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ABSTRACT

In-context Learning (ICL) is an emerging few-shot learning paradigm on
Language Models (LMs) with inner mechanisms un-explored. There are already
existing works describing the inner processing of ICL, while they struggle to cap-
ture all the inference phenomena in large language models. Therefore, this paper
proposes a comprehensive circuit to model the inference dynamics and try to ex-
plain the observed phenomena of ICL. In detail, we divide ICL inference into 3
major operations: (1) Input Text Encode: LMs encode every input text (in the
demonstrations and queries) into linear representation in the hidden states with
sufficient information to solve ICL tasks. (2) Semantics Merge: LMs merge the
encoded representations of demonstrations with their corresponding label tokens
to produce joint representations of labels and demonstrations. (3) Feature Re-
trieval and Copy: LMs search the joint representations of demonstrations similar
to the query representation on a task subspace, and copy the searched represen-
tations into the query. Then, language model heads capture these copied label
representations to a certain extent and decode them into predicted labels. Through
careful measurements, the proposed inference circuit successfully captures and
unifies many fragmented phenomena observed during the ICL process, making it
a comprehensive and practical explanation of the ICL inference process. More-
over, ablation analysis by disabling the proposed steps seriously damages the ICL
performance, suggesting the proposed inference circuit is a dominating mecha-
nism. Additionally, we confirm and list some bypass mechanisms that solve ICL
tasks in parallel with the proposed circuit.

1 INTRODUCTION

In-Context Learning (ICL) (Radford et al., 2019; Dong et al., 2022) is an emerging few-shot learning
paradigm: given the demonstrations {(xi, yi)}ki=1 consisting of [input text]-[label token] pairs and
a query xq , Language Models (LMs) take the sequence [x1][s1][y1] . . . [xk][sk][yk][xq][sq]

1 (Fig. 1)
as input and then predicts the label for xq by causal language modeling operation. Typically, the
label tokens yi are preceded by and also predicted on forerunner tokens si (e.g., the colon in “Label:
”). ICL has aroused widespread interest, but its underlying mechanism is still unclear.

There have been theoretical or empirical trials to characterize and explain the inference process of
ICL (Xie et al., 2021; Dai et al., 2023; Wang et al., 2023; Han et al., 2023a; Jeon et al., 2024;
Zheng et al., 2024). However, to capture all the operating dynamics and many fragmented observed
interesting phenomena of ICL in Large Language Models2 (LLMs), a more comprehensive char-
acterization is still necessary. Therefore, this paper tries to propose a unified inference circuit and
measures various properties in LLMs for a conformation to the observed ICL phenomena.

In detail, as shown in Fig. 1, we decompose ICL dynamics into 3 atomic operations on Transformer
layers. Step 1: INPUT TEXT ENCODE: LMs encode each input text xi into linear representations
in the hidden state of its corresponding forerunner token si. Step 2: SEMANTICS MERGE: For

1In this paper, we denote tokenization as [·], and token concatenating as [·][·].
2Large refers to scaled LMs trained by natural language data, such as Llama 3 (AI@Meta, 2024), contrast

to simplified work that uses simple models trained and test on well-embedded input in toy models.
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demonstrations, LMs merge the encoded representations of si with the hidden state of the corre-
sponding label tokens yi. Step 3: FEATURE RETRIEVAL AND COPY: LMs retrieve the similar
semantics-merged label representations y1:k (from Step 2) to the query representation sq in a task-
relevant subspace, then copy them into the query’s forerunner token representation. Finally, LM
heads predict the label for xq using the label-attached query representation sq . Steps 2 and 3 form a
typical induction circuit, which is a key mechanism of ICL but only examined in synthetic scenar-
ios (Elhage et al., 2021; Singh et al., 2024b; Reddy, 2024).

Figure 1: The 3-phase inference diagram of ICL.
Step 1: LMs encode every input text into repre-
sentations, Step 2: LMs merge the encoded text
representations of demonstrations with their cor-
responding label semantics, Step 3: LMs retrieve
merged label-text representations similar to the
encoded query, and copy the retrieved represen-
tations into the query representation.

We empirically find evidence for the existence
of each proposed step in LLMs, and conduct
more fine-grained measurements to gain in-
sights into some phenomena observed in ICL
scenarios, such as (1) positional bias: the pre-
diction is more influenced by the latter demon-
stration (Zhao et al., 2021), (2) noise robust-
ness: the prediction is not easy to be affected by
demonstrations with wrong (noisy) labels (Min
et al., 2022), while larger models are less ro-
bust to label noise (Wei et al., 2023), and
(3) demonstration saturation: the accuracy im-
provements plateau when sufficient demonstra-
tions are given (Agarwal et al., 2024; Bertsch
et al., 2024), etc. (discussed in §5.3). More-
over, we find multiple bypass mechanisms for
ICL conducted by residual connections, while
the 3-phase dynamics remain dominant.

Our contributions can be summarized as:
(1) We propose a comprehensive 3-step inference circuit to characterize the inference process of
ICL, and find empirical evidence of their existence in LLMs. (2) We conduct careful measurements
for each inference step and successfully capture a large number of interesting phenomena observed
in ICL, which enhances the practicality of the proposed circuit. (3) Our ablation analysis suggests
that the proposed circuit dominates, but some bypass mechanisms exist in parallel to perform ICL,
and we introduce some of these bypasses along with their empirical existence evidence.

2 PREPARATION

2.1 BACKGROUND & RELATED WORKS

In-context Learning. Discovered by Radford et al. (2019), ICL is an emerging few-shot learning
paradigm with only feed-forward calculation in LMs. Given demonstrations {(xi, yi)}ki=1 composed
of input-label pairs and a query xq , typical ICL creates an input [x1][s1][y1] . . . [xk][sk][yk][xq][sq],
with some structural connectors (e.g. “Label: ”) including forerunner token si (e.g. “: ”), as shown
in Fig. 1. LMs receive such inputs and return the next token distribution, where the label token
with the highest likelihood is chosen as the prediction. Explaining the principle of ICL is an open
question, although there have been some efforts on the relationship between ICL capacity and
pre-training data (Li & Qiu, 2023; Singh et al., 2024b;a; Gu et al., 2023; Han et al., 2023b; Chan
et al., 2022), the feature attribution of inputs (Min et al., 2022; Yoo et al., 2022; Pan, 2023; Kossen
et al., 2024), and reduction to simpler processes (Zhang et al., 2023; Dai et al., 2023; Xie et al.,
2021; Han et al., 2023a). However, a comprehensive and unified explanation on real-world LMs is
still needed to capture the operating dynamics of ICL.

Induction Circuit. Introduced by Elhage et al. (2021), an induction circuit is a pair of two cooper-
ating attention heads from two transformer layers, where the “previous token head” writes informa-
tion about the previous token to each token, and the “induction head” uses the wroten information to
identify a token that should follow each token. Concretely, such a function is implemented by two
atomic operations in attention calculations: (1) copy the representation of the previous token [A] to
the next token [B], and (2) retrieve and copy similar representations on [B] (copied from [A]) to the
current token [A′]. Concisely, it performs inference in the form of [A][B] . . . [A′] ⇒ [B], which is
similar to the ICL diagram. Therefore, the induction circuit has been widely used to explain the in-
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ference dynamics of ICL (Wang et al., 2023) and the emergence of ICL during pre-training (Olsson
et al., 2022; Reddy, 2024; Singh et al., 2024b). Despite their valuable insights, these experiments
rely on a synthetic setting: using simplified models and well-embedded (linearly separable) inputs,
which differs from the practical ICL scenario using real-world LMs with many layers and compli-
cated inputs: we believe these synthetic works indicate the potential of Transformers or a locally
optimal behavior, and can not demonstrate that their observation exists in scaled LLMs trained on
wild data. So, in this paper, we try to bridge the gap between the synthetic and real-world settings
with more detailed observations for the inference of ICL on real-world LLMs.

