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A  SUMMARY OF UPDATES
We highlighted all revisions in blue.

A.1 UPDATE IN SECTION[I]

We rearticulated some portion of the introduction section to make our work easier to follow since we
believe adding more actuarial science related background to the introduction will make the audience
understand better the motivation and the focus of the work. Specifically, we give definition for
actuarial fair (see E[), interpretation of noise, and the generalization of the proposed method on
non-sensitive attributes (see (as Reviewer BixT, m8tn suggested).

A.2 UPDATE IN SECTION[Z]

We further reviewed existing work on algorithms that train discrimination-free models in the actuarial
science literature (see|2.2)) and pointed out the value and novelty of our work (as Reviewer m8tn,
BixT suggested).

A.3 UPDATE IN SECTION[4_1]

We slightly modified the example (Example@ we presented to show how the choice of T" and F
relates to model transparency and performance so that both regression and classification tasks are
included (as Reviewer rqKi suggested).

A.4 UPDATE IN SECTION[4.2]

We relate the motivation of using LDP to the interpretation of noise to clarify that LDP is only
used under two scenarios. 1) in data collection of vendors as an incentive for consumers to provide
information about their sensitive attributes. 2) in data transmission for security purposes, note that
2) is not needed if the information the insurer collected is already privatized (as Reviewer m8tn
suggested).

A.5 UPDATE IN SECTION[4.3]

First, we added a more technical discussion (see on assumptions A and B (especially on the
relaxation of assumption B) but deferred the presentation to Appendix |C|and Appendixdue to
the page limit (as Reviewer BixT, rqKi suggested).

Second, We added a high-level description of the impact of the estimation error of 7 on the behavior
of Risk-LDP (Eq.|7) (as Reviewer rqKi suggested).

A.6 UPDATE IN SECTION[3]

First, we added another empirical experiment on regression task using an insurance data set (see|5.1)
to show that our method is not limited to logistic loss but is compatible with other losses as well. The
results we obtained are also in support of the theoretical guarantees we derived (as Reviewer rqKi
suggested).

Second, we added an empirical study on the effect of the estimation error of noise rate on both evenly
and unevenly distributed scenarios. The results and observations are presented in Appendix due to
page limit (as Reviewer rqKi suggested).
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B DEFERRED ALGORITHMS

B.1 MPTP-D

Algorithm 1 Multi-party Training Process w.r.t. D (MPTP-D)
Insurer Input: data: {X;,Y;}? ,, hypothesis class: 7 (if obtain T" via supervised learning)
Insurer Output: {T'(X;)}"
TTP Input: data: {T(X;),Y;, D;}, hypothesis class: F, risk function: R(f1,..., fip|) (Eq. )
repeat
train f1,. .., fjp| by minimizing Eq.
until Convergence
compute h*(T(X)) using Eq.
return f;, .. .,fl*Dl,h*(X)

TTP Output: f;,..., i, h*(T(X))

B.2 MPTP-S

Algorithm 2 Multi-party Training Process w.r.t. S (MPTP-S)
Insurer Input: data: {X;,Y;}" ,, hypothesis class: H (if obtain 7" via supervised learning), hypoth-
esis class: /C (if obtain 7" via supervised learning)
Insurer Output: {7(X;)}",,{T(X;)},
TTP Input: data: {T(X;),Y;, S;}7,, {T(X;),S;},, hypothesis class G, risk function: Vk €
[n1], R(gk) = 22751 L(gk(Th.j, Sk.5)) (see Lemma, hypothesis class: F, risk function:
R(fl? LR fl'D‘) (Eq )a
if Scenario 2 (7, 7 unknown) then
compute 7, Tk, k € [n1] (by applying Lemma
compute C using 7y, T, k € [n1] (by Cy estimation procedure i
compute 7, 7 using C
compute IT~! using 7, 7
else .
compute IT~! using 7, 7
end if
repeat
train f1, ..., fip| by minimizing Eq.
until convergence
compute h*(T'(X)) using Eq.
return f7, ..., fip, A" (X)

TTP Output: f;,..., i, h*(T(X))
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C DEFERRED DISCUSSION ON ASSUMPTIONS

C.1 RESTRICTIONS ON ASSUMPTION A

The restriction of Assumption A relies on the type of generator (which will influence the tail
distribution of 7) and the number of data within each group (which will influence the accuracy of 7).
The condition in Assumption A is equivalent to:

()

t

)

> |7 ! ‘ < (
T——1 | <exp
D

when K > 0 is a constant.

