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A Appendix

In this section, we provide the proofs of our theoretical results. In Section A.1, we state the results we use in our
analysis. Section A.2 includes the proof of estimation error bound in Lemma 2. In Sections A.3 and A.4, we provide
the proofs for Theorem 3 (convex case) and Theorem 5 (non-convex case), respectively.

A.1 Preliminaries:

Theorem 7. (Theorem 2 in Abbasi-Yadkori et al. (2011)). Let {Ft}∞
t=0 be a filtration and {wt}∞

t=1 be a real-valued
stochastic process. Here, wt is Ft-measurable and wt is conditionally R-sub Gaussian for some R ≥ 0. Let {xt}∞

t=1
be an Rd-valued stochastic process such that xt is Ft−1-measurable. Let VT ≜

∑T
t=1 xtx⊤

t +λI where λ > 0. Define
yt = a⊤xt + wt, then âT = V−1

T

∑T
t=1 ytxt is the ℓ2-regularized least squares estimate of a. Assume

∥∥a
∥∥ ≤ LA

and
∥∥xt

∥∥ ≤ L, ∀t. Then, for any δ ∈ (0, 1), with probability (1 − δ), the true parameter a lies in the following set:{
a ∈ Rd :

∥∥a − âT

∥∥
VT

≤ R

√
d log

(1 + TL2/λ

δ

)
+

√
λLA

}
,

for all T ≥ 1.

Theorem 8. (Theorem 5.1.1 in Tropp et al. (2015)). Consider a finite sequence {Xt} of independent, random and
positive semi-definite matrices of dimension d. Assume that λmax(Xt) ≤ L, ∀t. Define Y ≜

∑
t Xt and denote

λmin(E[Y]) as µ. Then, we have

P(λmin(Y) ≤ ϵµ) ≤ d exp
(

− (1 − ϵ)2 µ

2L
)
, for any ϵ ∈ (0, 1).

Now, let us define the shrunk version of the polytope as follows

X s
in ≜ {x ∈ Rd : [A]k,:x + τin ≤ bk,∀k ∈ [n]}, for some τin > 0. (12)

Lemma 9 (Lemma 1 in Fereydounian et al. (2020)). Consider a positive constant τin such that X s
in is non-empty. Then,

for any x ∈ X s,

∥ΠX s
in
(x) − x∥ ≤

√
dτin

C(A,b) , (13)

where C(A,b) is a positive constant that depends only on the matrix A and the vector b.

Theorem 10. (Theorem 3.7 in Shi et al. (2015)) Let us consider the following notation for EXTRA algorithm

xi,k : The iterate of agent i at time k of the EXTRA algorithm,

Xk =

x⊤
1,k
...

x⊤
m,k

 ,
x∗ = argminx

{ m∑
i=1

fi(x)
}
,

X∗ =

x∗⊤

...
x∗⊤

 ,
f(X) =

m∑
i=1

fi(xi).

A convex function h(·) is restricted strongly convex w.r.t. a point y if there exists µ > 0 such that

⟨∇h(x) − ∇h(y),x − y⟩ ≥ µ
∥∥x − y

∥∥2
,∀x.
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Suppose that the gradient of f(X) w.r.t. X is Lipschitz continuous with a constant Lf and f(X) + 1
4α

∥∥X − X∗
∥∥

P̃−P

is restricted strongly convex w.r.t. X∗ with a constant µg . Then, with a proper step size α < 2µgλmin(P̃)
L2

f

, there exists

ς > 0 such that
∥∥Xk − X∗

∥∥2
P̃ converges to 0 at the R-linear rate of O((1 + ς)−k).

A.2 Safe Distributed Set Estimation

Proof of Lemma 2. Let VT0 ≜
∑m

i=1
∑T0

t=1 xi,tx⊤
i,t and V = VT0 + λI. Let Â be the solution of

argminA
∑m

i=1 li(A). Let [Â]k,: and [A]k,: be the k-th rows of Â and A, respectively. Based on Theorem 7, we
have with probability at least (1 − δ),

∥∥[Â]k,: − [A]k,:
∥∥

V ≤ R

√
d log

(1 +mT0L2/λ

δ/n

)
+

√
λLA, ∀k ∈ [n]. (14)

Knowing that ∀i ∈ [m], ∀t ∈ [T0], xi,t = (1 − γ)xs + γζi,t, we have λmax(xi,tx⊤
i,t) ≤ L2 and E[xi,tx⊤

i,t] =
(1 − γ)2xsxs⊤ + γ2σ2

ζ I ⪰ γ2σ2
ζ I. Therefore, we have

λmin(E[VT0 ]) = λmin(
m∑

i=1

T0∑
t=1

E[xi,tx⊤
i,t]) ≥ mT0γ

2σ2
ζ . (15)

Based on (15) and Theorem 8, we have

P
(
λmin(VT0) ≤ ϵλmin(E[VT0 ])

)
≤ d exp

(
− (1 − ϵ)2mT0γ

2σ2
ζ

2L2

)
. (16)

By setting ϵ = 1
2 and T0 ≥ 8L2

mγ2σ2
ζ

log( d
δ ), from (16), we have

P
(
λmin(V) ≥ 1

2mT0γ
2σ2

ζ

)
≥ P

(
λmin(VT0) ≥ 1

2mT0γ
2σ2

ζ

)
≥ (1 − δ). (17)

