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A SUMMARY OF UPDATES

We highlighted all revisions in blue.

A.1 UPDATE IN SECTION 1

We rearticulated some portion of the introduction section to make our work easier to follow since we
believe adding more actuarial science related background to the introduction will make the audience
understand better the motivation and the focus of the work. Specifically, we give definition for
actuarial fair (see 1), interpretation of noise, and the generalization of the proposed method on
non-sensitive attributes (see 1) (as Reviewer BixT, m8tn suggested).

A.2 UPDATE IN SECTION 2

We further reviewed existing work on algorithms that train discrimination-free models in the actuarial
science literature (see 2.2) and pointed out the value and novelty of our work (as Reviewer m8tn,
BixT suggested).

A.3 UPDATE IN SECTION 4.1

We slightly modified the example (Example 4.1) we presented to show how the choice of T and F

relates to model transparency and performance so that both regression and classification tasks are
included (as Reviewer rqKi suggested).

A.4 UPDATE IN SECTION 4.2

We relate the motivation of using LDP to the interpretation of noise to clarify that LDP is only
used under two scenarios. 1) in data collection of vendors as an incentive for consumers to provide
information about their sensitive attributes. 2) in data transmission for security purposes, note that
2) is not needed if the information the insurer collected is already privatized (as Reviewer m8tn
suggested).

A.5 UPDATE IN SECTION 4.3

First, we added a more technical discussion (see 4.3) on assumptions A and B (especially on the
relaxation of assumption B) but deferred the presentation to Appendix C and Appendix G.4 due to
the page limit (as Reviewer BixT, rqKi suggested).

Second, We added a high-level description of the impact of the estimation error of ⇡ on the behavior
of Risk-LDP (Eq. 7) (as Reviewer rqKi suggested).

A.6 UPDATE IN SECTION 5

First, we added another empirical experiment on regression task using an insurance data set (see 5.1)
to show that our method is not limited to logistic loss but is compatible with other losses as well. The
results we obtained are also in support of the theoretical guarantees we derived (as Reviewer rqKi
suggested).

Second, we added an empirical study on the effect of the estimation error of noise rate on both evenly
and unevenly distributed scenarios. The results and observations are presented in Appendix E due to
page limit (as Reviewer rqKi suggested).
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B DEFERRED ALGORITHMS

B.1 MPTP-D

Algorithm 1 Multi-party Training Process w.r.t. D (MPTP-D)
Insurer Input: data: {Xi, Yi}

n
i=1, hypothesis class: H (if obtain T via supervised learning)

Insurer Output: {T (Xi)}ni=1
TTP Input: data: {T (Xi), Yi, Di}, hypothesis class: F , risk function: R(f1, . . . , f|D|) (Eq. (1))

repeat
train f1, . . . , f|D| by minimizing Eq. (1)

until Convergence
compute h⇤(T (X)) using Eq. (2)
return f⇤

1 , . . . , f
⇤
|D|, h

⇤(X)

TTP Output: f⇤
1 , . . . , f

⇤
|D|, h

⇤(T (X))

B.2 MPTP-S

Algorithm 2 Multi-party Training Process w.r.t. S (MPTP-S)
Insurer Input: data: {Xi, Yi}

n
i=1, hypothesis class: H (if obtain T via supervised learning), hypoth-

esis class: K (if obtain T̃ via supervised learning)
Insurer Output: {T (Xi)}ni=1, {T̃ (Xi)}ni=1

TTP Input: data: {T (Xi), Yi, Si}
n
i=1, {T̃ (Xi), Si}

n
i=1, hypothesis class G, risk function: 8k 2

[n1], R(gk) =
Pm

j=1 L(gk(T̃k,j , Sk,j)) (see Lemma 4.4), hypothesis class: F , risk function:
R(f1, . . . , f|D|) (Eq. (7)),

if Scenario 2 (⇡, ⇡̄ unknown) then
compute ⇡̂k, ˆ̄⇡k, k 2 [n1] (by applying Lemma 4.4)
compute Ĉ1 using ⇡̂k, ˆ̄⇡k, k 2 [n1] (by C1 estimation procedure 4.3)
compute ⇡̂, ˆ̄⇡ using Ĉ1

compute ⇧̂�1 using ⇡̂, ˆ̄⇡
else

compute ⇧̂�1 using ⇡, ⇡̄
end if
repeat

train f1, . . . , f|D| by minimizing Eq. (7)
until convergence
compute h⇤(T (X)) using Eq. (2)
return f⇤

1 , . . . , f
⇤
|D|, h

⇤(X)

TTP Output: f⇤
1 , . . . , f

⇤
|D|, h

⇤(T (X))
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C DEFERRED DISCUSSION ON ASSUMPTIONS

C.1 RESTRICTIONS ON ASSUMPTION A

The restriction of Assumption A relies on the type of generator (which will influence the tail
distribution of ⇡̂) and the number of data within each group (which will influence the accuracy of ⇡̂).
The condition in Assumption A is equivalent to:

P

0

B@

⇣
1� 1

|D|

⌘2

t
>

����⇡̂ �
1

|D|

����

1

CA  exp(
�t

K
),

when K > 0 is a constant.

Generally speaking, this assumption holds if ⇡̂ is inverse exponential distributed with a translation of
1

|D| , or having a lighter tail than the inverse exponential distribution that is

f⇡̂(t) 
1

K(t� |D|)2
exp(�

1

K|t� 1
D |

),

when t is close to 1
|D| , where f⇡̂(t) is the pdf of ⇡̂. Especially, since a bounded distribution is also

sub-exponential, if |⇡̂ � 1
|D| | > ✏, for some ✏ > 0 condition is also satisfied. This will happen when

the number of data within groups (m) is sufficiently large and ⇡ � 1
|D| is large enough.