Generally speaking, this assumption holds if 7 is inverse exponential distributed with a translation of

I%\’ or having a lighter tail than the inverse exponential distribution that is

1 1
0= R P R 31

D

when t is close to ﬁ, where f7(t) is the pdf of 7. Especially, since a bounded distribution is also

sub-exponential, if |7 — ﬁ\ > ¢, for some € > 0 condition is also satisfied. This will happen when

the number of data within groups (m) is sufficiently large and 7 — ﬁ is large enough.

C.2 RESTRICTIONS ON ASSUMPTION B

For Assumption B, the condition is equivalent to ]E[ﬁ/lm] Therefore, the closer 7 and ﬁ is the

more accuracy of 7 is needed to suffice this assumption.

C.3 RELAXATION OF ASSUMPTION B

We do not acquire CA’L & to be strictly unbiased estimators of C;— some perturbations can be allowed
with some small modification to Theorem but the general result still holds. Please see Section
and Appendixfor a detailed discussion.
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D DEFERRED EXPERIMENT RESULTS

D.1 DATA

The Adult dataset contains 48842 observations, 14 features, and 1 target variable (income). In
our experiment, we delete observations with missing values which results in a subset of 45222
observations. Further, we delete ”fnlwgt”, “education_num” where the former has no clear description
and the latter is a duplicate of “education”. We choose D = sex to be our sensitive attribute which
takes values of “male” and “female”. The privatized sensitive attribute S is generated under different
privacy levels using a set of €’s by Definition D was only used to set the benchmark for

performance and is masked under any other settings.

We conduct experiments 1) when the noise rate 7, T are known (scenario 1) and 2) when the noise
rates are unknown (scenario 2). For both scenarios, while we limited the hypothesis class F to the
class of linear models, the insurer obtains two transformations 77, 75 for the main task and one
transformation 7T for noise rate estimation, where T} is obtained via supervised learning (same as
example, T,,T are simply the identity. The reason that we choose such 77, 7% is to showcase
the relationship between the complexity of 7', model transparency, and performance on unseen data
under the same F. Further, under scenario 2, we set n; = 1, 2,4 and conduct experiments for each n;
respectively. With F being the class of linear models under both scenarios, TTP is essentially fitting
a logistic regression w.r.t. 77 (X)) and T5(X) to obtain u(77(X), D), and u(T2(X), D) respectively.
For the calculation of h*(T'(X)), we choose the empirical marginal of D (estimated using .S).

D.2 RESULTS

For each noise level, we generated S using 5 different seeds, hence each figure below (Figure@
shows the mean values across all 5 different seeds. For both scenarios, we run experiments over 7
different privacy levels for 7 = (0.9,0.8,0.7,0.6,0.55,0.525,0.5175). As the focus is to estimate
u(X, D), for conciseness, plots for test loss of h*(X) are deferred to Appendix
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Figure 4: Test Loss for Scenario 1

From Figure we observe that the 7} is more robust against noise compared to 75, and 77 converges
faster and has a better out-of-sample performance. Notice that as 7 — ﬁ, it requires a larger sample
size to achieve the same loss approximation. Hence, for a fixed sample size, the larger the noise, the
worse Eq. approximates Eq. which is in support of the result we obtain from Theorem
Although in terms of both accuracy and loss, there is a gap between Eq. , the trade-off comes from
the ease of implementation (use of group-specific models) and transparency w.r.t. T(X) in that we
have limited F to be the class of linear models. Next, we present the test loss (see Figure @) for

(X, D) estimation using T3, T5 under scenario 2 with n; = 1,2, 4 respectively.
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Figure 6: p(X, D) test loss with T»(X) for scenario 2 with n; = 1,2, 4

From FigureE“ﬂ the loss behavior w.r.t. 77, 75 is similar to that under scenario 1 in general. However,
as n; increases, we observe a better approximation of Risk-LDP (Eq. (7)) to Eq. (T) (more obvious
under 75). As np increases, a smaller € is achievable, hence resulting in a tighter bound as Theorem
suggests. Therefore, the experiment results under both scenarios align with our theoretical results.
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E DEFERRED INVESTIGATION OF NOISE RATE ESTIMATION ERROR