Combining equations (14) and (17), we have with probability at least (1 − 2δ),

∥∥[Â]k,: − [A]k,:
∥∥ ≤

R
√
d log

( 1+mT0L2/λ
δ/n

)
+

√
λLA√

1
2mγ

2σ2
ζT0

, ∀k ∈ [n]. (18)

Let agent i’s local estimate of A at time t ∈ [T0 + 1, T0 + T1] returned by the EXTRA algorithm (Shi et al., 2015)
be denoted by Ât

i. Next, we upper bound the distance between Â = argminA
∑m

i=1 li(A) and Ât
i based on Theorem

10 as follows. Based on the definition of li(A), considering the vectorized version of A, the Hessian matrix has the
following expression

∇2li(A) =
T0∑

t=1
2


xi,tx⊤

i,t

xi,tx⊤
i,t

. . .
xi,tx⊤

i,t

+ 2 λ
m

I ⪯ 2(T0L
2 + λ

m
)I,

where the inequality is due to the boundedness of the baseline action and the noise vector. From above, we know∑m
i=1 li(Ai) is Lipschitz smooth with the constant 2(T0L

2 + λ
m ) and strongly convex with the constant 2 λ

m , so by

selecting a step size α < (λ/m)λmin(P̃)
(T0L2+ λ

m )2 as suggested by Theorem 10, there exists a τ ∈ (0, 1) such that

∥∥[Ât
i]k,: − [Â]k,:

∥∥ ≤ ντ (t−T0), ∀i ∈ [m], k ∈ [n], t ∈ [T0 + 1, . . . , T0 + T1] (19)

18



Published in Transactions on Machine Learning Research (MM/YYYY)

where ν > 0 is a constant. Based on (18), (19) and our choice of T1 (T1 = (− log τ)−1 log(νT ρ)), for k ∈ [n],
t ∈ [T0 + 1, . . . , T0 + T1] and i, j ∈ [m], we have

∥∥[Ât
i]k,: − [A]k,:

∥∥ ≤
∥∥[Ât

i]k,: − [Â]k,:
∥∥+

∥∥[Â]k,: − [A]k,:
∥∥ ≤ 1

T ρ
+
R
√
d log

( 1+mT0L2/λ
δ/n

)
+

√
λLA√

1
2mγ

2σ2
ζT0

, (20)

and ∥∥[Ât
i]k,: − [Ât

j ]k,:
∥∥ ≤

∥∥[Ât
i]k,: − [Â]k,:

∥∥+
∥∥[Â]k,: − [Ât

j ]k,:
∥∥ ≤ 2

T ρ
. (21)

Lemma 11. Define

Br ≜
1
T ρ

+
R
√
d log

( 1+mT0L2/λ
δ/n

)
+

√
λLA√

1
2mγ

2σ2
ζT0

.

For each agent i, construct X̂ s
i based on (8) with Ci,k following from (7). By running Algorithm 1 with user-specified

T0 = Ω( L2

mγ2σ2
ζ

log( d
δ )) and T1 = Θ(log T ρ), there exists a mutual shrunk polytope (see the definition in (12)) subset

X s
in (τin = 2BrL) for X̂ s

i , ∀i ∈ [m] with probability at least (1 − 2δ).

Proof of Lemma 11. Consider a mutual shrunk polytope subset X s
in (τin = 2BrL). Based on Lemma 2, with probability

at least 1 − 2δ, we have for any x ∈ X s
in,

[Âi]k,:x + Br

∥∥x
∥∥ = [A]k,:x + ([Âi]k,: − [A]k,:)x + Br

∥∥x
∥∥

≤ [A]k,:x +
∥∥[Âi]k,: − [A]k,:

∥∥∥∥x
∥∥+ Br

∥∥x
∥∥

≤ [A]k,:x + 2Br

∥∥x
∥∥ ≤ [A]k,:x + 2BrL ≤ bk, ∀k ∈ [n] and ∀i ∈ [m],

(22)

which implies that X s
in ⊂ X̂ s

i , ∀i.

Lemma 12. For each agent i, construct X̂ s
i based on (8) with Ci,k following from (7). By running Algorithm 1 with

user-specified T0 = Ω( L2

mγ2σ2
ζ

log( d
δ )) and T1 = Θ(log T ρ), we have for any point x,

∥∥ΠX̂ s
i

(x) − ΠX̂ s
j

(x)
∥∥ ≤ O( 1

T ρ
), ∀i, j ∈ [m]. (23)

Before we discuss the proof of Lemma 12, for the sake of completeness, we provide the formal statement of Theorem
3.1 in Bonnans et al. (1998), used in the derivation of Lemma 12.

We first define the notations used in (Bonnans et al., 1998). Note that the notations here are only locally de-
fined for the statement of Theorem 3.1 in Bonnans et al. (1998). The work of Bonnans et al. (1998) focuses on the
sensitivity analysis of parametric optimization problems of the form

(Pu) : min
x∈X

f(x,u) subject to G(x,u) ∈ K,

where X is a finite dimensional space, U is a Banach space, K is a closed subset of Banach space Y and f and G
are twice continuously differentiable mappings from X × U to R and Y , respectively. The optimization problem is
considered to be unperturbed when u = 0.