C.2 RESTRICTIONS ON ASSUMPTION B

For Assumption B, the condition is equivalent to E[ 1
⇡̂�1/|D| ]. Therefore, the closer ⇡ and 1

|D| is the
more accuracy of ⇡̂ is needed to suffice this assumption.

C.3 RELAXATION OF ASSUMPTION B

We do not acquire Ĉ1,k to be strictly unbiased estimators of C1– some perturbations can be allowed
with some small modification to Theorem 4.5, but the general result still holds. Please see Section
4.3 and Appendix G.4 for a detailed discussion.
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D DEFERRED EXPERIMENT RESULTS

D.1 DATA

The Adult dataset contains 48842 observations, 14 features, and 1 target variable (income). In
our experiment, we delete observations with missing values which results in a subset of 45222
observations. Further, we delete ”fnlwgt”, ”education num” where the former has no clear description
and the latter is a duplicate of ”education”. We choose D = sex to be our sensitive attribute which
takes values of ”male” and ”female”. The privatized sensitive attribute S is generated under different
privacy levels using a set of ✏’s by Definition 4.1. D was only used to set the benchmark for
performance and is masked under any other settings.

We conduct experiments 1) when the noise rate ⇡, ⇡̄ are known (scenario 1) and 2) when the noise
rates are unknown (scenario 2). For both scenarios, while we limited the hypothesis class F to the
class of linear models, the insurer obtains two transformations T1, T2 for the main task and one
transformation T̃ for noise rate estimation, where T1 is obtained via supervised learning (same as
example 4.1), T2, T̃ are simply the identity. The reason that we choose such T1, T2 is to showcase
the relationship between the complexity of T , model transparency, and performance on unseen data
under the same F . Further, under scenario 2, we set n1 = 1, 2, 4 and conduct experiments for each n1

respectively. With F being the class of linear models under both scenarios, TTP is essentially fitting
a logistic regression w.r.t. T1(X) and T2(X) to obtain µ(T1(X), D), and µ(T2(X), D) respectively.
For the calculation of h⇤(T (X)), we choose the empirical marginal of D (estimated using S).

D.2 RESULTS

For each noise level, we generated S using 5 different seeds, hence each figure below (Figure 4, 5, 6)
shows the mean values across all 5 different seeds. For both scenarios, we run experiments over 7
different privacy levels for ⇡ = (0.9, 0.8, 0.7, 0.6, 0.55, 0.525, 0.5175). As the focus is to estimate
µ(X,D), for conciseness, plots for test loss of h⇤(X) are deferred to Appendix F.

(a) µ(X,D) test loss for T1(X) (b) µ(X,D) test loss for T2(X)

Figure 4: Test Loss for Scenario 1

From Figure 4, we observe that the T1 is more robust against noise compared to T2, and T1 converges
faster and has a better out-of-sample performance. Notice that as ⇡ ! 1

|D| , it requires a larger sample
size to achieve the same loss approximation. Hence, for a fixed sample size, the larger the noise, the
worse Eq. (7) approximates Eq. (1) which is in support of the result we obtain from Theorem 4.3.
Although in terms of both accuracy and loss, there is a gap between Eq. (1), the trade-off comes from
the ease of implementation (use of group-specific models) and transparency w.r.t. T (X) in that we
have limited F to be the class of linear models. Next, we present the test loss (see Figure 5, 6) for
µ(X,D) estimation using T1, T2 under scenario 2 with n1 = 1, 2, 4 respectively.
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(a) µ(X,D) test loss with n1 = 1 (b) µ(X,D) test loss with n1 = 2 (c) µ(X,D) test loss with n1 = 4

Figure 5: µ(X,D) test loss with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) µ(X,D) test loss with n1 = 1 (b) µ(X,D) test loss with n1 = 2 (c) µ(X,D) test loss with n1 = 4

Figure 6: µ(X,D) test loss with T2(X) for scenario 2 with n1 = 1, 2, 4

From Figure 5, 6, the loss behavior w.r.t. T1, T2 is similar to that under scenario 1 in general. However,
as n1 increases, we observe a better approximation of Risk-LDP (Eq. (7)) to Eq. (1) (more obvious
under T2). As n1 increases, a smaller ✏̃ is achievable, hence resulting in a tighter bound as Theorem
4.5 suggests. Therefore, the experiment results under both scenarios align with our theoretical results.
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E DEFERRED INVESTIGATION OF NOISE RATE ESTIMATION ERROR

We manually set the error of estimation to be {±0.01,±0.02,±0.03}, and our estimated noise rate
is manually adjusted for each privacy level. Further, we created three subsets of the original data
where the ratio between ”Female” and ”Male” observation is 4

1 ,
2
1 and 1

1 to study the impact of the
estimation error of Risk-LDP (Eq. 7) when the privatized sensitive attributes are unevenly distributed.
We conduct experiments using T1, T2 with the manually adjusted erroneous noise rate on each subset
respectively and compare the performance. We first present the results using T1 below.