2.2 EXPERIMENT SETTINGS

Models. We mainly conduct experiments on 4 modern LLMs: Llama 3 (8B, 70B) (AI@Meta, 2024),
and Falcon (7B, 40B) (Almazrouei et al., 2023). Unless specified, we report the results on Llama 3
70B, since its deep and narrow structure (80 layers, 64 heads) makes it easier to show hierarchical
inference dynamics (discussed in §5.2). The results of other models can be found in Appendix H.2.

Datasets. We build ICL-formed test inputs from 6 real-world sentence classification datasets, and
unless specified, we report the average results on them: SST-2 (Socher et al., 2013), MR (Pang &
Lee, 2005), Financial Phrasebank (Malo et al., 2014), SST-5 (Socher et al., 2013), TREC (Li &
Roth, 2002; Hovy et al., 2001), and AGNews (Zhang et al., 2015).

Others. Unless specified, we use k = 4 demonstrations in ICL inputs. For each dataset, we
randomly sample 512 test data points and assign one fixed demonstration sequence for each test
sample to form a test input. About the prompt templates, etc., please refer to Appendix A.1.

3 STEP 1, INPUT TEXT ENCODE: SEMANTICS ENCODING AS LINEAR
REPRESENTATIONS IN HIDDEN STATES

This section mainly confirms that LMs construct task-relevant and linearly separable semantic rep-
resentations for every input text (demonstrations and queries) in the hidden states. Such linear
representations are an important foundation for explaining the dynamics of ICL based on induction
heads, since attention-based feature retrieval, a key mechanism of induction heads, can be easily
done on linear representations. Current successful studies on simplified models and inputs (Chan
et al., 2022; Reddy, 2024; Singh et al., 2024b) also assume the existence of such linear representa-
tions. Moreover, we confirm some interesting properties of the encoded input text representations:
(1) It is based on the capacity in the model weights and can be enhanced by demonstrations in
context. (2) The similarity of representations is biased towards the encoding target’s position.

3.1 LLMS ENCODE INPUT TEXT ON FORERUNNER TOKENS IN HIDDEN STATES

We first study the existence of input text encoding in hidden states and then explain their linear
separability and task relevance in §3.2. For each text-label pair (xt, yt) (encoding target) sampled
from the datasets, we prepend them with k demonstrations, resulting in augmentated (by label [yt])
ICL-styled inputs [x1][s1][y1] . . . [xk][sk][yk][xt][st][yt]. These inputs are then fed into an LM to
extract the hidden states of a specific token in [xt][st][yt] from each layer, serving as the ICL in-
ner representations. To assess the quality of these representations as sentence representations, we
use the sentence embedding of xt encoded by BGE M3 (Chen et al., 2024), a SotA encoder-only
Transformer, as a reference representation and then calculate the mutual nearest-neighbor kernel
alignment3 (Huh et al., 2024) between these representations. See Appendix A.1 and A.2 for details.

Forerunner Tokens Encode Input Text Representations. We plot the kernel alignment on the 3
types of tokens in Fig. 2 (Left), where the forerunner token, while often overlooked in previous work,
produces the best input text encoding, emerging in the early phase (layers 0-28) of the inference
process, and keeping a high level to the end of inference. Interestingly, hidden states of label words
are not satisfactory input text representations even with a high background value (the result at layer

3Intuitively, kernel alignment measures similarity between two representations toward the same datasets,
and according to Huh et al. (2024), a higher cross-model kernel alignment usually means a better representation.
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Figure 2: Input text encoding magnitudes (metricized by kernel alignment with feature encoded
by an encoder-structured model) of hidden states in various layers in ICL scenario (The controlled
experiments are results between current 6 datasets and TEE (Mohammad et al., 2018)). Left: En-
coding magnitudes on hidden states from various types of token. Middle4: Encoding magnitudes
with different k on the forerunner tokens. Right: Encoding magnitudes in layer 24 of Llama 3 70B
against the causal language modeling loss of the input text with (upper) k = 0 and (lower) k = 8.

0, refer to Appendix A.2.1), which is a critical supplement to previous work which suggests the label
tokens are pivots for collecting the information of demontrations (Wang et al., 2023).

Input Text Encoding is Enhanced by Demonstrations. We investigate the influence of contextual
information on input text encoding by repeating the experiments with different k. As shown in Fig. 2
(Middle), when the demonstrations increase, kernel alignment is enhanced, which is counterintuitive
since longer preceding texts are more likely to confuse encoding targets. Such findings indicate that
LMs (1) utilize contextual information to enhance the input text encoding and (2) correctly segment
different demonstrations (detailed operation discussed in Appendix C).

Perplexed Texts are Encoded Worse. We investigate the correlation between kernel alignment and
the perplexity of encoding targets with various k. Fig. 2 (Right, upper) shows a negative correlation
for k = 0, that is, LMs generate poorer encodings for more perplexed input text when no demon-
strations are given, which can be identified as an In-weight Learning (IWL) property of the inner
text encoding. While, when demonstrations are given in context (Fig. 2 (Right, lower)), the nega-
tive correlation disappears, which suggests that LMs effectively encode more complex samples with
the help of demonstrations in context. More discussion about the correlation between classification
performance and perplexity is in Appendix F.

The above findings suggest that the inner text encoding is a hybrid process of ICL and IWL: Basic
encoding capability presents from LMs weights, and is enhanced by demonstrations in context,
which can be a clue to how demonstrations help ICL. Moreover, we are about to illustrate that
these encodings are sufficiently informative for ICL tasks and linearly separable, which meets the
presumption of simplified models on the linear and well-embedded input features.

3.2 INPUT TEXT ENCODING IS LINEAR AND TASK-RELEVANT BUT POSITION-BIASED

0 20 40 60 80
Transformer Block Number

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Token Type
Forerunner Token of Label
Last Token of Input Text

0.15

0.20

0.25

Ke
rn

el
 A

lig
nm

en
t

Figure 3: Test results of cen-
troid classifier trained on ICL
hidden states. Solid: Centroid
classification accuracy, Dotted:
Kernel alignment.

Input Text Encoding is Linear Separable and Task-relevant.
We train a centroid classifier on hold-out 256 input samples (Cho
et al., 2024), using the hidden states of a specific token in [xt][st]

5

from each layer and then predict the label yt (see Appendix A.3
for details). The results are shown in Fig. 3, where considerably
high classification accuracy of the forerunner token suggests the
high linear separabilities of the hidden states in the task-semantic-
relevant subspaces since the centroid classifier is linear. In addi-
tion, a similar emerging trend in accuracy and kernel alignment
confirms the reliability of the kernel alignment measurement.

Input Text Encoding is Biased towards Position. Ideally, the
inner representations of similar queries should be highly simi-
lar regardless of their position in ICL inputs to support attention-

4Experiments of Fig. 2 (Middle) on Llama 3 70B do not involve results on AGNews.
5We skip the experiments on label tokens because of the leakage of ground-truth label information.
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based operations for classification. To verify this, for each encoding target, we extract the hidden
states of forerunner tokens with various numbers of preceding demonstrations, and then calculate
the cosine similarity between all possible pairs of the hidden states for the same target or different
targets. As shown in Fig. 4, although the overall similarities on the same target are higher than on
the different targets, they are both especially higher when their positions are close to each other. As
to be discussed in §5.3, such positional similarity bias may lead to one flaw: Demonstrations closer
to the query have stronger impacts on ICL (Zhao et al., 2021; Lu et al., 2022; Chang & Jia, 2023;
Guo et al., 2024). The principle of such bias is discussed in Appendix C.