Given u, the feasible set, optimal value and set of optimal solutions of (Pu) are denoted as follows

Φ(u) ≜ {x ∈ X : G(x,u) ∈ K},
v(u) ≜ inf{f(x,u) : x ∈ Φ(u)},
S(u) ≜ argmin{f(x,u) : x ∈ Φ(u)}.
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A point x ∈ X is called an ϵ-optimal solution of (Pu) if x ∈ Φ(u) and f(x,u) ≤ v(u) + ϵ.

We also define the following notations to present the theorem statement.

Y∗ Dual space of Y
dist(y,X ) The minimum distance from point y to set X : inf{

∥∥y − x
∥∥ : x ∈ X }

TK(y) The tangent cone to the set K at the point y ∈ K: {h ∈ Y : dist(y + th,K) = o(t)}
NK(y) The normal cone to the set K at the point y ∈ K: {y∗ ∈ Y∗ : ⟨y∗,h⟩ ≤ 0,∀h ∈ TK(y)}
Df(x,u) Derivative of f
Dxf(x,u) Partial derivative of f w.r.t. x
Dxxf(x,u) Second order derivative of f w.r.t. x

Df(x′,u′)(x,u) The linear function based on the derivative at (x′,u′)
L(x, λ,u) The Lagrangian f(x,u) + ⟨λ,G(x,u)⟩, λ ∈ Y∗

Λu(x) {λ ∈ NK(G(x,u)) : DxL(x, λ,u) = 0}
{X1 + X2} ∪{x1 + x2}, x1 ∈ X1,x2 ∈ X2

int(X ) The interior of the set X

To study the first order differentiabilitiy of the optimal value function v(u), for a given direction d ∈ U and the
optimal solution of the unperturbed problem x0 ∈ S(0), Bonnans et al. (1998) consider the linearization of the family
of problems (Ptd) and its dual as follows

(PLd) : min
h
f(x0, 0)(h,d) subject to DG(x0, 0)(h,d) ∈ TK(G(x0, 0)),

(DLd) : max
λ∈Λ0(x0)

DuL(x0, λ, 0)d.

Theorem 13. (Theorem 3.1 in Bonnans et al. (1998)) Let x̄(t) be an O(t2)-optimal trajectory of (Ptd) converging to
a point x0 ∈ Φ(0) as t → 0. Assume v(PLd) to be finite. Suppose that the following conditions hold:

1. x0 satisfies the directional constraint qualification, which is implied if

0 ∈ int{G(x0, 0) +DxG(x0, 0)X − K}.

2. v(td) ≤ v(0) + tv(PLd) +O(t2), t ≥ 0 (Equation 3.4 in (Bonnans et al., 1998)).

3. The strong second order sufficient condition (Equation 3.1 in (Bonnans et al., 1998)) holds, which is implied
if

sup
λ∈S(DLd)

D2
xxL(x0, λ, 0)(h,h) > 0, ∀h ∈ C(x0)\{0},

where C(x0) denotes the critical cone.

Then x̄(t) is Lipschitz stable at x0, i.e., for t ≥ 0,
∥∥x̄(t) − x0

∥∥ = O(t).

Proof. (Proof of Lemma 12) The key idea is to leverage Theorem 13, which quantifies the sensitivity of the optimal
solution of a “perturbed” optimization problem. More specifically, it is shown that the distance between the original
optimal solution and the optimal solution of the perturbed problem is upper-bounded by the magnitude of the
perturbation.

First, we show that ∀i ∈ [m], the projection problem ΠX̂ s
i

(x) can be formulated as a quadratic programming

with second-order cone constraints. The definition of X̂ s
i has the following equivalent expression

X̂ s
i ≜ {x ∈ Rd : ã⊤

k x ≤ bk, ∀ãk ∈ Ci,k, ∀k ∈ [n]} = {x ∈ Rd : max
ãk∈Ci,k

ã⊤
k x ≤ bk, ∀k ∈ [n]}

= {x ∈ Rd : [Âi]k,:x + Br

∥∥x
∥∥ ≤ bk, ∀k ∈ [n]},

(24)
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where each second-order cone inequality: [Âi]k,:x + Br

∥∥x
∥∥ ≤ bk can be equivalently written as a linear matrix

inequality (LMI):

[Âi]k,:x + Br

∥∥x
∥∥ ≤ bk ⇔ Gk(x, Âi) ≜

[
(bk − [Âi]k,:x) Brx⊤

Brx (bk − [Âi]k,:x)I

]
⪰ 0. (25)

For simplicity, we define the following matrix

G(x, Âi) ≜


G1(x, Âi)

G2(x, Âi)
. . .

Gn(x, Âi)

 .

Considering the intersection of all LMIs, we have

X̂ s
i ≜ {x ∈ Rd : G(x, Âi) ⪰ 0}. (26)

Based on (26), for a point x ∈ Rd, we have ΠX̂ s
i

(x) = x+ξi, where ξi is derived by solving the following optimization
problem

ξi = argminξ ξ
⊤ξ, s.t.


G1(x + ξ, Âi)

G2(x + ξ, Âi)
. . .