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 7: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.9

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 8: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.8

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 9: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.7
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(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 10: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.6

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 11: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.55

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 12: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.525

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 13: µ(X,D) Test Loss with T1(X) for Erroneous ⇡̂ when ⇡ = 0.5175
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Next, we present the results using T2(X)

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 14: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.9

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 15: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.8

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 16: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.7
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(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 17: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.6

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 18: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.55

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 19: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.525

(a) µ(X,D) test loss for F
M = 4

1 (b) µ(X,D) test loss for F
M = 2

1 (c) µ(X,D) test loss for F
M = 1

1

Figure 20: µ(X,D) Test Loss with T2(X) for Erroneous ⇡̂ when ⇡ = 0.5175
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Observations: From the above figures we can see that T1 converges much faster and is also more
robust against estimation error on the noise rate than T2 regardless of the distribution of sensitive
attributes in general, combining the similar observation under scenario 1, we tend to conclude that
the convergence rate regardless of the noise rate is known or unknown is considered closely related to
the transformation chosen, further the robustness of Risk-LDP (Eq. 7) against noise rate estimation
error is also impacted by the choice of transformation and this impact becomes more obvious as ⇡
gets closer to 1

|D| .

We also observe that when ⇡ is far away from 1
|D| (in this case 0.5), regardless of the transformation

chosen and the distribution of sensitive attribute, Risk-LDP (Eq. 7) is very robust against the
estimation error (even when the error is large regardless overestimation or underestimation). However,
as ⇡ becomes very close to 1

|D| (Figure 11, 12, 13), we can see that underestimation of ⇡ is much
more destructive than overestimation especially when the underestimation error is large.

As one should expect that different transformations should yield different behaviors of Risk-LDP.
Fixing the transformation, we also noted that the distribution of the sensitive attributes does not have
too much impact on the convergence behavior of Risk-LDP (Eq. 7). However, as the distribution
becomes more imbalanced, Risk-LDP tends to give a higher loss than that of the less imbalanced
scenario.
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F DEFERRED FIGURES

F.1 INSURANCE

We now present the test loss for the estimation of h⇤(X) using T1, T2 under scenario 1 respectively:

(a) h⇤(X) test loss for T1(X) (b) h⇤(X) test loss for T2(X)

Figure 21: h⇤(X) test loss for scenario 1

Below is the test loss for h⇤(X) using T1, T2 with estimated ⇡ with n1 = 1, 2, 4 under scenario 2
respectively:

(a) h⇤(X) test loss with n1 = 1 (b) h⇤(X) test loss with n1 = 2 (c) h⇤(X) test loss with n1 = 4

Figure 22: h⇤(X) test loss with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) h⇤(X) test acc with n1 = 1 (b) h⇤(X) test acc with n1 = 2 (c) h⇤(X) test acc with n1 = 4

Figure 23: h⇤(X) test loss with T2(X) for scenario 2 with n1 = 1, 2, 4
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F.2 ADULT

We first present test accuracy for the estimation of µ(X,D) and h⇤(X) using T1, T2 under scenario 1
respectively:

(a) µ(X,D) test acc for T1(X) (b) µ(X,D) test acc for T2(X)

Figure 24: µ(X,D) test accuracy for scenario 1

Below is the test accuracy for the estimation of µ(X,D) and h⇤(X) using T1, T2 with n1 = 1, 2, 4
under scenario 2 respectively:

(a) µ(X,D) test acc with n1 = 1 (b) µ(X,D) test acc with n1 = 2 (c) µ(X,D) test acc with n1 = 4

Figure 25: µ(X,D) test accuracy with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) µ(X,D) test acc with n1 = 1 (b) µ(X,D) test acc with n1 = 2 (c) µ(X,D) test acc with n1 = 4

Figure 26: µ(X,D) test accuracy with T2(X) for scenario 2 with n1 = 1, 2, 4

Next, we present the test accuracy for the estimation of h⇤(X) using T1, T2 with n1 = 1, 2, 4 under
scenario 2 respectively:
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(a) h⇤(X) test acc with n1 = 1 (b) h⇤(X) test acc with n1 = 2 (c) h⇤(X) test acc with n1 = 4

Figure 27: h⇤(X) test accuracy with T1(X) for scenario 2 with n1 = 1, 2, 4

(a) h⇤(X) test acc with n1 = 1 (b) h⇤(X) test acc with n1 = 2 (c) h⇤(X) test acc with n1 = 4

Figure 28: h⇤(X) test accuracy with T2(X) for scenario 2 with n1 = 1, 2, 4
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G DEFERRED PROOFS

G.1 LEMMA 4.2 PROOF

Lemma 4.2 Given the privacy parameter ✏, minimizing the following risk (Risk-LDP) Eq. (7) under
✏-LDP w.r.t. privatized sensitive attributes S is equivalent of minimizing Eq. (1) w.r.t. true sensitive
attributes D at the population level:

R
LDP (f1, . . . , fk) =

|D|X

k=1

|D|X

j=1

⇧�1
kj EY,T (X)|S=j

h
L
�
Y, fk(T (X))

�i
, (8)

Proof. Step 1:
Since the ✏-LDP randomization mechanism is independent of X,Y , therefore, the distribution of S is
fully characterized by the privacy parameter ✏ and the distribution of D. Therefore, the distribution
of S is deterministic once the privacy parameter ✏ and the distribution of D is given.

Step 2: Recover distributions w.r.t. D

Inspired by proposition 1 in Mozannar et al. (2020). Let E1, E2 be two probability events defined with
respect to (T (X), Y, Ŷ ), then consider the following probability:

P(E1, E2 | S = d)

=
X

d02D

P(E1, E2 | S = d,D = d0)P(D = d0 | S = d)

=
X

d02D

P(E1, E2 | D = d0)P(D = d0 | S = d)

=
X

d02D

P(E1, E2 | D = d0)
P(S = d | D = d0)P(D = d0)P

d002D P(S = d | D = d00)P(D = d00)

=P (E1, E2 | D = d)
⇡P(D = d)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
+
X

d0\d

P (E1, E2 | D = d0)
⇡̄P(D = d0)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
.