4 INDUCTION CIRCUITS IN LARGE LANGUAGE MODELS
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Figure 4: The similarities of ICL hidden
states in different positions on layer 24
between Left: the same queries, Right:
two different queries (on SST-2).

This section mainly shows how LMs utilize the encoded
linear text representations in induction circuits with a typ-
ical 2-step form (Singh et al., 2024b): Forerunner To-
ken Heads merge the demonstration text representations
in the forerunner tokens into their corresponding label
tokens with a selectivity regarding the compatibility of
demonstrations and label semantics. Induction Heads
copy the information in the label representations similar
to the query representation back to the query, which is
conducted on task-specific subspaces, enabling LMs to
solve multiple tasks by multiplexing hidden spaces.

4.1 STEP 2, FORERUNNER TOKEN HEAD: COPY FROM TEXT FEATURE TO LABEL TOKEN

This subsection mainly examines and measures the forerunner token heads, which copy the informa-
tion in the forerunner token into label tokens. We focus on how the representations in these tokens
are merged, especially when the semantics of demonstrations and corresponding labels are disjoint,
to explain the robustness of ICL against wrong labels present in the demonstrations.

Text Representations are Copied to Label Tokens. To confirm the existence of the representation
copy process, we start by calculating the kernel alignment between the hidden state of forerunner
token [st] at layer l (the copy source) and that of label token [yt] at layer (l+1) (the copy target). To
suppress the high background values caused by the semantics of labels (refer to Appendix A.2.1), we
use abstract label tokens {“A”, “B”, “C”, . . . } instead of the original label tokens. The results are
shown in Fig. 5 (Left), where the kernel alignment between the hidden states of the label token and
the forerunner token gradually increases and then bumps up after the encoding magnitude (described
in §3) in the forerunner token finished ascending. Such a phenomenon indicates that the hidden states
of the input text representation encoded in the forerunner tokens are merged into their label tokens,
suggesting the existence of copy processing from the forerunner token to the label token.

Text Representations are Copied without Selectivity. For each attention head, we extract the
attention score6 αst→yt from the forerunner token [st] (as attention key) to the corresponding label
token [yt] (as attention query). We then mark the head with αst→yt ⩾ 5/nt (nt: the length of
tokens before [yt]) as a Forerunner Token Head and count them in each layer. The results are
shown in Fig. 5 (Middle, “Correct Label”), where the peak matches the copy period in Fig. 5 (Left).
Moreover, to investigate the influence of the correctness of label tokens, we replace [yt] with a wrong
label token7, where the results in Fig. 5 (Middle, “Wrong Label”) are almost identical to the correct-
label setting, suggesting that the forerunner token heads don’t show selectivity toward the semantic
consistency between input text and labels, and simply merge the input text representations into the
label tokens. Furthermore, we find (Appendix D) that the copy processing is inherent: During the
copy processing, the preceding tokens are copied to the subsequent tokens, regardless of whether
these copied tokens are forerunner tokens, which indicates that such copy processing is a universal
inference behavior established during pre-training, rather than being evoked by the special tokens in
the in-context learning (ICL) input, while still aiding ICL process (discussed in §5.1).

6This paper use notation αK→Q to denote attention score with attention query Q and attention key K,
which is same with the flow of information.

7For example, for a label space of “positive” and “negative”, if [yt] is “positive”, we replace it to “negative”.
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Figure 5: Hidden states copy magnitude from forerunner tokens to label tokens against layers. Left:
Kernel alignment between the forerunner token (the copy source) and the abstract label token of the
next layer (the copy target). Middle: Curves: The count of marked forerunner token heads with
correct and wrong labels; Colored Areas: The maximum attention scores from forerunner token
to query (copy magnitude) with correct and wrong labels (detailed attention head statistical data is
in Appendix H.1). Right: Centroid classifier results predicted on the hidden states of correct and
wrong label tokens, on SST-2 and MR. Solid: Predicted by classifiers Cs trained on hidden states of
forerunner tokens. Dotted: Predicted by classifiers Cy trained on hidden states of label tokens.

Hidden States of Label Tokens are Joint Representations of Text Encodings and Label Seman-
tics. Given the findings above, we probe the content of hidden states of label tokens [yt], i.e., how
the copied text representation interacts with the original label semantics. We first train two centroid
classifiers to predict the corresponding label yt: (1) Cs trained on the hidden states of forerunner
tokens [st] and (2) Cy trained on the hidden states of label tokens [yt]. To check whether the label
tokens include the information of forerunner tokens, we use Cs to predict the label on the hidden
state of label token [yt] in Fig. 5 (Right, solid). It shows that, during the copy processing, high
classification accuracies can be achieved both on the correct label tokens and wrong label tokens,
suggesting that the text features in the forerunner tokens can be partly and linearly detected in the
label tokens. Moreover, results using Cy (dotted line) show extreme results, suggesting the label
information remains in the label token. So, we can conclude that: Hidden states of label tokens are
joint representations of label semantics and text representations. Moreover, interestingly, the accu-
racies from Cs shown in Fig. 5 (Right) decline after layer 35, suggesting that the information sharing
between the forerunner tokens and the label tokens ends in later layers, which aligns with the results
in Fig. 5 (Middle).

Label Denoising is Conducted on the Overlap of Label Semantics and Text Representations.
Notice that in Fig. 5 (Right, solid), compared to the typical results predicted on the forerunner tokens,
accuracies are improved on the correct label and suppressed on the wrong label, which suggests that
information consistent with the label semantics is easier to be enhanced by the label tokens and
vice versa, showing a feature selectivity on the consistency between the text representations and
the label semantics. Given the observation that the information on label semantics and text features
can be extracted separately and linearly, we can confirm that these two kinds of information are
located in different sub-spaces of the hidden states, and linearly merged by the attention operation
of forerunner token heads. Moreover, given the fact that there is no selectivity is observed in the copy
behavior of the forerunner token heads (Fig. 5 (Middle)), it is intuitive that the feature selectivity
shown in Fig. 5 (Right) comes from the arithmetical interaction of feature vectors on the overlap of
sub-spaces between the label semantics and text features, making ICL stable against label noise (Min
et al., 2022). Moreover, as mentioned by Wei et al. (2023), large models show poorer stability
against label noise, and we infer that the larger hidden dimensions in larger models lower the overlap
between the sub-spaces of label semantics and text representations to reduce the interaction.

4.2 STEP 3, INDUCTION HEAD: FEATURE RETRIEVAL ON TASK SUBSPACE

This subsection examines the existence of the induction heads, which retrieve label token features
similar to the queries’ forerunner token feature, and copy the retrieved features back to the query.
We claim the necessity of multi-head attention in this process: Correct feature retrieval can only be
conducted on the subspace of the hidden space, which is captured by some attention heads.
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Figure 6: Measurements for induction heads. Left: The count of marked induction heads and
correct induction heads against layers. Middle: The correctness of attention assignment (the sum of
attention scores from query’s forerunner token towards correct label tokens normalized by attention
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Attention: attention scores directly calculated on full dimensionality. Head Average: the averaged
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correctness. Right: The correct induction heads overlap of all dataset pairs.