Gn(x + ξ, Âi)

 ⪰ 0. (27)

Based on Lemma 2, we have
∥∥[Âi]k,: − [Âj ]k,:

∥∥ = O( 1
T ρ ), ∀i, j ∈ [m] and ∀k ∈ [n]. Therefore, [Âj ]k,: can

be expressed as [Âi]k,: + ψk, where
∥∥ψk

∥∥ = O( 1
T ρ ). With this expression, the projection ΠX̂ s

j

(x) = x + ξj can

be formulated as a perturbed version of the optimization (27), where the perturbation is parameterized in terms of
ψ = [ψ1, . . . , ψn] as follows:

ξj = argminξ ξ
⊤ξ, s.t.


G1(x + ξ, Âi + ψ)

G2(x + ξ, Âi + ψ)
. . .

Gn(x + ξ, Âi + ψ)

 ⪰ 0. (28)

To show that
∥∥ΠX̂ s

i

(x) − ΠX̂ s
j

(x)
∥∥ =

∥∥ξi − ξj

∥∥ = O(
∥∥ψ∥∥) = O( 1

T ρ ), we apply Theorem 13, where three conditions

need to be satisfied: directional constraint qualification (DCQ), Equation 3.4 in Bonnans et al. (1998) and strong
second-order sufficient conditions (we refer readers to Bonnans et al. (1998) for detailed definitions).

• DCQ:
A sufficient condition for DCQ is constraint qualification (CQ) (see the definition in Bonnans et al. (1998)),
which is satisfied in our problem formulation if the first-order approximation of G(x + ξ, Âi + ψ) w.r.t. the
variable ξ can be positive-definite. Noting that G(x + ξ, Âi + ψ) is an affine function of ξ, the first-order
approximation is exactly the original function. Now suppose that ∀i ∈ [m], X̂ s

i has a strictly feasible point
(this is implied by the existence of the mutual shrunk polytope), which means there exists a ξ̂ such that
G(x + ξ̂, Âi + ψ) is positive-definite, and then CQ is satisfied.

• Equation 3.4 in Bonnans et al. (1998):
In Bonnans et al. (1998), the authors provided the sufficient conditions for Equation 3.4: DCQ and second-
order regularity (Definition 2.2 in Bonnans et al. (1998)). DCQ, as mentioned previously, holds in our case,
and second-order regularity holds for semi-definite optimization, which is the case for our problem setup.
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• Second-order sufficient conditions:
The strong second-order sufficient condition (Equation 3.1 in Bonnans et al. (1998)) has an alternative form
(Equation 3.3 in Bonnans et al. (1998)), which is satisfied in our problem setup since the Hessian of the
Lagrangian is 2I, which is positive-definite.

Since all the conditions above are met, the lemma is proved by applying Theorem 13.

A.3 Convex Part

Lemma 14. Let Algorithm 2 run with step size η > 0 and define xt ≜ 1
m

∑m
i=1 xi,t and yt ≜ 1

m

∑m
i=1 yi,t. Under

Assumptions 1 to 3 and the fact that gradients are bounded, i.e.,
∥∥∇fi,t(x)

∥∥ ≤ G for any x ∈ X s, we have that
∀i ∈ [m]

∥∥xt − xi,t

∥∥ ≤
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
.

Proof. For the presentation simplicity, we define the following matrices

Xt ≜ [x1,t, . . . ,xm,t], Yt ≜ [y1,t, . . . ,ym,t], Gt ≜ [∇f1,t(x1,t), . . . ,∇fm,t(xm,t)], and Rt ≜ [r1,t, . . . , rm,t],

where ri,t ≜ yi,t −
(
xi,t − η∇fi,t(xi,t)

)
. Then, the update can be expressed as Xt = Yt−1P =

(
Xt−1 − ηGt−1 +

Rt−1
)
P.

Expanding the update recursively, we have

Xt = XTsP(t−Ts) − η

t−Ts∑
l=1

Gt−lPl +
t−Ts∑
l=1

Rt−lPl. (29)

Since P is doubly stochastic, we have Pk1 = 1 for all k ≥ 1. Based on the geometric mixing bound of P and the
above equation we get

∥∥xt − xi,t

∥∥ =
∥∥Xt(

1
m

1 − ei)
∥∥

≤
∥∥xTs

− XTs
[P(t−Ts)]:,i

∥∥+ η

t−Ts∑
l=1

∥∥Gt−l(
1
m

1 − [Pl]:,i)
∥∥+

t−Ts∑
l=1

∥∥Rt−l(
1
m

1 − [Pl]:,i)
∥∥

≤
t−Ts∑
l=1

(ηG)
√
mβl +

t−Ts∑
l=1

(
O( 1
T ρ

) + ηG
)√
mβl

≤
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
,

where
∥∥xTs

− XTs
[Pt−Ts ]:,i

∥∥ = 0 by the identical initialization of all agents with the same action at Ts, and the other
inequality is based on Lemma 12 as follows∥∥∥ri,t

∥∥∥ =
∥∥∥yi,t −

(
xi,t − η∇fi,t(xi,t)

)∥∥∥
≤
∥∥∥∑

j

[P]jiΠX̂ s
i

[yj,t−1] −
(∑

j

[P]jiyj,t−1 − η∇fi,t(xi,t)
)∥∥∥

≤ O(T−ρ) + ηG.
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Proof of Theorem 3. First, we decompose the individual regret of agent j into three terms:

∑
t

∑
i

fi,t(xj,t)−
∑

t

ft(x∗
t ) =

Ts−1∑
t=1

∑
i

fi,t(xj,t) − fi,t(x∗
t )︸ ︷︷ ︸

Term I

+
T∑

t=Ts

∑
i

fi,t(xj,t) − fi,t(x̃∗
t )︸ ︷︷ ︸

Term II

+
T∑

t=Ts

ft(x̃∗
t ) − ft(x∗

t )︸ ︷︷ ︸
Term III

,

(30)
where x̃∗

t is the projection of x∗
t on X s

in, which is a mutual subset of {X̂ s
i }i∈[m] with τin = 2BrL based on Equation

(22) in Lemma 11. We now proceed to bound each term.