Then, let E1 = Y, E2 = T (X), we obtain the following:

P(Y, T (X) | S = d)

=
X

d02D

P(Y, T (X) | S = d,D = d0)P(D = d0 | S = d)

=
X

d02D

P(Y, T (X) | D = d0)P(D = d0 | S = d)

=
X

d02D

P(Y, T (X) | D = d0)
P(S = d | D = d0)P(D = d0)P

d002D P(S = d | D = d00)P(D = d00)

=P (Y, T (X) | D = d)
⇡P(D = d)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
+
X

d0\d

P (Y, T (X) | D = d0)
⇡̄P(D = d0)

⇡P(D = d) +
P
d00\d

⇡̄P(D = d00)
.

Denote pd = P(D = d), then let ⇧ be the following |D|⇥ |D| matrix with the following entries:
8
><

>:

⇧i,i =
⇡pi

⇡pi+
P

d00\i
⇡̄pd00

, for i 2 D

⇧i,j =
⇡̄pj

⇡pi+
P

d00\i
⇡̄pd00

, for i, j 2 D s.t.,i 6= j
,
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then we have the following system of linear equations:
2

6664

P(Y, T (X) | S = 1)
.
.
.

P(Y, T (X) | S = |D|)

3

7775
= ⇧

2

6664

P(Y, T (X) | D = 1)
.
.
.

P(Y, T (X) | D = |D|)

3

7775
,

denote as s1 = ⇧d1, where s1 = P(Y, T (X) | S), d1 = P(Y, T (X) | D).

Since ⇧ is row-stochastic and invertible, we show that the entries of ⇧�1 take the following forms:
8
<

:
⇧�1

i,i = ⇡+|D|�2
|D|⇡�1

⇡pi+
P

d00\i ⇡̄pd00

pi
, for i 2 D

⇧�1
i,j = ⇡�1

|D|⇡�1

⇡̄pi+
P

d00\i ⇡pd00

pi
, for i, j 2 D s.t.,i 6= j

,

multiplying ⇧�1 on both side, we recovered

P(Y, T (X) | D = k) =

|D|X

j=1

⇧�1
kj P(Y, T (X) | S = j)

= ⇧�1
k· P(Y, T (X) | S)

where ⇧�1
k· denotes the kth row of ⇧�1.

However, there is still one component that we do need to estimate in order to recover the population
distribution of P(Y,X | D). We need to further estimate P(D = d). Using the same technique, to
estimate P(D = d), first write P (S = d) in terms of the conditional probability of S given D as:

P(S = d) =
X

d02D

P(S = d | D = d0)P(D = d0)

= P(S = d | D = d)P(D = d) +
X

d0\d

P(S = d | D = d0)P(D = d0)

= ⇡pd +
X

d0\d

⇡̄pd0 .

Then we write the above expression in terms of a system of linear equations. Let T be an |D|⇥ |D|

matrix with the following entries:
⇢
Ti,i = ⇡, for i 2 D
Ti,j = ⇡̄, for i, j 2 D s.t.,i 6= j

,

then we have the following system of linear equations:
2

6664

P(S = 1)
.
.
.

P(S = |D|)

3

7775
= T

2

6664

P(D = 1)
.
.
.

P(D = |D|)

3

7775
,

denote as s2 = Td2, where s2 = P(S) and d2 = P(D).

It follows the same argument that T is row-stochastic and invertible and it is easy to verify that T�1

takes the following form:
(
T�1
i,i = ⇡+|D|�2

|D|⇡�1 , for i 2 D

T�1
i,j = ⇡�1

|D|⇡�1 , for i, j 2 D s.t.,i 6= j
,

by multiplying T�1 on both side, we obtain:

P(D = k) =

|D|X

j=1

TkjP(S = j)

= T�1
k· P(S).
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Step 3: Recover the loss w.r.t. D

At the population level, we have recovered that:

P(Y, T (X) | D = k) = ⇧�1
k· P(Y, T (X) | S),

where P(D = k) = T�1
k· P(S) is used in calculation of ⇧�1

k· .

Hence, we recover the population equivalent of Eq. (1):

|D|X

k=1

EY,T (X)|D=k

h
L
�
Y, fk(T (X))

�i
=

|D|X

k=1

Z

Y

Z

T (X)
P(Y, T (X) | D = k)L

�
Y, fk(T (X))

�
dT (X)dY

=

|D|X

k=1

Z

Y

Z

T (X)

|D|X

j=1

⇧�1
kj P(Y, T (X) | S = j)L

�
Y, fk(T (X))

�
dT (X)dY

=

|D|X

k=1

|D|X

j=1

Z

Y

Z

T (X)
⇧�1

kj P(Y, T (X) | S = j)L
�
Y, fk(T (X))

�
dT (X)dY

=

|D|X

k=1

|D|X

j=1

⇧�1
kj EY,T (X)|S=j

h
L
�
Y, fk(T (X))

�i
.

Therefore, we conclude that it is equivalent to minimizing:

(f1⇤ , . . . , fk⇤) argmin
f1,...,fk

|D|X

k=1

|D|X

j=1

⇧�1
kj EY,T (X)|S=j

h
L
�
Y, fk(T (X))

�i

This completes the proof.