We manually set the error of estimation to be {£0.01, £0.02, +0.03}, and our estimated noise rate
is manually adjusted for each privacy level. Further, we created three subsets of the original data

where the ratio between ”"Female” and ”Male” observation is

4

11

and 1 to study the impact of

the

estimation error of Risk-LDP (Eq. when the privatized sensitive attributes are unevenly distributed.
We conduct experiments using 77, 75 with the manually adjusted erroneous noise rate on each subset
respectively and compare the performance. We first present the results using 77 below.
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Next, we present the results using 75(X)
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Observations: From the above figures we can see that 7} converges much faster and is also more
robust against estimation error on the noise rate than 75 regardless of the distribution of sensitive
attributes in general, combining the similar observation under scenario 1, we tend to conclude that
the convergence rate regardless of the noise rate is known or unknown is considered closely related to
the transformation chosen, further the robustness of Risk-LDP (Eq.|7) against noise rate estimation
error is also impacted by the choice of transformation and this impact becomes more obvious as 7
gets closer to \%I'

We also observe that when 7 is far away from I%\ (in this case 0.5), regardless of the transformation
chosen and the distribution of sensitive attribute, Risk-LDP (Eq. is very robust against the
estimation error (even when the error is 1 ardless overestimation or underestimation). However,

reg
as m becomes very close to ﬁ (Figure , we can see that underestimation of 7 is much
more destructive than overestimation especially when the underestimation error is large.

As one should expect that different transformations should yield different behaviors of Risk-LDP.
Fixing the transformation, we also noted that the distribution of the sensitive attributes does not have
too much impact on the convergence behavior of Risk-LDP (Eq. |7). However, as the distribution
becomes more imbalanced, Risk-LDP tends to give a higher loss than that of the less imbalanced
scenario.
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F DEFERRED FIGURES

F.1 INSURANCE

We now present the test loss for the estimation of 2*(X) using 7', 7> under scenario 1 respectively:
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Figure 21: h*(X) test loss for scenario 1

Below is the test loss for h*(X) using T}, T» with estimated 7 with n; = 1, 2,4 under scenario 2

respectively:
254 254 254
: —— Best-Estimate : —— Best-Estimate : —— Best-Estimate
— wwo — wwo — wwo
— MPTPLLOP_NE (1= 0.0 — MPTPLLOP_NE (1= 0.0 — MPTPLLOP_NE (1= 0.0
2.0 2.0 — MPTP_LOP_NE (7 = 0.8) 2.0 — MPTP_LOP_NE (7 = 0.8)
oy oy e oon e oon
© © — MPTP_LDP_NE (7 = 0.6) 3 —— MPTP_LDP_NE (7 = 0.6)
c 4 Q
515  LOP 515 —— MPTP_LDP_NE (= 0.55) 815 NE (= 0.55)
2 — WL - 0s28) | G — Lo e 0s2s) | L0 NE (- 0.525)
o WPTP_LOP_NE (1 = 0.5175) o WPTP_LOP_NE (1 = 0.5175) 2 MPTP_LOP_NE (1 = 0.5175)
10 10 10
IS IS
0.5 0.5 0.5
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Epochs Number of Epochs Number of Epochs

(a) h*(X) test loss withny =1

(b) h*(X) test loss with nq = 2

(c) h*(X) test loss withny; =4

Figure 22: h*(X) test loss with T} (X) for scenario 2 with n; = 1,2,4
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F.2 ADULT

We first present test accuracy for the estimation of p(X, D) and h*(X) using T3, T5 under scenario 1
respectively:
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Figure 24: 1(X, D) test accuracy for scenario 1

Below is the test accuracy for the estimation of (X, D) and h*(X) using 71, T withny = 1,2, 4
under scenario 2 respectively:
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Figure 25: p(X, D) test accuracy with 77 (X)) for scenario 2 with ny = 1,2,4
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Figure 26: (X, D) test accuracy with T5(X) for scenario 2 with n; = 1,2,4

Next, we present the test accuracy for the estimation of h*(X) using T3, T» with n; = 1,2, 4 under
scenario 2 respectively:
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Figure 27: h*(X) test accuracy with T (X) for scenario 2 with ny = 1,2,4
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G DEFERRED PROOFS