Induction is Correct in Minority Subspaces. Similar to Fig. 5 (Middle), we mark (1) the attention
heads with the sum of attention scores from all the label tokens in the demonstrations [y1], . . . , [yk]
(as attention keys) to the query’s forerunner token [sq] (as attention query) of more than 5k/nt as
Induction Heads, and (2) attention heads with the sum of scores from all the correct label tokens
more than 5k/|Y|nt as Correct Induction Heads (Y is the label space). We show the number of
both kinds of induction heads in Fig. 6 (Left, detailed head statistics in Appendix H.1), where an
unimodal pattern is observed later than the copy processing of Step 2. Moreover, more than half
of the induction heads are not correct ones, suggesting that task-specific feature similarity can only
be caught on some induction subspaces (defined by low-rank transition matrix Wh⊤

Q Wh
K of correct

induction head h). We enhance this claim in Fig. 6 (Middle) (details in Appendix A.4), where both
vanilla attention (without transformation and head split) and attention scores averaged among all
heads show low assignment on correct label tokens, while some heads show considerable correct-
ness. Considering the average value, the majority of attention heads almost randomly copy label
token information to the query, causing the final prediction biased to the frequency of labels present
in the demonstrations (Zhao et al., 2021). As the reason, we infer that the hidden states are sufficient
(Fig. 3) but not minimum for ICL, where redundant information interferes with the operation of
induction heads.

k = 1 k = 2

k = 15 k = 16

Layer 31, Head 32, Correct Rate: 0.95
k = 1 k = 2

k = 15 k = 16

Layer 31, Head 9, Correct Rate: 0.00

Figure 7: Label representations of k demonstra-
tions visualized on Left 4: correct and Right 4:
wrong induction head, on one sample of SST-2
(see Appendix H.3). ◦: “positive” label, ×: “neg-
ative” label, ▲: zero vector. Color: Radial den-
sity of each categories, to estimate the attention
assigned to query, negative to positive (cartogra-
phy: Appendix A.5).

Some Induction Subspaces are Task-specific.
We check if different tasks share the same
induction subspaces based on the overlap of
the correct induction heads across different
datasets. Given nD(h) as the number of times h
is marked as correct induction head on dataset
D, the overlap rate S is defined as:

S(D1,D2) =
2
∑

∀h min[nD1
(h), nD2

(h)]∑
∀h nD1

(h) + nD2
(h)

.

The results are shown in Fig. 6 (Right), where:
(1) A significant overlap of induction heads in-
dicates that a part of correct induction heads is
inherent in the model, built by the pre-training
process (Reddy, 2024; Singh et al., 2024b). (2)
Such overlap is not fully observed, suggesting
that some induction subspaces are task-specific:
Input texts evoke task-specific induction heads, enabling the anisotropy multiplex of different sub-
spaces in the hidden spaces to transmit relevant information for various tasks. Therefore, we can
analogize ICL as an implicit end-to-end multi-task learning with hidden state multiplexing since
multi-task learning also utilizes various task heads on common bottom network layers and informa-
tive hidden states (Zhang & Yang, 2021).
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Demonstrations Saturate on Induction Subspace. We visualize the demonstrations’ label token
representations mapped on the induction subspaces by the transition matrix Wh⊤

Q Wh
K and princi-

pal component analysis in Fig. 7, indicating: (1) Compared to correct induction heads (Left 4),
wrong induction heads (Right 4) are easier to map label representations linear-inseparably. (2) In
the early stage of demonstration feeding (k = 1 → 2), when a new demonstration is given, the mor-
phology of attention assignment towards query updates significantly (shown as background color in
Fig. 7, estimated by the radial density of various labels; see §A.5 for details), while in the late stage
(k = 15 → 16), attention assignment morphology is stable. This can explain the demonstration
saturation (Agarwal et al., 2024; Bertsch et al., 2024): ICL performance is submodular against the
number of demonstrations. Intuitively, since demonstrations follow a prior distribution, represen-
tation of a new demonstration is likely to be located within the closure of existing demonstrations,
making it less diverse to contribute to the attention assignment in the induction subspace.

5 PUTTING THINGS TOGETHER

So far, we have revealed the existence of the circuit with 3 steps, organized by the sequential in-
ference process among Transformer layers. In this section, we find that the circuit is dominant in
the ICL inference, while some bypass mechanisms activated by residual connection assist ICL in-
ference. Moreover, a series of phenomena observed in ICL is successfully explained by the circuit.

5.1 ABLATION ANALYSIS
Table 1: Accuracy variation (%) with each inference step ab-
lated on Llama 3 8B. Small numbers are controlled results
(mean ± std) of randomly ablating equivalent amounts of con-
nections. Ablations are applied from the bottom to the top layers,
and results with various ablated layers are reported (detailed set-
tings: Appendix A.7).

# Attention Disconnected
Key → Query

Affected Layers Ratio (from layer 1)

25% 50% 75% 100%

1 None (4-shot baseline) ±0 (Acc. 68.55)

– Step1: Input Text Encode –
2 Demo. Texts xi → Forerunner si −4.98

−0.89 ± 0.00
−15.82

−1.19 ± 0.02
−23.43

−3.29 ± 1.87
−30.60

−1.61 ± 0.01

3 Query Texts xq → Forerunner sq −13.87
−0.16 ± 0.00

−21.10
−0.08 ± 0.00

−24.74
−0.47 ± 0.04

−28.38
−0.55 ± 0.00

– Step2: Semantics Merge –
4 Demo. Forerunner si → Label yi −2.24

−0.00 ± 0.00
−3.45

−0.18 ± 0.00
−3.39

−0.10 ± 0.04
−3.42

−0.18 ± 0.01

– Step3: Feature Retrieval & Copy –
5 Label yi → Query Forerunner sq −5.14

+0.03 ± 0.00
−10.03

−0.08 ± 0.00
−11.36

+0.00 ± 0.00
−10.22

−0.06 ± 0.00

Reference Value
6 Zero-shot −17.90 (Acc. 50.65)
7 Random Prediction −36.05 (Acc. 32.50)

To (1) examine the causality be-
tween the attention connection
specified by the 3 steps and ICL
inference, and (2) demonstrate
that our 3-phase circuit domi-
nates or at least participates in
ICL process, we disconnect the
related attention connection of
each step in the proposed circuit
(see Appendix A.7 for details),
and test the accuracies without
such connections, as shown in
Table 1. The results indicate
that, compared to the controlled
results, where trivial connec-
tions are removed, the accuracy
of ICL significantly decreases
when the non-trivial connections designated by the proposed circuit are ablated. This supports the
existence of our circuit. However, the result doesn’t fully match expectations, for example, the result
without induction (line 5) should be consistent with the zero-shot inference result (line 6), since all
the expected communication from demonstration to query is intercepted, but the real result is better;
and the contribution of Step 1 in later layers are unexpectedly high, indicating the existence of
some bypass mechanisms parallelly contributing to ICL accuracies.

5.2 BYPASS MECHANISM

0% 20% 40% 60% 80% 100%
Normlized Layer Number

Llama 3 70B
 80L, 64H

Falcon 40B
 60L, 128H
Llama 3 8B

 32L, 32H
Falcon 7B
 32L, 71H

Step 1 Step 2 Step 3

Figure 8: Dynamics and deserialization of magni-
tudes of proposed 3 inference steps (cartography
details: Appendix A.6).

Motivated by the ablation results, we believe
that several mechanisms including our circuit
run parallelly for ICL, since the residual con-
nection supports complex paths among layers
and attention heads. We list some possible by-
passes and plan a complete enumeration as fu-
ture work.