G.2 LEMMA 4.4 PROOF

Lemma 4.4 Under ✏-LDP setting, with ⇡ 2 ( 1
|D| , 1], ⇡̄ 2 [0, 1

|D| ), assuming that there exists an anchor
points T̃ (X)⇤ s.t. P(D = j⇤|T̃ (X)⇤) = 1 for some j⇤ 2 [|D|], then ⇡ = P(S = j⇤|T̃ (X)⇤). Em-
pirically, denote the n-dimension vector ⌘s(T̃ (X)⇤) =

�
P̂(S = j⇤|T̃ (X1)), . . . , P̂(S = j⇤|T̃ (Xn))

�
,

then ⇡̂ = k⌘s(T̃ (X)⇤)k1 and {P̂ (S = j⇤|T̃ (Xi))}ni=1 can be obtained by specifying a hypothesis
class G and minimize the following empirical risk:

R̂(k) =
nX

i=1

L
�
k(T̃ (Xi)), Si

�
.

Proof. Notice that ⇡ 2 ( 1
|D| , 1], ⇡̄ 2 [0, 1

|D| ) and consequently we have ⇡ > ⇡̄. Hence, by Theorem 5
of Zhang et al. (2021), we are in a good position to apply the noise rate estimation method (Theorem
3) in Patrini et al. (2017) to estimate ⇡, ⇡̄. Our ✏-LDP setting can be considered as a special case of
CCN (class conditional noise) where the flip probability is the same across all groups in D. Consider

P(S = j⇤|T̃ (X)⇤) =

|D|X

k=1

P(S = j⇤|D = k) · P(D = k|T̃ (X)⇤)

(a)
=

|D|X

k=1

P(S = j⇤|D = k) · 1{j⇤ = k}

= ⇡,

(a) is by followed by the definition of anchor point

P(D = j⇤|T̃ (X)⇤) = 1 =) P(D = k|T̃ (X)⇤) = 0, 8k 6= j⇤, k, j⇤ 2 [|D|].

27



Under review as a conference paper at ICLR 2024

Then one can easily see that P(S = j⇤|T̃ (Xi)) attains its maximum when P(D = j⇤|T̃ (Xi)) = 1,
since we know ⇢

P(S = j⇤|D = k) = ⇡, if j⇤ = k
P(S = j⇤|D = k) = ⇡̄, if j⇤ 6= k,

hence we know P(S = j⇤|T̃ (Xi)) is actually a weighted sum of ⇡ and ⇡̄, where the weights are simply
{P(D = k|T̃ (Xi))}

|D|
k=1. But we also know that ⇡ > ⇡̄. Hence, for empirical estimation, denote the

n-dimension probability vector ⌘s(T̃ (X)⇤) =
⇣
P̂(S = j⇤|T̃ (X1)), . . . , P̂(S = j⇤|T̃ (Xn))

⌘

⇡̂ = k⌘s(T̃ (X)⇤)k1.

Where {P̂ (S = j⇤|T̃ (Xi))}ni=1 can be obtained by specifying a hypothesis class K and minimize
the following empirical risk:

R̂(k) =
nX

i=1

L
�
k(T̃ (Xi)), Si

�
.

This completes the proof

G.3 THEOREM 4.3 PROOF

Theorem 4.3 For any � 2 (0, 1
2 ), C1 = ⇡+|D|�2

|D|⇡�1 , denote V C(F) as the VC-dimension of
the hypothesis class F , and K be some constant that depends on V C(F), then under a given
loss function L : Y ⇥ Y ! R+, and for f = {fk}

|D|
k=1 where fk 2 F , 8k 2 [|D|] with

fk : T (X ) ! R+ s.t. sup
X2X

|fk(T (X))|  M 2 R+, 8k 2 [|D|] derived from Lemma 4.2,

consequently, L(fk(T (X), Y ))  �(M) 2 R+, 8k 2 [|D|], X 2 X , Y 2 Y , where � is some

function of M , denote k⇤  argmax
k

|R̂
LDP (fk) � R

LDP (fk)|, if n � 8 ln ( |D|
� )

mink P(S=k) then with

probability 1� 2�:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2C1�(M)|D|

P(S = k⇤)
.

Proof. For better presentation, denote X = T (X) and X̃ = T̃ (X) in the proof.

Step 1: simplify the objective

Denote R(fk) as the expected risk of fk, and R̂(fk) as the empirical risk of fk that depends on the
data set given, then we start with

P(|R̂LDP (f)�R(f)| > ✏)

=P(|R̂LDP (f) +R
LDP (f)�R

LDP (f)�R(f)| > ✏)

P(|R̂LDP (f)�R
LDP (f)|+ |R

LDP (f)�R(f)| > ✏)

(a)
=P(|R̂LDP (f)�R

LDP (f)| � ✏)

=P
⇣
|

|D|X

k=1

R̂
LDP (fk)�

DX

k=1

R
LDP (fk)| > ✏

⌘

P
⇣ DX

k=1

|R̂
LDP (fk)�R

LDP (fk)| > ✏
⌘

(b)
P
⇣
max

k
|R̂

LDP (fk)�R
LDP (fk)| >

✏

|D|

⌘

(c)
=P
✓����

|D|X

j=1

⇧̂�1
k⇤j

1

nj

X

i:Si=j

L
�
Yi, fk⇤(T (Xi))

�
�⇧�1

k⇤·EY,X|S

h
L
�
Y, fk⇤(X)

�i���� >
✏

|D|

◆
,
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where (a) is obtained from the population equivalence of two losses from Lemma 4.2.

(b) is followed by for two events A,B, if A implies B then P (A) < P (B), also denote that
k⇤  argmax

k
|R̂

LDP (fk)�R
LDP (fk)|.