The upper bound of Term I:
Note that by choosing γ ≤ ∆s

LLA
, we have ∀i ∈ [m] and t ∈ [1, . . . , T0 + T1]

[A]k,:xi,t = [A]k,: ((1 − γ)xs + γζi,t) ≤ (1 − γ)bs
k + ∆s ≤ (1 − γ)bs

k + (bk − bs
k) < bk, (31)

which implies the safeness of the action.

Based on the Lipschitz property of the function sequence, we have

Ts−1∑
t=1

∑
i

fi,t(xj,t) − fi,t(x∗
t ) ≤

Ts−1∑
t=1

∑
i

G
∥∥xj,t − x∗

t

∥∥ ≤ 2GLm(T0 + T1). (32)

The upper bound of Term II:
Based on the update rule, ∀i ∈ [m] and t ∈ [Ts, . . . , T ] we have

fi,t(xi,t) − fi,t(x̃∗
t ) ≤∇fi,t(xi,t)⊤(xi,t − x̃∗

t )

=1
η

[1
2η

2∥∥∇fi,t(xi,t)
∥∥2 + 1

2
∥∥xi,t − x̃∗

t

∥∥2 − 1
2
∥∥xi,t − x̃∗

t − η∇fi,t(xi,t)
∥∥2
]

≤1
η

[1
2η

2∥∥∇fi,t(xi,t)
∥∥2 + 1

2
∥∥xi,t − x̃∗

t

∥∥2 − 1
2
∥∥yi,t − x̃∗

t

∥∥2
]

=1
η

[1
2η

2∥∥∇fi,t(xi,t)
∥∥2 + 1

2

∥∥∥∑
j

[P]jiyj,t−1 − x̃∗
t

∥∥∥2
− 1

2
∥∥yi,t − x̃∗

t

∥∥2
]

≤1
η

[1
2η

2∥∥∇fi,t(xi,t)
∥∥2 + 1

2
∑

j

[P]ji

∥∥yj,t−1 − x̃∗
t

∥∥2 − 1
2
∥∥yi,t − x̃∗

t

∥∥2
]
,

(33)

where the second inequality is due to the projection property that
∥∥yi,t − x̃∗

t

∥∥ ≤
∥∥xi,t − η∇fi,t(xi,t) − x̃∗

t

∥∥, and the
third inequality is due to the convexity of the square function.

Based on Equation (33) and Lemma 14, we have

fi,t(xj,t) − fi,t(x̃∗
t ) = fi,t(xj,t) − fi,t(xi,t) + fi,t(xi,t) − fi,t(x̃∗

t )

≤G
∥∥xj,t − xi,t

∥∥+ fi,t(xi,t) − fi,t(x̃∗
t )

≤2G
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
+ 1

2η
∥∥∇fi,t(xi,t)

∥∥2 + 1
2η
∑

j

[P]ji

∥∥yj,t−1 − x̃∗
t

∥∥2 − 1
2η
∥∥yi,t − x̃∗

t

∥∥2
.

(34)
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Summing Equation (34) over i, we get∑
i

(fi,t(xj,t) − fi,t(x̃∗
t ))

≤2mG
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
+ η

2
∑

i

∥∥∇fi,t(xi,t)
∥∥2 + 1

2η
∑

j

∥∥yj,t−1 − x̃∗
t

∥∥2 − 1
2η
∑

i

∥∥yi,t − x̃∗
t

∥∥2

=2mG
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
+ η

2
∑

i

∥∥∇fi,t(xi,t)
∥∥2 + 1

2η
∑

i

(∥∥yi,t−1
∥∥2 −

∥∥yi,t

∥∥2 + 2(yi,t − yi,t−1)⊤x̃∗
t

)
.

(35)

Summing Equation (35) over t ∈ [Ts, . . . , T ], we have

T∑
t=Ts

∑
i

(fi,t(xj,t) − fi,t(x̃∗
t ))

≤η

2

T∑
t=Ts

∑
i

∥∥∇fi,t(xi,t)
∥∥2 + 1

2η
∑

i

∥∥yi,Ts−1
∥∥2 + 1

η

(∑
i

y⊤
i,T x̃∗

T −
∑

i

y⊤
i,Ts−1x̃∗

Ts−1
)

+ 1
η

T −1∑
t=Ts−1

∑
i

(x̃∗
t − x̃∗

t+1)⊤yi,t + 2TmG
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
.