Parallel Circuits. Multiple 3-step circuits can
execute in parallel, and one layer can assign
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multiple inference functions to different heads, causing dispersion and deserialization as shown
in Fig. 8, where a narrow (fewer heads per layer) and deep (more layers) model is more likely to
generate localized inference, and vice versa.

Direct Decoding. Residual connection to the LM heads allows intermediate hidden states to be
decoded directly. Intuitively, a shortcut from Step 1 encodings to the LM head enables ICL with
zero-shot capacities, since we have confirmed that encoded representations are informative for ICL
tasks (§3.2), while the decoding methods should be selected carefully (Cho et al., 2024) (e.g. with
essential calibration). On the other hand, shortcuts from insufficiently encoded features may lead
to meaningless information decoded by language model heads, causing prediction bias, i.e., even if
no query is given, ICL still returns unbalanced results (Zhao et al., 2021) decoded from tokens of
prompt template (see Appendix E for details). Table 2: Accuracy drop with shortcut ablated.

Attention Disconnected (∀i) 25% 50% 75% 100%

Forerunner s1:i → Forerunner si:q −1.30
−0.00

−0.75
−0.16

−0.78
−0.16

−1.56
−0.71

Shortcut Induction. Note that a k-shot ICL
input sequence always contains a (k − 1)-
shot sequence, where the k-th forerunner token
(served as the query of (k−1)-shot sequence) is previously processed by the (k−1)-shot inference.
So every forerunner can directly retrieve previously processed forerunner tokens in the demonstra-
tions to copy their induction results directly. The non-trivial result (Table 2) with all forerunner
tokens disconnected from each other confirms such infer.

5.3 EXPLAINATION TOWARDS OBSERVED ICL PHENOMENA

Difficulty-based Demonstration Selection. In §3.1, we find that in the zero-shot scenario, per-
plexed texts are harder to encode, explaining the observation of PPL-ICL (Gonen et al., 2023):
Selecting demonstrations with lower perplexity can improve ICL performance. Moreover, while the
demonstrations increase, LMs can encode more complex inputs with diverse information to update
the attention assignment shown in Fig. 7, making it beneficial to input harder demonstrations later,
which explains the ICCL (Liu et al., 2024), which build demonstrations sequence from easy to hard.

Prediction Bias. (1) Contextual Bias: As mentioned in §5.2 and shown in Appendix E, direct
decoding insufficiently encoded information adds meanless logits into LM’s output, causing a back-
ground prediction value even if no queries are given (named bias). (2) Positional Bias: As shown
in §3.2, closer demonstrations are encoded more similarly, so label tokens near the query have more
similar information to the query, causing more attention assignment in the induction processing, so
that more influences on the prediction. (3) Frequency Bias: As shown in §4.2, in the induction,
some attention heads are without correct selectivity towards labels, causing an averaged copy pro-
cessing from label tokens to the query, triggering a prediction bias towards the label frequency in the
demonstration, even if their contribution (absolute value of attention score on label tokens) is small.
All three biases are observed by Zhao et al. (2021), and can be removed by ICL calibration methods.

The Roles and Saturates of Demonstrations. It is well known that demonstrations improve the
performance of ICL. We decompose such performance improvement into 2 parts: (1) demonstra-
tions help early layers encode better (§3.1), and (2) more demonstrations provide larger label token
closure, enabling more accurate attention assignment (§4.2), while the volume of such closure is
submodular to demonstrations, causing the saturates of ICL performance towards demonstrations.

The Effect of Wrong Label. It is well-known that the label noise is less harmful in ICL (Min et al.,
2022) than in gradient-based learning (Zhang et al., 2021). We have explained in §4.1 that ICL
implies labels denoise to stabilize ICL against label noise, while weakened by dimensionality.

6 CONCLUSION AND DISCUSSION

Conclusion. In summary, this paper restores ICL inference into 3 basic operations and confirms their
existence. Fine-grained measurements are conducted to capture and explain various phenomena
successfully. Moreover, ablation studies show the proposed inference circuit dominates and reveals
the existence of bypass mechanisms. We hope this paper can bring new insight into ICL practice.

The Role of Early and Later Layers. Our framework shows: The encoding result of Step 1 can
be directly used for classification with reliable decoding, and later transformer layers are not con-
tributing to centroid classification accuracies (Fig. 3), leading to a taxonomy of Input Encoding for
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Step 1 and Output Preparation for Step 2 and 3: LMs complete multi-task classification implicitly
in early layers, and verbalize it by merging task-specific label semantics in later layers. Therefore,
we suggest an early-exiting inference: removing some top layers and using a centroid classifier (Cho
et al., 2024) to accelerate ICL as shown in Table 3 and Appendix E.

Table 3: Performance of full and layer-
pruned ICL inference.

Inference Acc. # Param. Speed
Full + LM Head 66.19% 70.6B 1×
Full + Centroid 83.24% 69.5B 1.00×

Layer34 + LM Head 49.29% 32.7B 2.16×
Layer34 + Centroid 84.27% 31.2B 2.38×

Pre-training Possibility from Natural Language Data.
A large gap can be considered between such a deli-
cate circuit and gradient descent pre-training on the wild
data. However, we believe the wild training target con-
tains the ICL circuit functionally: Based on the previ-
ous works finding trainability of ICL on simplified lin-
ear representation-label pairs (Chan et al., 2022; Reddy,
2024; Singh et al., 2024b), we speculate that in early training step, Transformers learn to extract
linear representations shown in §3 from wild data (detailed in Appendix B), serving as the training
input of later layers to evoke the emergence of induction heads with the same mechanism shown
in aforementioned previous works. Moreover, our conclusion of Step 3 highlights the input data
requirements for the later layers: These data should activate the multiplex of hidden space, i.e.,
it should implicate multi-task classification with a wide distribution, which is consistent with the
aforementioned previous works.

Comparison with Previous Works. Several prior studies have sought to interpret ICL as known
processes, including implicit gradient descent (Dai et al., 2023), kernel regression (Han et al.,
2023a), and implicit Bayesian inference (Xie et al., 2022), etc. However, as stated in §2.1, these
approaches fall short of fully explaining the phenomena observed during the ICL inference process.
For instance, gradient descent is known to be fragile against label noise (Zhang et al., 2021), leading
to a misalignment when analogies are drawn to ICL, which is robust against label noise (Min et al.,
2022; Liu et al., 2020). Similarly, attempts to explain ICL as kernel regression fail to account for po-
sitional bias, making them disconnected from empirical studies that have observed various inference
phenomena in real-world LMs. Also, other works have employed induction circuits to explain ICL
dynamics (Wang et al., 2023; Elhage et al., 2021; Olsson et al., 2022), yet significant gaps remain
in aligning these explanations with empirical observations. Our work is the first to unify the frag-
mented conclusions from prior empirical studies (discussed in §5.3) through detailed experimental
measurements. By demonstrating the alignment of these observations, we emphasize the novelty
and primary contribution of our paper.