(c) is obtained by expanding the expression for R̂LDP (fk⇤) and R
LDP (fk⇤) respectively.

Step 2: concentration of the empirical risk under Risk-LDP

Denote nN
yxs =

P
i 1(yi = y, xi = x, si = s),Qyxs = P(Y = y,X = x, S = j), and define the

random variable Nyxs = {i | yi = y, xi = x, si = s}. We can deduce nN
s =

P
x2X,y2Y 1(yi =

y, xi = x, si = s). Then, we have E[R̂LDP (fk⇤) | NY XS ] = R
LDP (fk⇤), where NY XS denotes

all possible Nyxs. Using similar approach of Lemma 2 in Mozannar et al. (2020), we can write:

P(R̂LDP (fk)
N
�R

LDP (fk⇤) >
✏

|D|
)

(a)
=
X

NY XS

P
⇣
R̂

LDP (fk⇤)N �R
LDP (fk⇤) >

✏

|D|

��NY XS

⌘
· P(NY XS)

(b)
P
⇣ [

x2X,y2Y,s2S

n
nN
s <

n
P

x2X,y2Y Qyxs

2

o⌘

+
X

8x,y,Nyxs:nN
s �

n
P

x2X,y2Y Qyxs
2

P
⇣
R̂

LDP (fk⇤)N �R
LDP (fk⇤) >

✏

|D|

���NY XS

⌘
· P(NY XS)

(c)
 |D| exp

n
�

mins n
P

x2X,y2Y Qyxs

8

o

+
X

8x,y,Nyxs:nN
s �

n
P

x2X,y2Y Qyxs
2

P
⇣
R̂

LDP (fk⇤)N �R
LDP (fk⇤) >

✏

|D|

���NY XS

⌘
· P(NY XS),

where (a) follows by conditioning over all 2n|X|
n
|D|

n possible configurations of Nyxs ⇢ [n].
(b) is obtained by splitting the configurations where 8x, y,Nyxs : nN

s �
n
P

x2X,y2Y Qyxs

2 and
the complement of the event and upper bound the complement of the event by the probability
that 9s s.t. nN

s <
n
P

x2X,y2Y Qyxs

2 . (c) is obtained by the union bound and we know nN
s ⇠

Binomial
�
n,
P

x2X,y2Y Qyxs

�
and apply the Chernoff bound on nN

yxj .

Now, we will apply the McDiarmid Inequality McDiarmid (1989). Let Xn = (X1, . . . , Xn) 2 Xn

be n independent random variables and let g : Xn
! R, if there exists constants c1, . . . , cn s.t.

sup
x1,...,xi,x0

i,...,xn

|g(x1, . . . , xi, . . . , xn)� g(x1, . . . , x
0
i, . . . , xn)|  ci, i = 1, . . . , n,

then 8✏ > 0:

P(g(x1, . . . , xi, . . . , xn)� E[g(x1, . . . , xi, . . . , xn)])  2 exp

✓
2✏2Pn
i=1 c

2
i

◆
.

Since by conditioning on NY XS , then for R̂LDP (fk⇤), everything else is now deterministic except
for fk⇤ , in other words, by conditioning on NY XS , the value of R̂LDP (fk⇤) only depends on fk⇤ .
Then, for two datasets N,N 0 where they only differ by one value of fk⇤(Xi), we try to bound how
much fk⇤ can change.

Recall from Lemma 4.2, we computed the entries of ⇧�1 takes the following form:
8
<

:
⇧�1

i,i = ⇡+|D|�2
|D|⇡�1

⇡pi+
P

d00\i ⇡̄pd00

pi
, for i 2 D

⇧�1
i,j = ⇡�1

|D|⇡�1

⇡̄pi+
P

d00\i ⇡pd00

pi
, for i, j 2 D s.t.,i 6= j

.
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For simplicity, let C1 = ⇡+|D|�2
|D|⇡�1 , C2 = ⇡�1

|D|⇡�1 , since we do not have access to D, therefore we can
not directly observe pd, hence we write ⇧�1 in terms of Ps where Ps = P(S):

8
><

>:

⇧�1
i,i = C1

⇡T�1
i· Ps+

P
l\i ⇡̄T

�1
l· Ps

T�1
i· Ps

, for i 2 D

⇧�1
i,j = C2

⇡̄T�1
i· Ps+

P
l\i ⇡T

�1
l· Ps

T�1
i· Ps

, for i, j 2 D s.t.,i 6= j
,

we also computed T�1 as:
(
T�1
i,i = ⇡+|D|�2

|D|⇡�1 , for i 2 D

T�1
i,j = ⇡�1

|D|⇡�1 , for i, j 2 D s.t.,i 6= j
,

then we have

sup
N,N 0

|R̂
LDP (fk⇤)N � R̂

LDP (fk⇤)N
0
|

=

����C1

⇡T�1
k⇤·P

N
s +

P
l\k ⇡̄T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N +

X

j\k

C2

⇡̄T�1
k⇤·P

N
s +

P
l\k ⇡T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N

� C1

⇡T�1
k⇤·P

N
s +

P
l\k ⇡̄T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N

0
+
X

j\k

C2

⇡̄T�1
k⇤·P

N
s +

P
l\k ⇡T

�1
l· PN

s

T�1
k⇤·P

N
s

R̂
LDP (fk⇤)N

0
����

=

����C1

⇡T�1
k⇤·P

N
s +

P
l\k ⇡̄T

�1
l· PN

s

T�1
k⇤·P

N
s

⇣P
i2N,x2X,y2Y,S=k L

�
yi, fk⇤(xi)