(36)

The upper bound of Term III:

Based on Lemma 9, we have for any x∗
t ∈ X s and its projection to X s

in, denoted by x̃∗
t , that

T∑
t=Ts

∑
i

(fi,t(x̃∗
t ) − fi,t(x∗

t )) ≤
T∑

t=Ts

∑
i

G
∥∥x̃∗

t − x∗
t

∥∥ ≤ mTG
2
√
dLBr

C(A,b) . (37)

Substituting Equations (32), (36) and (37) into Equation (30), we get∑
t

∑
i

(fi,t(xj,t) − fi,t(x∗
t ))

≤2GLm(T0 + T1) + ηmTG2

2 + 1
2η
∑

i

∥∥yi,Ts−1
∥∥2 + 1

η

(∑
i

y⊤
i,T x̃∗

T −
∑

i

y⊤
i,Ts−1x̃∗

Ts−1
)

+ 1
η

T −1∑
t=Ts−1

∑
i

(x̃∗
t − x̃∗

t+1)⊤yi,t + 2TmG
(
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β
+mTG

2
√
dLBr

C(A,b) ,

(38)

which is O(T0 +T1 + 1
η + 1

ηC
∗
T + T

√
log T0√
T0

+ βηT
(1−β) ) and the final regret bound is derived by substituting the choices

of η and T0 into above.

A.4 Non-convex Part

Lemma 15 (Lemma 4 in Ghai et al. (2022)). Suppose Assumptions 5, 6, 7 hold and ut = q(xt), then
∥∥q(xt+1) −

ut+1
∥∥ = O(W 4G

3/2
F η3/2) based on the following update rule:

ut+1 = argminu∈X s′

{
∇f̃t(ut)⊤u + 1

η
Dϕ(u,ut)

}
,

xt+1 = argminx∈X s

{
∇ft(xt)⊤x + 1

2η
∥∥x − xt

∥∥2
}
.
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Theorem 16 (Theorem 7 in Ghai et al. (2022)). Given a convex and compact domain X ⊂ X s, and not necessarily
convex loss ft(·) satisfying Assumption 7. When Assumption 8 is met, there exists an OMD object with convex loss
f̃t(·), a convex domain and a strongly convex regularization ϕ satisfying Assumption 5.

Lemma 17. Suppose Assumptions 5-7 hold and ui,t = q(xi,t), ∀i ∈ [m]; then

∥∥q(xi,t+1) − u′
i,t+1

∥∥ = O( 1
T 2ρ

+ η3/2),

based on the following update rules:

zi,t = argminu∈X̂s′
i

{
∇f̃i,t(ui,t)⊤u + 1

η
Dϕ(u,ui,t)

}
,

u′
i,t+1 =

∑
j

[P]jizj,t,

yi,t = argminx∈X̂s
i

{
∇fi,t(xi,t)⊤x + 1

2η
∥∥x − xi,t

∥∥2
}
,

xi,t+1 =
∑

j

[P]jiyj,t.

(39)

Proof. We first upper bound
∥∥q(xi,t+1) − u′

i,t+1
∥∥ as follows∥∥q(xi,t+1) − u′

i,t+1
∥∥ ≤

∥∥∑
j

[P]jizj,t −
∑

j

[P]jiq(yj,t)
∥∥+

∥∥∑
j

[P]jiq(yj,t) − q(
∑

j

[P]jiyj,t)
∥∥. (40)

To bound the second term, we consider the Taylor expansion of q(y) w.r.t. a point ŷ in the convex hull of {yi,t}i:∥∥∑
j

[P]jiq(yj,t) − q(
∑

j

[P]jiyj,t)
∥∥ ≤

∥∥∑
j

[P]ji

(
q(ŷ) + Jq(ŷ)(yj,t − ŷ) +O

(∥∥yj,t − ŷ
∥∥2))

−
(
q(ŷ) + Jq(ŷ)(

∑
j

[P]jiyj,t − ŷ) +O
(∥∥∑

j

[P]jiyj,t − ŷ
∥∥2))∥∥

≤O
(∑

j

[P]ji

∥∥yj,t − ŷ
∥∥2)+O

(∥∥∑
j

[P]jiyj,t − ŷ
∥∥2)

≤O(D2),
(41)

where D denotes the diameter of the convex hull of {yi,t} and is upper bounded as follows

D ≜max
(i,j)

∥∥yi,t − yj,t

∥∥
= max

(i,j)

∥∥Π
X̂s

i

(
xi,t − η∇fi,t(xi,t)

)
− Π

X̂s
j

(
xj,t − η∇fj,t(xj,t)

)∥∥
= max

(i,j)

∥∥Π
X̂s

i

(
xi,t − η∇fi,t(xi,t)

)
− Π

X̂s
j

(
xi,t − η∇fi,t(xi,t)

)
+ Π

X̂s
j

(
xi,t − η∇fi,t(xi,t)

)
− Π

X̂s
j

(
xj,t − η∇fj,t(xj,t)

)∥∥
≤ max

(i,j)

∥∥Π
X̂s

i

(
xi,t − η∇fi,t(xi,t)

)
− Π

X̂s
j

(
xi,t − η∇fi,t(xi,t)

)∥∥
+
∥∥(xi,t − η∇fi,t(xi,t)

)
−
(
xj,t − η∇fj,t(xj,t)

)∥∥
≤O( 1

T ρ
) + 2

((
O( 1
T ρ

) + 2ηG
)√

mβ

1 − β

)
+ 2Gη = O( 1

T ρ
+ η).

