
Uevv'e({v*}uA) v v'’€A

Since for each v € V, find the maximum corresponding v’ in the updated representatative set {v*} U
A is equivalent to compare v in A and v*, namely:

. n o . A *
Z v'e(r{rﬁ}}{uA) sim(v,v") = Z mazx [(ipgz‘(sim(v, v"), sim(v, v))]

veV

Therefore
Z max [(max sim(v, v'), Sim(v,u*))] - max sim(v, v"")
veV vev” €
= Z max [(maxmm(v v'), sim(v,v*)) - rgai(‘mm(v v)]
veV €
= Z max <0,sim(v,v) — max sim(v, v))
veV €
Eventually,

v* = arg max E max (0 sim(v’,v*) — max sim(v, v))
ve(V-A) Ty v'eA

13

Under review as a conference paper at ICLR 2025

A.2 FACILITY LOCATION OPTIMIZATION ALGORITHM

Algorithm 2: Facility Location Token Selection Algorithm

RN number of tokens to select D

Input: Similarity matrix S €
Output: Selected token indices T’
Initialize: T < {};
fori =1to N do
Compute row sums: s; = Z;V:l Si.js
end
Select the first token: ¢ < arg max; s;;
AddttoT: T + T U {tl};
Initialize the largest row: ¢ < S;,;
Set St1 <~ 0;
for k =2to D do
for each token i not in T' do
Compute gain: g; = Zjv:l max(0, S; ; — ¢;);
end
Select next token: ¢j, < argmax;¢r gi;
AddtptoT: T + T U {tr};
Update largest row: ¢; <— max(c;, Sy, ;) forall j = 1to N;
Set Stk — O,

end
return 7’

14

10

11

Under review as a conference paper at ICLR 2025

B OVERALL DETAILED ALGORITHM OF TOMA

Algorithm 3: ToMA with local regions

Input: Tensor X € RE*N* (input tensor), D (number of destinations), 7 (attention
temperature), ' (computational layer)

X+ (X1,...,Xp); /* Reorganize X as local regions

where X, € RBXNiecarXd for p = 1... P and Nipeas X P = N;

Dioear ¢ D/P; X <+ X .reshape(B X P, Nioeal, d);

Step 1: Facility Location

GPU Greedy to get: (11,15, ...,Tsxp) « Greedy(frr, Diocat, X);

GatherXT<_(Xl,TlaXQ,TQ,n-;XBXP,TBXp); /* Shape: BXP,Dlocal,d
Step 2: Merge

A+ SDPA(Xp, X ,I,7); /% Shape: B X P, Djscai, Niocal
A« A/A.sum(-1); /* Normalize each row
Xmerged < AX ; /* Apply Merge, Shape: B X P,Djycal,d

Computational Layer:

X'+ F(Xmerged-reshape(B, D, d)) ;
Step 3: Unmerge

X&nmerged — ATX/;

Group X[, ereeq Dack to reverse the local region split;

!
return Xunmerged

*/

*/
*/
*/

15

Under review as a conference paper at ICLR 2025

C MORE ABLATION RESULTS

C.0.1 UNMERGE COMPARISON(TRANSPOSE VS PSEUDO-INVERSE)
Unmerge method | CLIP DINO MSE Time (s)
transpose 31.0273 | 0.0569 | 1296.3734 4.75
pseudo-inverse 30.9972 | 0.0571 | 1288.2609 10.07

Table 6: Comparison of unmerge methods (transpose vs. pseudo-inverse) under the condition: 50
recompute steps, ratio=0.5, global attention (globalAttn)

From Tab. [6] we find the difference between transpose and pseudo-inverse method of unmerge
shows similar outcome in scores while transpose is significantly faster than pseudo-inverse, we then
set transpose as our default setting.

C.0.2 SCHEDULE

In this section, we compare the metric of different sharing schedules of destination selections and
attention weights computation

Dst steps Attn steps CLIP | DINO MSE

first step first step 30.0429 | 0.0773 | 2488.5682
every 10 steps | every 10 steps | 30.8171 | 0.0729 | 1735.4429
every 10 steps | every 5steps | 30.8652 | 0.0699 | 1632.3441
every 10 steps | every 1 step 30.9971 | 0.0668 | 1524.6436
every 5 steps | every 5steps | 30.8923 | 0.0692 | 1608.6099
every 1 step every 1 step 30.9196 | 0.0668 | 1551.5814

Table 7: Recompute schedule comparison with CLIP, DINO, and MSE metrics

From Tab. [/ we observe that recomputing attention and destination (Dst) steps more frequently gen-
erally results in slightly improved performance across the CLIP, DINO, and MSE metrics. Specif-
ically, recomputing attention every step yields the best scores in all metrics, while less frequent
recomputation (e.g., every 10 steps) results in slightly worse scores but still competitive results. The
difference between recomputation frequencies becomes more noticeable in the MSE metric, where
recomputing more frequently leads to lower error values. We select a recomputation schedule of
computing attention every 5 steps and destination every 10 steps because this provides nearly sim-
ilar performance to the most frequent recomputation (every step) while likely being faster due to
reduced computation overhead. This approach strikes a good balance between performance and
efficiency.