�

nk⇤
�

P
i2N 0,x2X,y2Y,S=k L

�
yi, fk⇤(xi)

�

nk⇤

⌘

+
X

j\k

C2

⇡̄T�1
k⇤·P

N
s +

P
l\k ⇡T

�1
l· PN

s

T�1
k⇤·P

N
s

⇣P
i2N,x2X,y2Y,S=j L

�
yi, fk⇤(xi)

�

nk⇤
�

P
i2N 0,x2X,y2Y,S=j L

�
yi, fk⇤(xi)

�

nk⇤

⌘����

(a)


����C1

⇡ max
m2[|D|]

T�1
m· P

N
s + (|D|� 1)⇡̄ max

m2[|D|]
T�1
m· P

N
s

T�1
k⇤·P

N
s

·
�(M)

nk⇤

����

=

����C1

�
⇡ + ⇡̄(|D|� 1)

�
·
�(M)

nk⇤

����

(b)
=

����
C1�(M)

nk⇤

����,

where (a) is obtained by C2  0, 8⇡ 2 ( 1
|D| , 1]. (b) is followed by the fact that ⇡ + ⇡̄(|D|� 1) = 1.

Now, we are ready to apply the McDiarmid Inequality:
X

8x,y,Nyxs:nN
s �

n
P

x2X,y2Y Qyxs
2

P
⇣
R̂

LDP (fk⇤)N �R
LDP (fk⇤) >

✏

|D|

���NY XS

⌘
· P(NY XS)



X

8x,y,Nyxs:nN
s �

n
P

x2X,y2Y Qyxs
2

2 exp

(
�

2✏2

|D|2

n·
�C1�(M)

nk⇤

�2

)
· P(NY XS)

(a)
2 exp

(
� 2n✏2

⇣ P(S = k)

2C1�(M)|D|

⌘2
)
,

where (a) is obtained since when nk⇤ =
n
P

x2X,y2Y Qyxk

2 = nP(S=k)
2 , the quantity is maximized.

Now, we have:

P(
��R̂LDP (f)�R(f)

�� > ✏)  |D| exp

(
�

mink P(S = k)

8

)
+2 exp

(
� 2n✏2

⇣ P(S = k⇤)

2C1�(M)|D|

⌘2
)
,
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solve for �, we now have, for any � 2 (0, 1
2 ), ✏ �

q
ln ( �

2 )
2n

2C1�(M)|D|
P(S=k⇤) , if n � 8 ln ( |D|

� )
mink P(S=k) , then

P
�
|R̂

LDP (f)�R(f)| > ✏
�
 2�

Step 3: Obtain the final result

Recall that one can easily show

R̂
LDP (f)�R(f⇤)  2 sup

f2F

��RLDP (f)� R̂
LDP (f)

��,

but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F . Denote the VC-dimension of our hypothesis

class F as V C(F), then with some constant K and for any � 2 (0, 1
2 ), if n � 8 ln ( |D|

� )
mink P(S=k) , we have:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2C1�(M)|D|

P(S = k⇤)
.

This completes the proof.

G.4 THEOREM 4.5 PROOF

Theorem 4.5 For any � 2 (0, 1
3 ), C1 = ⇡+|D|�2

|D|⇡�1 > 0, Ĉ1 = 1
n1

Pn1

k=1 Ĉ1,k, where Ĉ1,k is
defined in Lemma 4.4, denote V C(F) as the VC-dimension of the hypothesis class F , and K
be some constant that depends on V C(F), if Assumption A (4.3),B (4.3), and Lemma 4.4 hold,
given a loss function L : Y ⇥ Y ! R+, Mg + C1+✓

ln 2 > ✏̃ > ✓, and for f = {fk}
|D|
k=1 where

fk 2 F , 8k 2 [|D|] with fk : T (X ) ! R+ s.t. sup
X2X

|fk(T (X))|  M 2 R+, 8k 2 [|D|] derived

from Lemma 4.2, consequently, L(fk(T (X), Y ))  �(M) 2 R+, 8k 2 [|D|], X 2 X , Y 2 Y ,

where � is some function of M , denote k⇤  argmax
k

|R̂
LDP (fk)�RLDP (fk)|, if n � 8 ln ( |D|

� )
mink P(S=k) ,

n1 �
1

c(✏̃�✓)2 (Mg +
C1+✓
ln 2 )2 ln( 2� ) where c is an absolute constant, then with probability 1� 3�:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2(C1 + ✏̃)�(M)|D|

P(S = k⇤)
.

Proof. We will first introduce some preliminaries that will be used in the proof. We will first introduce
how we obtain Ĉ1 and then state the assumptions used for the proof.

Step 1: Grouping: Given the observed data {T (Xi), Si}
n
i=1, we evenly divide them into n1 groups,

with m = n
n1

samples each.

Step 2: Estimating within groups: for any k 2 [n1], within every group {T (Xk,j), Sk,j}
m
j=1, we can

derive an m-dimension vector ⌘s,k(T̃ (Xk,·)⇤) =
�
P̂k(S = j⇤|T̃ (Xk,1)), . . . , P̂k(S = j⇤|T̃ (Xk,m))

�

and ⇡̂k = k⌘s,k(T (X)⇤)k1, which is defined in Lemma 4.4. Then, applying a straight-forward plug
in Ĉ1,k = ⇡̂k+|D|�2

|D|⇡̂k�1 .

Step 3:Averaging: Finally, our estimator for C1, denoted by Ĉ1 = 1
n1

Pn1

k=1 Ĉ1,k, can be derived by
averaging Ĉ1,k, k 2 [n1].