Limitations & Open-questions. (1) These 3 basic operations are not functionally indivisible. Ide-
ally, mechanistic interpretability aims to reduce every operation in ICL inference to the interconnec-
tion of special attention heads to ulteriorly examine how the operating subspaces interact between
steps, and reconstruct ICL behavior from a minimal set of attention heads. Also, although we show
the significance of the inference circuit in the ablation analysis (§5.1), measuring the connectivity
of these attention heads can also be beneficial to get more insights into the circuit. (2) The con-
clusions may not align with scenarios where ground-truth labels are not provided in the context in
some cases, which are often referred to as in-weight learning, where significant differences or even
antagonism with standard ICL have been highlighted by previous works8 (Chan et al., 2022; Reddy,
2024), reasonably and necessarily warranting separate discussion (discussed in Appendix G). This
paper explains the inference behavior of the model under ICL conditions, leaving the in-weight
learning scenario for future works. (3) We only focus on classification tasks, while we believe that
our findings can be applied to non-classification tasks, efforts are still needed to fill the gap.
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Revisiting In-context Learning Inference Circuit in Large Language Models

Appendices

A EXPERIMENT DETAILS AND SETTINGS

A.1 DETAILED OVERALL EXPERIMENTAL SETTINGS

Table 4: Prompt templates used in this paper.
Dataset Prompt Template (Unit) Label Tokens
SST-2 sentence: [input sentence] sentiment: [label token] \n negative, positive
MR review: [input sentence] sentiment: [label token] \n negative, positive
FP sentence: [input sentence] sentiment: [label token] \n negative, neutral, positive

SST-5 sentence: [input sentence] sentiment: [label token] \n poor, bad, neutral, good, great
TREC question: [input sentence] target: [label token] \n short, entity, description, person, location, number

AGNews news: [input sentence] topic: [label token] \n world, sports, business, science

Prompt Template. We conduct experiments on a specific prompt template for each dataset as shown
in Table 4. Moreover, similar to typical ICL practices, we reduce the label into one token to simplify
the prediction decoding. The reduced label tokens are also shown in Table 4.

Quantization. In our experiments, we use BitsAndBytes9 to quantize Llama 3 70B and Falcon
40B to INT4. For the other models, full-precision inference is conducted.

Other. All the experiment materials (models and datasets) are downloaded from huggingface.
For the BGE M3, we use its pooler output as the output feature.

A.2 CALCULATION OF MUTUAL NEAREST-NEIGHBOR KERNEL ALIGNMENT

In this paper, we need to measure the similarity between features from two different models or
model layers. There are many approaches (Klabunde et al., 2023), and we use mutual nearest-
neighbor kernel alignment (Huh et al., 2024), which is relatively concise and accurate, calculated
as follows to measure the similarity of representation from the same object set X = {xi}ni=1 in
different feature spaces.

Calculation of Mutual Nearest-neighbor Kernel Alignment. Given a representation mapping
δ : X → Hd from the objects to a space where similarity measurement ⟨·, ·⟩ : Hd × Hd → R is
defined, we can calculate the similarity map from dataset X as Sδ ∈ Rn×n, where the elements are
Sδ|i,j = ⟨δ (xi) , δ (xj)⟩, especially, we axiomatic define ⟨x, x⟩ = 1, so we set the diagonal element
Sδ|i,i ≒ 0 since they are trivial values that disturb the following calculation with values 1.

Given two representation functions δ1 and δ2, two similarity map can be calculated as Sδ1 and Sδ2
on the same object set X . For each line vector index i = 1, 2, . . . , n in Sδ1 , we select the index of
top-K elements from greater to lower as topk

(
Sδ1|i

)
. Similarly, we get topK

(
Sδ2|i

)
from Sδ2 .

Then, we calculate the kernel alignment for sample i as:

KAX (δ1, δ2)i =

∣∣topK (
Sδ1|i

)
∩ topK

(
Sδ2|i

)∣∣
k

. (1)

The kernel alignment for dataset X is the average on each KAX (δ1, δ2)i.

Implementation. In our experiments, we choose cosine similarity as the ⟨·, ·⟩, and K ≒ 64.
According to experiment settings in §2.2, n ≒ 512 is defined, and a randomlized matrix S have
KA = 64/512 = 0.125 as the random baseline.

A.2.1 BACKGROUND VALUES OF KERNEL ALIGNMENT: LABEL TOKEN - TEXT ENCODING.

In a specific layer of a decoder Transformer, the representations of a token x can be written as
δ(x) = e(x)+ϵ(p), where e(x) is the embedding vector of the token x, and ϵ(p) are the residual side-
flow w.r.t. the context p. Given two specific tokens xi and xj where kernel alignment is calculated

9https://huggingface.co/docs/bitsandbytes/main/en/index
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Figure 9: Distributions (clusters) of representations generated by: Left: encoder model (BGE),
clustering w.r.t. the label. Middle: ICL on the forerunner token, where representations gather into
one point (e([“: ”])) when no Transformer operation is conducted. Right: ICL on the label token,
where representations gather into points w.r.t. label (using a 2-way example) when no Transformer
operation is conducted, causing a high background value.

from different ICL-styled input sequences pi and pj , we discuss the background value of kernel
alignment as below.

Intuition. As shown in Fig. 9, the hidden states on the label token have a prior clustering, making
them naturally similar to the representation generated by the encoder model, even if the ICL process
does not encode it sufficiently. So, at layer 0, since the model is not able to perform any contextual
encoding in this layer, the kernel alignment on the forerunner is on a random baseline value of
0.125, but the value on the label token will be greater (estimated below). In the case where (1)
BGE generates fully linearly separable clusters against x in each class, with sufficient inter-cluster
distance, and (2) the number of samples for each label is not less than 64, such upper bias can be
expected to be 0.125(|Y|−1) (proof omitted). Intuitively, such bias can propagate along the residual
network from the embedding of [y] to every layer, making the results of every layer upper-biased.

Similarity on Forerunner Tokens. The cosine similarity between δ(xi) and δ(xj), where the xi

and xj are forerunner tokens of the input sequence can be written as:

⟨δ(xi), δ(xj)⟩ = ⟨e(xi) + ϵ(pi), e(xj) + ϵ(pj)⟩ (2)

=
⟨e(xi), e(xj)⟩+ ⟨e(xi), ϵ(pj)⟩+ ⟨e(xj), ϵ(pi)⟩+ ⟨ϵ(pi), ϵ(pj)⟩

∥e(xi) + ϵ(pi)∥2 ∥e(xj) + ϵ(pj)∥2
. (3)

Denote Bi,j = ⟨e(xi), ϵ(pj)⟩ + ⟨e(xj), ϵ(pi)⟩, Ci,j = ∥e(xi) + ϵ(pi)∥2 ∥e(xj) + ϵ(pj)∥2, and no-
tice that xi = xj since they are forerunner tokens which is kept consistent in experiments, we have:

⟨δ(xi), δ(xj)⟩ =
1 +Bi,j + ⟨ϵ(pi), ϵ(pj)⟩

Ci,j
. (4)

Similarity on Label Tokens. Similarly, the cosine similarity between δ(yi) and δ(yj) on label
tokens can be written as:

⟨δ(yi), δ(yj)⟩ =
⟨e(yi), e(yj)⟩+Bi,j + ⟨ϵ(pi), ϵ(pj)⟩

Ci,j
. (5)

Encoding on Label Tokens Enhances the Similarity with Same Labels. Given K = 1 for sim-
plicity, the probability top1

(
Sδ|i

)
selects a sample with the similar label with i-th sample on the

forerunner token can be written as:

PF

[
yi = ytop1(Sδ|i)

]
= ryi

Ej|yi=yj
[⟨δ(xi), δ(xj)⟩]

Ej [⟨δ(xi), δ(xj)⟩]
(6)

≈ ryi

1 + Ej|yi=yj
[Bi,j ] + Ej|yi=yj

[⟨ϵ(pi), ϵ(pj)⟩]
1 + Ej [Bi,j ] + Ej [⟨ϵ(pi), ϵ(pj)⟩]

, (7)
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where the ryi
is the label ratio of yi. Similarly, the probability on the label token can be written as:

PL

[
yi = ytop1(Sδ|i)

]
≈

ryi
(1 + Ej|yi=yj

[Bi,j ] + Ej|yi=yj
[⟨ϵ(pi), ϵ(pj)⟩])

ryi

(
1 + Ej|yi=yj

[Bi,j ] + Ej|yi=yj
[⟨ϵ(pi), ϵ(pj)⟩]

)
+ (1− ryi

) (⟨e(yi), e(yj)⟩+ Ej [Bi,j ] + Ej [⟨ϵ(pi), ϵ(pj)⟩])

⩾ PF

[
yi = ytop1(Sδ|i)

]
. (8)

That is, the inputs with the same labels with xi are easier to be selected into the top1
(
Sδ|i

)
. Notice

that we make approximations here: (1) we consider the Ej|yi=yj
[Ci,j ] ≈ Ej [Ci,j ], i.e., the 2-norm

of two encoding vectors are considered equal granted by normalization used in Transformer. (2) We
consider the context term c in the label token scenario the same as the forerunner scenario since the
difference is only a label token, which usually occupies quite a small part of the input sequence.