G.1 LEMMA[4.2]PROOF

Lemmal[4.2|Given the privacy parameter €, minimizing the following risk (Risk-LDP) Eq. {7) under
e-LDP w.r.t. privatized sensitive attributes S is equivalent of minimizing Eq. (T) w.r.t. true sensitive
attributes D at the population level:

|D| D]

RMPP(fr o f) =D I Eyr(x))s— g[ (Y7fk(T(X)))}, ®)

k=1 j=1

Proof. Step 1:

Since the e-LDP randomization mechanism is independent of X, Y, therefore, the distribution of S'is
fully characterized by the privacy parameter e and the distribution of D. Therefore, the distribution
of S is deterministic once the privacy parameter € and the distribution of D is given.

Step 2: Recover distributions w.r.t. D

Inspired by proposition 1 inMozannar et al.|(2020). Let £, & be two probability events defined with
respect to (T'(X),Y,Y"), then consider the following probability:

P(£1,E | S =d)
=Y P&,&|S=dD=dPD=d|S=d)
d'eD
=Y PE,&|D=d)P(D=d|S=d)
d'eD
P(S=d|D=d)PD=d)
= (&1,& | D=d)
- mene D=
TP(D = d) , 7P(D = d')
Enb | D=d mp g7 ZﬁIP’(D:d”)+Z b D=d) g s 7p (D= @)
d//\d d\d d//\d
Then, let &, =Y, & = T(X), we obtain the following:
P(Y, T( ) | S =d)
=Y P, T(X)|S=d,D=d)P(D=d|S=d)
d'eD
=> P, T(X)|D=d)P(D=d|S=d)
d'eD
- BT | D = d) P(S=d|D=d)P(D=d)
= SwepP(S=d|D=d"P(D=d")
7P(D = d) , 7P(D = d')
=P(Y,T(X)|D=d P, T(X)|D=d .
¥ T(X) | )W]P(Dzd)—&— ZwP(D:d”)JFdZ\d Y T(X) | )wIP’(D:dH— S aP(D =d")
d//\d d”\d

Denote p; = P(D = d), then let IT be the following |D| x |D| matrix with the following entries:

J— TP ;
II, ; = i S Fra ,fori € D
d’’\i
R P - CLs
IL ; = TS T Jori,j e Dst,i#j
al’\i
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then we have the following system of linear equations:
B(Y,T(X)| S =1) B(Y,T(X)| D = 1)

P(Y,T(X)|S=D]|) P(Y,T(X) | D =|D|)
denote as s = Ildy, where s; = P(Y,T(X) | S),d1 =P(Y,T(X) | D).
Since IT is row-stochastic and invertible, we show that the entries of II~! take the following forms:

—1 _ w+|D|=2 i+ g\ TP

Wi = D1 o Jforie D
-1 -1 ﬁpr‘rzdu\i TP .o . .
II; ; = DT o Jfori,j e Dst,i#j

multiplying II~! on both side, we recovered
D]
P(Y,T(X)|D=k) = ZH—HPYT X)| S =35

= Hk~1]P(Ya T(X)[5)
where IT, * denotes the k™ row of TI 1.

However, there is still one component that we do need to estimate in order to recover the population
distribution of P(Y, X | D). We need to further estimate P(D = d). Using the same technique, to
estimate P(D = d), first write P(S = d) in terms of the conditional probability of .S given D as:

=Y P(S=d|D=d)P(D=d)

d'eD
=P(S=d|D=dP(D=d)+Y P(S=d|D=d)P(D=d)
d’\d
= Tpq + Z TP’ -

d'\d
Then we write the above expression in terms of a system of linear equations. Let T be an |D| x |D|
matrix with the following entries:

Ti,i :7T7f0ri€D
T, ; =m,fori,j € Dst,i#j

)

then we have the following system of linear equations:
P(S=1) P(D=1)

P(S = |D|) P(D =D|)
denote as sy = T'dy, where s5 = IP(S) and dy = P(D).