(42)
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The first inequality follows from the non-expansive property of projection, where
∥∥ΠX (x) − ΠX (y)

∥∥ ≤
∥∥x − y

∥∥
for any x,y and a closed convex set X , and the last inequality is based on Lemma 12, Lemma 14 and the Lipschitz
continuity of the function sequence.

Substituting Equations (41) and (42) into Equation (40) and based on Lemma 15, we have

∥∥q(xi,t+1) − u′
i,t+1

∥∥ ≤
∥∥∑

j

[P]jizj,t −
∑

j

[P]jiq(yj,t)
∥∥+

∥∥∑
j

[P]jiq(yj,t) − q(
∑

j

[P]jiyj,t)
∥∥

≤O(W 4G
3/2
F η3/2) +O( 1

T 2ρ
+ η2) = O( 1

T 2ρ
+ η3/2),

(43)

when η is small enough.

Proof of Theorem 5. As for the proof of Theorem 3, we decompose the individual regret into three terms:

∑
t

∑
i

fi,t(xj,t)−
∑

t

ft(x∗
t ) =

Ts−1∑
t=1

∑
i

fi,t(xj,t) − fi,t(x∗
t )︸ ︷︷ ︸

Term I

+
T∑

t=Ts

∑
i

fi,t(xj,t) − fi,t(x̃∗
t )︸ ︷︷ ︸

Term II

+
T∑

t=Ts

ft(x̃∗
t ) − ft(x∗

t )︸ ︷︷ ︸
Term III

,

(44)
where x̃∗

t is the projection of x∗
t on X s

in, which is a mutual subset of {X̂ s
i }i∈[m] with τin = 2BrL based on Equation

(22).

The upper bound of Term I:
Similar to the proof of convex part, during the estimation phase, γ is less than ∆s

LLA
to ensure the safeness of each

agent’s action, and based on the Lipschitz property we have

Ts−1∑
t=1

∑
i

fi,t(xj,t) − fi,t(x∗
t ) =

Ts−1∑
t=1

∑
i

f̃i,t

(
q(xj,t)

)
− f̃i,t

(
q(x∗

t )
)

≤
Ts−1∑
t=1

∑
i

GFW
∥∥xj,t − x∗

t

∥∥ ≤ 2GFWLm(T0 + T1). (45)

The upper bound of Term II:
Define X̂ s′

i ≜ {q(x)|x ∈ X̂ s
i }, (same for X s

in and X s). Then, for any q(x̃∗
t ) = ũ∗

t ∈ X s′
in , based on Equation (39), we
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have

η (fi,t(xi,t) − fi,t(x̃∗
t )) = η

(
f̃i,t(ui,t) − f̃i,t(ũ∗

t )
)

≤ η∇f̃i,t(ui,t)⊤(ui,t − ũ∗
t )

=
(
∇ϕ(ui,t) − ∇ϕ(zi,t) − η∇f̃i,t(ui,t)

)⊤ (ũ∗
t − zi,t)

+ (∇ϕ(zi,t) − ∇ϕ(ui,t))⊤ (ũ∗
t − zi,t) + η∇f̃i,t(ui,t)⊤(ui,t − zi,t)

≤ (∇ϕ(zi,t) − ∇ϕ(ui,t))⊤ (ũ∗
t − zi,t) + η∇f̃i,t(ui,t)⊤(ui,t − zi,t)

= Dϕ(ũ∗
t ,ui,t) − Dϕ(ũ∗

t , zi,t) − Dϕ(zi,t,ui,t) + η∇f̃i,t(ui,t)⊤(ui,t − zi,t)

≤ Dϕ(ũ∗
t ,ui,t) − Dϕ(ũ∗

t , zi,t) − Dϕ(zi,t,ui,t) + 1
2
∥∥ui,t − zi,t

∥∥2 + η2

2
∥∥∇f̃i,t(ui,t)

∥∥2

≤ Dϕ(ũ∗
t ,ui,t) − Dϕ(ũ∗

t , zi,t) + η2

2
∥∥∇f̃i,t(ui,t)

∥∥2

= Dϕ(ũ∗
t ,ui,t) − Dϕ(ũ∗

t ,u′
i,t) + Dϕ(ũ∗

t ,u′
i,t) − Dϕ(ũ∗

t , zi,t) + η2

2
∥∥∇f̃i,t(ui,t)

∥∥2

≤ Dϕ(ũ∗
t ,ui,t) − Dϕ(ũ∗

t ,u′
i,t) +

∑
j

[P]jiDϕ(ũ∗
t , zj,t−1) − Dϕ(ũ∗

t , zi,t) + η2

2
∥∥∇f̃i,t(ui,t)

∥∥2
,

(46)

where the second inequality is based on the optimality of zi,t; the fourth inequality is due to the strong convexity of
ϕ(·) and the fifth inequality is based on Assumption 9.