Background Values of Kernel Alignment. According to the explanation above, as shown in Fig. 9,
it is intuitive to conclude that topK

(
Sδ|i

)
from label tokens is easier to cluster samples with the same

label as yi. Moreover, a well-pre-trained encoder can catch the prior distribution of the input texts
determined by their labels, and also cluster samples with the same label, causing a high similarity
of similarity map, so that a high but unfaithful kernel alignment as the background value from the
similarity on e(y) but not ϵ(p). An intuitive verification of such background value is shown in the
Fig. 2 (Left), where the “Label Token” curve has a high value in layer 0 with ϵ(p) = 0. However,
the background value also indicates that the representation generated by BGE correctly clusters the
samples, confirming its reliability.

A.3 TRAINING AND INFERENCE OF CENTROID CLASSIFIER

In this paper, we follow Cho et al. (2024) to train centroid classifiers as a probe toward hidden states
of LMs. In detail, given the LM’s hidden states set

{
hl
i

}m

i=1
of the selected tokens (according to the

experimental setting, the last label token or forerunner token) in layer l from an [ICL input]-[query
label] set Z = {(pi, yi)}mi=1, where the labels are limited in label space Y, in the training phase,
we calculate the centroid of the hidden state h̄l

y for each label respectively:

h̄l
y = Ei|yi=y

[
hl
i

]
. (9)

In the inference phase, we extract the equitant10 hidden state hl
t as the training phase from the test

input, and calculate the similarity between hl
t and the centroids calculated above. Then, we choose

the label of the most similar centroids as the prediction:

C(hl
t) = argmax

y

〈
hl
t, h̄

l
y

〉
. (10)

Implementation. In our experiments, we set training sample number m ≒ 256, similarity function
⟨a, b⟩ ≒ −∥a− b∥2.

A.4 CARTOGRAPHY DETAILS OF FIG. 6 (MIDDLE)

In Fig. 6 (Middle), we define a Correct Label Assignment, here we introduce how this measurement
is calculated. Suppose we have an attention score AW,f (K,Q) calculated as (also written as αK→Q

in brief):
AW,f (K,Q) = f

(
Q⊤WK

)
, (11)

with hidden dimensionality of d, give a certain layer, K ∈ Rd×nt is the hidden state matrix of full
context, Q ∈ Rd×1 is the hidden state of query’s forerunner token (Q⊤ = K⊤

nt
), f : Rnt → Ωnt

is a normalization mapping from nt-dimensional real vector to nt-dimensional probability vector
(usually softmax function), the W is a linear kernel, usually Wh⊤

Q Wh
K for multi-head attention or

I = diag (1nt) for vanilla attention.

10Equitant refers to hidden states from the same layer and token type. While, in experiments shown in Fig. 5
(Right), we don’t keep the token type consistent.
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Figure 10: Visualization of non-trivial attention connection defined and disconnected in ablation
analysis in §5.1 and Table 1. Notations and line numbers are same as Table 1.

For one input sample, given the token-index set of label tokens as L, the token-index set of label
tokens which is the same as the query’s ground truth label as L+, we define the Correct Label
Assignment (CLA) of one sample as:

CLAW,f (K,Q,L,L+) =

∑
i∈L+ AW,f (K,Q)i∑
i∈L AW,f (K,Q)i

. (12)

Intuitively, CLA reflects the accuracy of attention computation AW,f towards label tokens on one
input. For an input set built from a dataset, we calculate the averaged CLA on these inputs, and
repeat in every layer to plot a curve of Averaged CLA against layer numbers. Specifically:

(1) Vanilla attention. We assign W ≒ I, f to linear normlization.

(2) Best Induction Head. For each attention head h, we assign Wh ≒ Wh⊤
Q Wh

K , f ≒ softmax.
For each input, we calculate max

h
CLAWh,f (K,Q,L,L+) as the result for single input.

(3) Head Average. For each attention head h, we assign Wh ≒ Wh⊤
Q Wh

K , f ≒ softmax. For
each input, we calculate

∑
h CLAWh,f (K,Q,L,L+) /|H|, where the |H| is the amount of heads

in current layer, as the result for single input.

Note that we do not consider the absolute value of attention assignment on label tokens in this
experiment, and most of the heads have little scores assigned to the label (Fig. 6 (Left)), therefore,
although the average assignments tend to be average, this result shown in Fig. 6 (Middle) does not
contradict the phenomenon that ICL can achieve high accuracy.

A.5 CARTOGRAPHY DETAILS OF FIG. 7

For Fig. 7, we input one sample from SST-2 into Llama 3 70B, take the output of layer 30 on the label
tokens to span a matrix KL, and map them by Wh⊤

Q Wh
K of head 32 (the best induction heads in this

layer) and 9 (the worst induction heads) of layer 31 (the layer with the most correct induction heads),
respectively. We visualize the distribution of these mapped Wh⊤

Q Wh
KKL, we conduct principal

component analysis on them, and plot them on the plane of the first two components.

For each point q ∈ R2 on the principal component plane, we calculate the attention assignment
as follows. Give the index set of “positive” label token in KL as L+, the index set of “negative”
label token as L−, we calculate the attention assignment, which can be an estimate of ICL predic-
tion (Wang et al., 2023), as:

AttAssign(q) =
∑
i∈L+

q⊤Wh⊤
Q Wh

KKL|i −
∑
i∈L−

q⊤Wh⊤
Q Wh

KKL|i. (13)

We map this value to the degree of blue color of each pixel. The larger the positive value, the bluer
it is, and the smaller the negative value, the redder it is.

A.6 CARTOGRAPHY DETAILS OF FIG. 8

For Fig. 8, we calculate the magnitude of Step 1 as the finite differences of kernel alignment in
Fig. 2 (Left, “Forerunner Token of Label”). We directly use the head counting of Fig. 5 (Middle)
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Figure 12: The 3 operating magnitudes on Pythia 6.9B with various pre-training steps. Left: Step 1,
Input Text Encode. Middle: Step 2, Semantics Merge. Right: Step 3, Feature Retrieval and Copy,
measured by the correct induction head numbers.

and Fig. 6 (Left) as the magnitude of Steps 2 and 3. These data are regularized and converted into
transparencies.

A.7 EXPERIMENT SETTING OF ABLATION EXPERIMENTS IN TABLE 1

In Table 1, we attribute each step of the inference process to specific attention connections, also
shown in Fig. 10. When we aim to remove this step from the inference, we eliminate (i.e. zeroing) all
corresponding attention connections from layer 0 to layer {25%, 50%, 75%, 100%}×TotalLayers.

For reference, for each experiment, we also conduct controlled experiments where the same amount
of randomly selected attention connections are removed from the same layers as the controlled
values. The controlled results are shown as smaller numbers under the experimental results.