It follows the same argument that T" is row-stochastic and invertible and it is easy to verify that T—!
takes the following form:

\D\Tr 1

Ti’_jl: fori,j € Ds.t.,i#j

T ' = =HPI=2 foric D
|D\7r 1’

by multiplying T~ on both side, we obtain:
D

=k) =) Ti,P(S =

=T, 'P(9).
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Step 3: Recover the loss w.r.t. D
At the population level, we have recovered that:
PY,T(X) | D = k) = TL'P(Y, T(X) | 9),
where P(D = k) = T, 'P(S) is used in calculation of IT, .
Hence, we recover the population equivalent of Eq. :
|D] |D|
> Evirono-e LY ATE0)] = X / [ PO TCO 1D = LY, ST (X)) aT ()
- ID\ D]

—Z// > TROLT00 | = LA AT EONT X0y

|D| D]

XX [ [ P00 |8 = LY AT ) ar )y
|D| D]

= 3 > Iy Brrcojs— | LY. f(T(X))))-
k=1j=1

Therefore, we conclude that it is equivalent to minimizing:

|D| D]

(frey ooy far) argmmZZHkJ EYT(X)\s—J{ (Y, fk(T(X)))}

f17"'7fk k= 1] 1
This completes the proof. O

G.2 LEMMA[4.4]PROOF

LemmaUnder e-LDP settin~g, with T € (I%I’ 1],7 € [0, \DI) assuming that there exists an anchor
points T'(X)* s.t. P(D = j*|T(X)*) = 1 for some j* € [|D|], then 7 = P(S = j*|T(X )*). Em-
pirically, denote the n-dimension vector s (T(X)*) =(P(S = j*|T(X1)), - .., P(S = j*|T(X,))),

then # = |15 (T(X)*)||oc and {P(S = j*|T(X;))}", can be obtained by spemfymg a hypothesis
class G and minimize the following empirical risk:

Proof. Notice that 7 € (& BIE 1], 7 e [0, |%\) and consequently we have m > 7. Hence, by Theorem 5

of|Zhang et al.|(2021), we are in a good position to apply the noise rate estimation method (Theorem
3) inPatrini et al.|(2017) to estimate 7, 77. Our e-LDP setting can be considered as a special case of
CCN (class conditional noise) where the flip probability is the same across all groups in D. Consider

|D|
(5 = 5" 1T(X)") = LS = °ID = ) B(D = HT(X)")

IDI

YN RS =51 ID = k) 145" = k}
k=1

= 7]"
(a) is by followed by the definition of anchor point

P(D =" |T(X)*) =1 = P(D = k|T(X)*) = 0,Yk # j*, k,j* € [|D|].
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Then one can easily see that P(S = j*|T(X;)) attains its maximum when P(D = j*|T(X;)) = 1,
since we know
P(S = j*|D=k) =, if j* = k
P(S = j*|D = k) =, if j* # k,
hence we know P(S = j*|T'(X;)) is actually a weighted sum of 7 and 7, where the weights are simply
~ D
{B(D = KIT(X)}}

1- But we also know that 7 > 7. Hence, for empirical estimation, denote the

n-dimension probability vector 1, (T'(X)*) :(P(s = j*|IT(X1)), ..., B(S = j*|T(Xn)))

it = [ ns(T(X)")oo-

Where { P(S = j*|T(X;))}"_, can be obtained by specifying a hypothesis class K and minimize
the following empirical risk:

This completes the proof O

G.3 THEOREM PROOF

Theorem For any 6 € (0, %), C, = ’T‘g‘f‘:f, denote VC(F) as the VC-dimension of

the hypothesis class F, and K be some constant that depends on V' C(F), then under a given
loss function L : Y x Y — Ry, and for f = {fk}fll where f, € F,Vk € [|D|] with

fi : T(X) = Ry st. sup |[fu(T(X))] < M € Ry, Vk € [|D|] derived from Lemma 4.2]
Xex
consequently, L(fi(T(X),Y)) < ¢(M) € Ry ,Vk € [|D]],X € X,Y € Y, where ¢ is some
~ 1Dl
function of M, denote k* « argmax|REPP(fi,) — REPP(fi)l, if n > —onlz)
k

ming P(S=F) then with
probability 1 — 26:
VC(F) +1n(§) 2C16(M)|D|

REPP(f) <R(f7) + K o BS k)

Proof. For better presentation, denote X = T'(X) and X = T'(X) in the proof.
Step 1: simplify the objective

Denote R(f)) as the expected risk of f;,, and R(f) as the empirical risk of f;, that depends on the
data set given, then we start with