16

Under review as a conference paper at ICLR 2025

Figure 7: Comparison of pseudo-inverse and transpose

17

Under review as a conference paper at ICLR 2025

D THEORETICAL COMPLEXITY

We keep necessary constants for the complexity estimate as they are essential factors in practical
speedup calculation. Also, we count the total number of multiplications by treating matrix mul-
tiplication as multiple dot products, ignoring algorithms with better theoretical complexity. The
complexity is 7d?N + 2dN? for a self-attention block. After using token merge, the complexity
is: (7d>D + 2dD?) as we reduce the input size from N to D. We also define r := D/N as the

reduction ratio. Thus, the speedup in terms of the reduction ratio is Speedup = 7(17;1:%
The overhead of submodular optimization is: N2d
The overhead of computing merge attention projection is: NDd + Nd
The overhead of merge is: N Dd
The overhead of unmerge with transpose is: N Dd
E DETAILED RESULTS ON GEMREC & IMAGENETIK
Method Ratio FID CLIP | DINO MSE RTX6000 | V100 | RTX8000
baseline_SDXL 0 25.27 0.30 0.00 0.00 6.1 14.5 16.1
0.25 25.65 0.30 0.05 1716.13 8.7 15.0 16.9
ToMe 0.5 26.73 0.30 0.07 2279.39 8.7 12.9 14.6
0.75 41.23 0.29 0.08 2344.87 8.2 11.2 12.4
0.25 25.17 0.30 0.05 1604.18 5.6 12.6 14.5
ToMA strip 0.5 20.11 0.30 0.07 2199.76 4.6 10.1 12.0
0.75 89.93 0.27 0.11 3185.34 4.5 8.0 9.5
0.25 25.43 0.30 0.05 1348.64 6.2 13.6 15.7
ToMA tile 0.5 29.19 0.30 0.06 1912.22 6.3 11.1 13.2
0.75 58.90 0.28 0.09 2802.32 6.2 9.1 10.7
0.25 26.31 0.30 0.05 1866.68 5.5 12.3 13.5
ToMA * 0.5 38.14 0.29 0.08 3451.15 4.9 9.7 11.5
0.75 12337 | 0.25 0.11 5440.23 4.9 7.6 8.9
0.25 25.72 0.30 0.05 1432.56 6.0 14.3 15.9
ToMA 0.5 28.88 0.30 0.07 2012.13 5.0 11.0 12.8
0.75 58.59 0.28 0.10 2785.68 4.3 8.5 9.8
0.25 - - - - 5.2 12.1 3.1
LTB 0.5 - - - - 4.0 9.9 7.8
0.75 - - - - 3.1 8.3 6.5

Table 8: Comparison of different methods with respect to FID, CLIP, DINO, MSE, and various GPU
performance metrics (RTX6000Ada, V100, RTX8000).

18

Under review as a conference paper at ICLR 2025

F MORE QUALITATIVE RESULTS

Figure 8: Image Comparison between left: original image generated by SDXL; right: Image gener-
ated by ToMA at ratio 0.5

19

Under review as a conference paper at ICLR 2025

Figure 9: Images generated by different TOMA variances. from left to right: TOMA _stripe, TOMA,
ToMA _tile, TOMA

20

	introduction
	related work
	Preliminaries
	ToMA
	Submodular-Based Destination Selection
	Why Submodular

	Merge and Unmerge with Attention
	Merge
	Unmerge

	Further Speedup
	Local Region
	Sharing Overhead Computation

	experiments
	Results on Quality and Efficiency
	Abalation Test
	Facility Location & tile for destination selection

	Merge and Unmerge Speed
	discussion

	conclusion
	Details about Facility Location Optimization
	Gain Function Computation in FL
	Facility location optimization algorithm

	Overall Detailed Algorithm of ToMA
	More Ablation Results
	Unmerge comparison(transpose vs pseudo-inverse)
	Schedule

	Theoretical Complexity
	Detailed results on GemRec & ImageNet1k
	More Qualitative Results