Based on Theorem 16, Lemma 17, and the Lipschitz assumption on Dϕ, we have∥∥Dϕ(ũ∗
t ,ui,t) − Dϕ(ũ∗

t ,u′
i,t)
∥∥ ≤ W

∥∥ui,t − u′
i,t

∥∥ ≤ O
(
W ( 1

T 2ρ
+ η3/2)

)
. (47)

And based on Lemma 14, we get

max
i,j∈[m]

∥∥ui,t − uj,t

∥∥ = max
i,j∈[m]

∥∥q(xi,t) − q(xj,t)
∥∥ = O

(
Wη

)
. (48)

With Equations (46), (47) and (48), we derive

f̃i,t(uj,t) − f̃i,t(ũ∗
t ) = f̃i,t(uj,t) − f̃i,t(ui,t) + f̃i,t(ui,t) − f̃i,t(ũ∗

t )

≤ GF

∥∥ui,t − uj,t

∥∥+O
(
W ( 1

ηT 2ρ
+ η1/2)

)
+ 1
η

∑
j

[P]jiDϕ(ũ∗
t , zj,t−1) − 1

η
Dϕ(ũ∗

t , zi,t) + η

2
∥∥∇f̃i,t(ui,t)

∥∥2

≤ O
(
GFWη

)
+O

(
W ( 1

ηT 2ρ
+ η1/2)

)
+ 1
η

∑
j

[P]jiDϕ(ũ∗
t , zj,t−1) − 1

η
Dϕ(ũ∗

t , zi,t) + η

2
∥∥∇f̃i,t(ui,t)

∥∥2
.

(49)

Based on the definition of Bregman divergence, we have the following relationship

Dϕ(ũ∗
t , zi,t−1) − Dϕ(ũ∗

t , zi,t)

= (∇ϕ(zi,t) − ∇ϕ(zi,t−1))⊤ (ũ∗
t − zi,t) + Dϕ(zi,t, zi,t−1)

= (∇ϕ(zi,t) − ∇ϕ(zi,t−1))⊤ ũ∗
t +

(
ϕ(zi,t) − ∇ϕ(zi,t)⊤zi,t

)
−
(
ϕ(zi,t−1) − ∇ϕ(zi,t−1)⊤zi,t−1

)
.

(50)
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Summing Equation (49) over i, based on Equation (50) we get∑
i

f̃i,t(uj,t) − f̃i,t(ũ∗
t )

≤O
(
mGFWη

)
+O

(
mW ( 1

ηT 2ρ
+ η1/2)

)
+
∑

i

η

2
∥∥∇f̃i,t(ui,t)

∥∥2

+1
η

∑
i

[
(∇ϕ(zi,t) − ∇ϕ(zi,t−1))⊤ ũ∗

t +
(
ϕ(zi,t) − ∇ϕ(zi,t)⊤zi,t

)
−
(
ϕ(zi,t−1) − ∇ϕ(zi,t−1)⊤zi,t−1

)]
.

(51)

Then, by summing Equation (51) over [Ts, . . . , T ], we have

T∑
t=Ts

∑
i

f̃i,t(uj,t) − f̃i,t(ũ∗
t )

≤O
(
mTGFWη

)
+O

(
mTW ( 1

ηT 2ρ
+ η1/2)

)
+

T∑
t=Ts

∑
i

η

2
∥∥∇f̃i,t(ui,t)

∥∥2

+1
η

[
T −1∑

t=Ts−1

∑
i

(ũ∗
t − ũ∗

t+1)⊤∇ϕ(zi,t) +
∑

i

∇ϕ(zi,T )⊤ũ∗
T −

∑
i

∇ϕ(zi,Ts−1)⊤ũ∗
Ts−1

]

+1
η

∑
i

[(
ϕ(zi,T ) − ∇ϕ(zi,T )⊤zi,T

)
−
(
ϕ(zi,Ts−1) − ∇ϕ(zi,Ts−1)⊤zi,Ts−1

)]
.

(52)

The upper bound of Term III:
Based on Lemma 9, we have for any x∗

t ∈ X s and its projection to X s
in: x̃∗

t

T∑
t=Ts

∑
i

(
f̃i,t(q(x̃∗

t )) − f̃i,t(q(x∗
t ))
)

≤
T∑

t=Ts

∑
i

GFW
∥∥x̃∗

t − x∗
t

∥∥ ≤ mTGFW
2
√
dLBr

C(A,b) . (53)

Substituting Equations (45), (52) and (53) into Equation (44), the final regret bound is as∑
t=1

∑
i

(fi,t(xj,t) − fi,t(x∗
t ))

≤O
(
mTGFWη

)
+O

(
mTW ( 1

ηT 2ρ
+ η1/2)

)
+

T∑
t=Ts

∑
i

η

2
∥∥∇f̃i,t(ui,t)

∥∥2

+1
η

[
T −1∑

t=Ts−1

∑
i

(ũ∗
t − ũ∗

t+1)⊤∇ϕ(zi,t) +
∑

i

∇ϕ(zi,T )⊤ũ∗
T −

∑
i

∇ϕ(zi,Ts−1)⊤ũ∗
Ts−1

]
+ 2GFWLm(T0 + T1)

+1
η

∑
i

[(
ϕ(zi,T ) − ∇ϕ(zi,T )⊤zi,T

)
−
(
ϕ(zi,Ts−1) − ∇ϕ(zi,Ts−1)⊤zi,Ts−1

)]
+mTGFW

2
√
dLBr

C(A,b)

=O(T0 + T1 + T
√
η + T

√
log T0√
T0

+ 1
η

+ 1
η

T∑
t=Ts

∥∥ũ∗
t − ũ∗

t+1
∥∥),

(54)

where the final regret bound is proved by applying the specified η and T0. By choosing ρ as a large enough number,
1

ηT 2ρ is dominated by η1/2.
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