+

REPE(f) = REPE(f) = R(f)| > )
REPE(A+ IRFPE(f) = R(f) > €)

k=1 k=1

<P<2D: IREPP(f,) — REPP ()] > 6)
(

<P (i REP7 () = REPP (fi)| > 1)

Zﬂgg_; S LY, fi (T(X)))) —HkB_Ey,ms[L(Y,fk*(X))}‘ > |£|)

j=1 J §:8=5
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where (a) is obtained from the population equivalence of two losses from Lemma[4.2]

(b) is followed by for two events A, B, if A implies B then P(A) < P(B), also denote that
k* «+ argmax|REPP(f) — REPE(£)].
k

(c) is obtained by expanding the expression for RZPP (fy.-) and REPP( fy.+ ) respectively.

Step 2: concentration of the empirical risk under Risk-LDP

Denote nym =1y =y, v = 2,5 =5),Quzs = P(Y =y,X = 2,5 = j), and define the
random variable Ny,s = {i | y; = y,x; = x,s; = s}. We can deduce nN = erX,er 1(y; =

y,x; = x,5; = s). Then, we have E[RLPP (fi+) | Ny xs] = REPP(fi-), where Ny x g denotes
all possible Ny, . Using similar approach of Lemma 2 in Mozannar et al.|{(2020), we can write:

P(REPP(f)N — REPP(fie) > ﬁ)
a) Z ('RLDP Froe )N RLDP(fk |’D|’NYXS) P(Nyxs)

Ny xs

(_?IP’( U {né\/ < n Zmex,;ey Qyas })

reX,yeY,ses

+ > P(REPP (fir)V = REPP(fie) >

. nYreX,yeY Quas
Va,y, Nygsnll > =S4T =22

1
— NYXS) -P(Nyxs)
D

(e) minsn - . s
§|D|exp{ — Z»LegX,er Qy }

+ > P(REPP(fi)N = REPP (fi) >

. nYreX,yey Quzs
Va,y, Nygsnll > =S4T =22

Tl
NYXS) -P(Nyxg),
D

where (a) follows by conditioning over all 2"| X |"|D|"™ possible configurations of N,,s C [n].
(b) is obtained by splitting the configurations where Vz,y, Nyzs : nlY > %+YQ” and
the complement of the event and upper bound the complement of the event by the probability

that 3s s.t. nd¥ < M (c) is obtained by the union bound and we know n® ~

Binomial (n, D ozex. ey Qyzs) and apply the Chernoff bound on nw e

Now, we will apply the McDiarmid Inequality McDiarmid|(1989). Let X" = (X4,...,X,) € X"

be n independent random variables and let g : X™ — R, if there exists constants cy, . . ., ¢y, S.t.
sup lg(T1,s -y Ty oy ) — g(@1, ey @y )| <= 1,000,
L1y Tiy Ty Ty
then Ve > 0:

2¢2
P(g(x1,. . Ziyooyxn) —Elg(ay, ...z, xn)]) < 2exp (W)
i=1G

Since by conditioning on Ny x g, then for RLDP (fx~), everything else is now deterministic except

for fi-, in other words, by conditioning on Ny x g, the value of RLDP (fx~) only depends on f-.
Then, for two datasets N, N’ where they only differ by one value of fj-(X;), we try to bound how
much fg« can change.

Recall from Lemmal4.2| we computed the entries of TI~! takes the following form:

H—l _ m+|D|-2 7"1071+Zd”\i TP

[D[r—1 i Jforie D
-1 _ 7—1 TTPH*ZdNV TP L. i .
H'j = DIr-1 o Jfori,j € Ds.t,i#j
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. .. D|—2 _ .
For simplicity, let C; = 7FI+D‘\7r|—1 ,Co = \glﬁ’ since we do not have access to D, therefore we can

not directly observe p,, hence we write II-! in terms of P, where P, = P(S):

1 1
1_‘['7'1 :Olﬂ'Ti_ P+Zl\z7TTL- P,

TP, ,fori € D
_ T, ' P+ T, ' P, .. . .
=, T_lel\_jﬂ Jfori,j € Ds.t.i#j

we also computed T~ as

T = ’Tg‘f‘ 2. forie D
1
T, = ID\W 17forz jEDStIFE]

then we have

sw IREPP (fir )N — REPP ()N

T PN + 3, 7T, ' PN 7T PN + 3, 7T ' PN
_‘Cl \ RLDP k*)N+ZCQ \

RLDP(fk )