Next, we state two assumptions that we used to derive the generalization error bound for Risk-LDP
(Eq. (7)) when the noise rate is estimated from the data.

Assumption A: (Sub-exponentiality) For all k 2 [n1], define ĝk(T̃ (X)) = P̂k(S = j⇤|T̃ (X)) There
exists a constant Mg > 0, such that kĈ1,kk 1 = kmini2[m]

ĝk(T̃ (Xk,i))+|D|�2

|D|ĝk(T̃ (Xk,i))�1
k 1  Mg for all
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k 2 [n1], where k · k 1 is the sub-exponential norm:

kXk 1 = inf{t > 0|E[eX/t]  2}.

Assumption B: (Nearly Unbiasedness) For all k 2 [n1], Ĉ1,k is a ’nearly’ unbiased estimator of C1,
namely

���E[Ĉ1,k]� C1

��� < ✓ for all k 2 [m], where ✓ > 0.

Now, we begin the proof.

First, we will prove a concentration inequality with regard to Ĉ1 and C1.

Since for any constant L, we have

kLk 1 = inf{t > 0|E[e|L|/t]  2}

= inf{t > 0|e|L|/t
 2}

=
|L|

ln 2
,

and k · k 1 is a norm, we can conclude that the standardized statistic C̃1,k = Ĉ1,k � E[Ĉ1,k] is also
sub-exponential:

kC̃1,kk 1  kĈ1,kk 1 + kE[Ĉ1,k]k 1

Mq +
|E[Ĉ1,k|]

ln 2
(a)
= Mq +

C1 + ✓

ln 2
,

where (a) is obtained by Assumption B.

Among different groups, the data are mutually independent, then we know that {C̃1,k}
n1
k=1 are

independent random variables with mean 0.

Therefore, we can apply Bernstein inequality(R.Vershynin (2018)):

P
 �����

1

n1

n1X

k=1

C̃1,k

����� > ✏̃+ ✓

!
 2 exp


�cmin

✓
(✏̃+ ✓)2

(Mg + C1/ ln 2)2
,

✏̃+ ✓

Mg + C1/ ln 2

◆
n1

�
,

where c > 0 is an absolute constant.

Since we have Mg +
C1+✓
ln 2 > ✏̃ > ✓, which implies ✏̃

Mg+C1/ ln 2 < 1, we can transform the inequality
above into

P
⇣���Ĉ1 � C1

��� > ✏̃
⌘
= P

 �����
1

n1

n1X

k=1

C̃1,k

����� > ✏̃� ✓

!

 2 exp


�c

(✏̃� ✓)2

(Mg + (C1 + ✓)/ ln 2)2
n1

�

(a)
 �,

where (a) is obtained by n1 �
1

c(✏̃�✓)2 (Mg +
C1+✓
ln 2 )2 ln( 2� ).

Second, we can apply Theorem 4.3 to the case when using ⇡̂ instead of ⇡. Therefore, by the end of
Step 2 in the proof of Theorem 4.3, we will derive the following conclusion:

For any � 2 (0, 1
3 ), ✏ �

q
ln ( �

2 )
2n

2Ĉ1�(M)|D|
P(S=k⇤) , if n � 8 ln ( |D|

� )
mink P(S=k) , then

P
�
|R̂

LDP (f)�R(f)| > ✏
�
 2�.
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Third, Assume the events

A1 =
n���Ĉ1 � C1

���  ✏̃
o
,

A2 =

8
<

:|R̂
LDP (f)�R(f)|  ✏, ✏ �

s
ln ( �2 )

2n

2Ĉ1�(M)|D|

P(S = k⇤)
, n �

8 ln ( |D|
� )

mink P(S = k)

9
=

; ,

A3 =

8
<

:|R̂
LDP (f)�R(f)|  ✏, ✏ �

s
ln ( �2 )

2n

2(C1 + ✏̃)�(M)|D|

P(S = k⇤)
, n �

8 ln ( |D|
� )

mink P(S = k)

9
=

; ,

then we have A1 \A2 ✓ A3.

From the First part and Second part of the proof, we have P(AC
1 )  �,P(AC

2 )  2�, then

P(A3) � P(A1 \A2) � 1� P(AC
1 )� P(AC

2 ) � 1� 3�,

which is equivalent to the following statement: For any � 2 (0, 1
3 ), ✏ �

q
ln ( �

2 )
2n

(2(C1+✏̃)�(M)|D|
P(S=k⇤) , if

n �
8 ln ( |D|

� )
mink P(S=k) , then

P
�
|R̂

LDP (f)�R(f)| > ✏
�
 3�.

Finally, similar to Step 3 in the proof of Theorem 4.3, recall that one can easily show

R̂
LDP (f)�R(f⇤)  2 sup

f2F

��RLDP (f)� R̂
LDP (f)

��,

but we have already established similar results for one single hypothesis in Step 2. Therefore, what
remains is to extend the previous result that bounds the generalization error between any single
hypothesis and the optimal hypothesis in the entire hypothesis class. And this can be done easily by
introducing the VC-dimension of the hypothesis F . Denote the VC-dimension of our hypothesis

class F as V C(F), then with some constant K and for any � 2 (0, 1
3 ), if n � 8 ln ( |D|

� )
mink P(S=k) , then with

probability 1� 3� we have:

R̂
LDP (f)  R(f⇤) +K

s
V C(F) + ln ( �2 )

2n

2(C1 + ✏̃)�(M)|D|

P(S = k⇤)
.

This completes the proof.
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