—“1pN —-1pN

k’*' PS ]\k k‘*' PS

B T PN + 2k T, P RLIDP(f,.) Z T PY + 2k T, ' P RLDP(f, )N’
1 T, PV B T, PV ’

ieN,zeX,yeY,S=k L(yz‘, S (xi))

‘C’ T PN + 3, 7T PN (Z
= 1
N =

- T,.'PN

_ ZieN’,zeX,er,szk L(yi, - ($i>) )
T *

7T PN + 3, 7T ' PN

n Z s k I\k l (

ZiEN,xeX,er,S=jL(yi’fk*(zi)) _ ZieN/,xeX,ers—jL(yiafk*( ))
—“1pN
J\k Tk*.Ps

= i )
N+ Te*

(@ T max T, 'PYN + (|D| - )7 max T,,'PN

9| g, _melD - me(|D|] 9(M)
T,. P, N
_ (M)
= D _1 R —
Cy (7 +7(|D| - 1)) e
() C1(M)
N+ ’

where (a) is obtained by Cy < 0,V7 € (ID\ 1]. (b) is followed by the fact that 7 + 7(|D| — 1) = 1.

Now, we are ready to apply the McDiarmid Inequality:

~ €
Z P(RLDP(fk*)N - R (fi-) > ﬁ’NYXS> ‘P(Nyxs)
VL%NymsméVZ%;Y%

DI
= 2. 2 exp { - n(cwm?} ‘P(Nyxs)

nYreX,yey Quaos
Va,y, Nygsnll > =S4T =222

(a) of P(S=k) \2
§2exp{—2ne (W) },

. . . ny. ) Qyx = L. ..
where (a) is obtained since when ng- = Zex ey Suth "P(g k) | the quantity is maximized.

Now, we have:

ming P(S = k) P(S = k) \?
(N-R(A)| > e) < IDIeXp{ - %}”“p{ ~2(sc,snm) }

P(|R
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s n
solve for 4, we now have, for any § € (0, %), €> 1/ IHQ(HQ) % if n > m then

P(REPP(f) = R(f)| > €) < 26

Step 3: Obtain the final result

Recall that one can easily show

REPE(f) = R(f*) < 2 sup|REPP(f) = REPP(f)],
feF

but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis . Denote the VC-dimension of our hypothesis
8In (121

class F as VC(F), then with some constant K and for any § € (0, 3),if n > e Po=F)» We have:
. VC(F) +In($) 2C19(M)|D|
LDP( ¢\ < 4R 2 '
This completes the proof. O

G.4 THEOREM PROOF

|Dlm—1
defined in Lemma denote VC(F) as the VC-dimension of the hypothes1s class F, and K
be some constant that depends on VC'(F), if Assumption A (4.3] . ),B (4.3), and Lemma 4|hold,

given a loss function L : Y x YV — Ry, M, + G52 > & > ¢, and for f= {fk} |, where
fr € F,Vk € [|D|] with fy, : T(X) — R4 st sup Ifk(T(X))] <M eR.,VEk € [|D|] derlved

from Lemma consequently, L(f(T(X), )) § o(M) € Ry,Vk € [|D]], X € XY € ),

. (L2l
where ¢ is some function of M, denote k* +— arg max|REPP (f1,)—REPE (£, if n > #(S)k)’
k

TheoremFor any § € (0 ,3) C, = THDI=2 0, Cy = n%zz;l CA'L;C, where C’Lk is

ny > (:(Ei Bk (M, + S1£8)2 In(2) where c is an absolute constant, then with probability 1 — 34

VCF) +1n(3) 2(Cr + (M)

REPE() SR(f) + K o BS = i)

Proof. We will first introduce some preliminaries that will be used in the proof. We will first introduce
how we obtain C] and then state the assumptions used for the proof.

Step 1: Grouping: Given the observed data {T'(X;), S;}I;, we evenly divide them into ny groups,
withm = nil samples each.

Step 2: Estimating within groups: forany k € [n1], within every group {T'(X ;), Sk,; } ]2, we can
derive an m-dimension vector 1, x (T(Xy..)*) = (B (S = *|T(Xk.1))s - - -, Pe(S = | T (Xp.m)))

and T, = ||95,5(T(X)*)||oo, Which is defined in Lemma Then, applying a straight-forward plug
inCy = J P2,

Step 3:Averaging: Finally, our estimator for C'y, denoted by C‘l = n% 211;1:1 CA'L k» can be derived by
averaging CA’L;C, k € [n1].

Next, we state two assumptions that we used to derive the generalization error bound for Risk-LDP
(Eq. ) when the noise rate is estimated from the data.

Assumption A: (Sub-exponentiality) For all k£ € [n;], define gk(T(X )) = Px(S = j*|T(X)) There

. A _ ; 91 (T(Xk,i))+|D| =2
exists a constant M, > 0, such that ||C g |ly, = || minepm |D\gk(T(—X,“)1H1/’1 < M, for all
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k € [n1], where || - ||, is the sub-exponential norm:

| X ||y, = inf{t > 0[E[e™/?] < 2}.

Assumption B: (Nearly Unbiasedness) For all k € [n4], C'Lk is a 'nearly’ unbiased estimator of C',
namely |E[C) ] — Cy| < 0 for all k € [m], where 6 > 0.

Now, we begin the proof.

First, we will prove a concentration inequality with regard to Cy and .

Since for any constant L, we have

L]l = inf{t > O[E[el"/1] < 2}
= inf{t > 0le/"/t < 2}
)

In2’

and || - ||y, is a norm, we can conclude that the standardized statistic C , = C1 j, — E[Cy 4] is also
sub-exponential:

1C vy < IC ko + IEIC K]l

< a1, 4 [ElCuil]

where (a) is obtained by Assumption B.

Among different groups, the data are mutually independent, then we know that {él,k}zlﬂ are
independent random variables with mean 0.

Therefore, we can apply Bernstein inequality(R. Vershynin|(2018)):

LS~ A - . (€+0)? e+
Pl|l—% ¢ o) <2exp |-
<m,; Lkl > €F )- exp{ cmm((Mg+cl/1n2)2’Mg+cl/1n2) ”1}

where ¢ > 0 is an absolute constant.
C1 +0

Since we have M, +
above into

> € > 6, which implies m < 1, we can transform the inequality

P(|Ci-ci|>¢) = < >e—>

(6-6)?
= ZGXP[ ‘O, 7 (Cr 1 0)/m2)? }
(a)

< 9,

niy

chk

where (a) is obtained by 11 > g7 (M, + CGit8)21n(2).

Second, we can apply Theorem|4.3|to the case when using 7 instead of 7. Therefore, by the end of
Step 2 in the proof of Theorem we will derive the following conclusion:

In(3) 261 6(M)[D] g, > SIn(F)

Forany § € (0, 3), € > \/ 75,2 “ 5525 miny BS=R)*

then
P(IR*PP(f) = R(f)| > €) < 26.
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Third, Assume the events

A= {‘01—01’ §€}7

. In (3) 2C,6(M) D) 81n (551
As =< |R (f) =R(f) <ee> 2; P(S = k*) ’nzminkp(szk) ’

In($) 2AC1 +9o(M)D| 8 ('

Ay = S IRFPP(F) =R < 6e 2 || =52 P(S=k) " mingP(S=k) [

then we have A1 N Ay C As.
From the First part and Second part of the proof, we have P(A{) < 6, P(AS) < 24, then

P(A3) > P(A; N Ay) > 1 —P(AY) —P(AS) > 1 — 34,

5 -
which is equivalent to the following statement: For any 6 € (0, %), €> lnz(i) (2(C§P(+§):¢,€(f\)4 D] , if
81n (121
2 mingP(s=r)- then

P(IR*PP(f) = R(f)| > €) < 34.
Finally, similar to Step 3 in the proof of Theorem recall that one can easily show
REPE(f) = R(%) < 2 sup|[RPP(f) = RFPP(f)

fer

)

but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F. Denote the VC-dimension of our hypothesis

n @ .
class F as VC(F), then with some constant K and for any 6 € (0, 3), if n > #@, then with

probability 1 — 35 we have:

VO(F) +1n(3) 2C1 +E6(M)|D|.

REPE(f) <R(S) + K o B(S = i)

This completes the proof. O
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