B LM PRE-TRAINING DYNAMICS MEASURED BY ICL CIRCUIT

We extend the discussion of pre-training dynamics in §6 here.
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Figure 11: Operating magnitude
for each inference step (normal-
ized) and ICL accuracy against
pre-training steps on Pythia 6.9B
and SST-2.

One can divide a self-regression model into an early part and
a later part in depth of layers, where the early part encodes the
input into a hidden representation, and the later part decodes
the hidden representation back to the input. So, the training ob-
ject can also be divided into an encoding loss and a decoding
loss. According to the discussion in §6, the operation of Step 1
can be classified as encoding, and the other two steps of the in-
duction circuit can be classified as decoding. Intuitively, since
the decoding operations require the encoding results as input,
unless the encoding operation converges to a stable output, the
decoding can not be trained since the input-output mapping is
noised, causing unstable gradients to interfere with the train-
ing (Liu et al., 2020).

We confirm such a hypothesis by measurements in Pythia
6.9B (Biderman et al., 2023) as shown in Fig 11, where: (1)
The magnitude of the 3 operations emerge in the early phase of pre-training (less than 10k steps),
and is monotonically increasing, while the encoding operation has the fastest growth rate. (2) ICL
capacity appearance after all three operations reaches a high level (around 50k steps, notice that
the random accuracy is 0.5), while the curve morphologies of the operating magnitudes against the
layer numbers (shown in Fig. 12) are convergence to the last training step. Such results suggest that:
LMs start to produce the inner encoding in the very early steps of the pre-training, and can be an
important fundamental in building the subsequent induction circuits, as explained in the previous
works mentioned in §2.1.
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Figure 13: Attention score visualized with the forerunner token of the ICL query as the attention
query, from (Left) layer 21 and (Right) layer 2 in Llama 3 70B from an input case.

B.1 DATA DISTRIBUTION REQUIREMENT EXPLAINED BY HIDDEN STATE MULTIPLEX

Moreover, the hidden space multiplexing in the induction operation observed in this paper can give
a prototypical and phenomenological conjecture for the data distribution requirement found in the
previous works (Olsson et al., 2022; Reddy, 2024; Singh et al., 2024b), where data with a large label
space and various tasks can promote ICL and suppress In-weight Learning (IWL), and vice versa.
Intuitively, suppose the encoding inputted into the later layers is clustered by their labels (similar to
the well-embedded input styles in the works above, confirmed in Fig. 3). In that case, we can say
a cluster center is the eigen-subspace of the corresponding label. Since attention only conducts
dot-multiplication operations, let us assume that these eigen-subspaces are radially distributed.

During the training, (1) When the label space is small, the trained attention heads only need to
extract the projected length of the query on each label’s eigen-subspace. For each label, such op-
eration has a parameters’ analytical solution with (encoding kernel) W⊤

QWK = I and (decoding
transformation) WOWV = o⊤y ey , where oy is the label token’s output embedding, and ey is the la-
bel’s eigen-subspace. From such an operation, theoretically, one layer can handle at most |H| labels,
where |H| is the head amounts. While, considering the sparsity of these eigen-subspaces, such an
upper bound can be increased to d′|H| by multiplex one head to decode an orthogonal group of la-
bels with orthogonal eigen-subspaces of E = [ey1

; ey2
; . . . ; eyd′ ] and orthogonal output embedding

O = [oy1
; oy2

; . . . ; oyd′ ], where d′ is the inner dimension of attention head, with decoding transfor-
mation WOWV = O⊤E . (2) When the label space expands11, the decoding transformation can
not distinguish all the clusters since the WOWV is low-rank. Driven by the training loss, the model
can choose to transform the encoding kernel to focus on catching the most similar label tokens with
the query, and copy the label tokens’ information back to the query. As a result, one attention head
can catch at most d′ groups of label tokens mapped collinearly by the encoding kernel (note that this
set of labels may not appear simultaneously in the context, so confusion can be avoided), and the
common space of these label words become the induction subspace shown in §4.2.

Our other conjecture is that the ICL training endpoint is thermodynamically stable (with a lower
loss), and in contrast, the IWL training endpoint is kinetically stable (with a more accessible training
trajectory). Moreover, the IWL training object can be a precursor of ICL training, since the total
number of labels fed into the model gradually increases with the data. So, we can hypothesize that:
When the metastable state is disturbed by some condition, such as the appearance of rare or noisy
labels, the training can show a phase transition toward a thermodynamically stable state.

11Notice that such a situation can also occur when the orthogonality between eigen-subspaces or output
embeddings is lost. A common situation is that the variance of the cluster increases, creating confusion within
the decoding space of the attention head.
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Notice that this section is our hypothesis based on the results of this paper, the detailed dynamics are
still unknown, which should be empirically validated in future work. One can start by decomposing
pre-training targets into implicit tasks, and examine how these tasks can evoke the occurrence of the
3-step inference operations. A possible beginning is: finding implicit input-label tuples in wild data.

C CAN LMS SEGMENT ICL INPUTS?

Figure 14: Attention matrix visualized on layer
2, head 53 in Llama 3 70B from an input case.

The experiments in §3.1 imply that LMs conduct
effective segmentation on ICL-styled inputs, en-
abling LMs to block the interference of preceding
demonstrations in the input text encoding opera-
tion. Here, as a prototypical discussion, we con-
firm the existence of the segmentation operation
and then reveal that such segmentation can be done
in very early layers from an attention operation fo-
cusing on some specific segmentation tokens in the
inputs.

As a preliminary observation, we visualize the at-
tention scores with the last forerunner token as the
attention queue at layer 21 (a layer with high en-
coding magnitude, refer to Fig. 2) from an input case, as shown in Fig. 13 (Left), where most of the
attention heads are focused on the query text. The visualization suggests that encoding operations
are localized into the query tokens.

Although position embedding inserts sufficient positional information to hidden states and enables
attention heads to identify nearby tokens, we believe that position embedding is insufficient to ac-
curately segment the various input parts of uncertain lengths. We hypothesize that LM focused on
natural delimiters (e.g. “\n”, “: ”) in the input during the early stages of inference, and visualiza-
tion in Fig. 13 (Right) supports such hypothesis: In layer 2, most of the attention heads focus on the
natural delimiters, and another visualization in Fig. 14 shows that all attention queries (not only the
forerunner token) exhibit similar separator-focusing behavior, suggesting that: Some attention heads
merge all the preceding delimiters’ representation into every token as delimiter-based positional en-
coding, making the representations of tokens with the same number of preceding delimiters similar,
while differentiating the representations of tokens with different numbers of preceding delimiters.
In the subsequent inference process, LM can utilize these delimiter-based positional encodings for
localization operations. Such observation is also consistent with Fig. 4.

Table 5: Accuracy drop with delimiters re-
moved/modified from prompts on SST-2.

Template Modification Acc. (%)

None (Table 4) 91.60
- w/o “\n” 93.36
- w/o “: ” 85.74
- w/o “sentence: ”, “sentiment: ” 79.10
- w/o all above 50.98

- “: ” → “hello ” 78.91
- “: ” → “@ ” 91.41
- “: ” → “positive ” 71.48

(Random) 50.00

Furthermore, we empirically demonstrate that de-
limiters have significant saliency towards ICL accu-
racies in Table 5 (upper), experimented by remov-
ing them from prompt templates. Interestingly, the
trial to completely remove these delimiters from the
inputs yielded almost random results, even though
these inputs still conform to the primary form of
ICL. A reliable reason can be that: The hiatus of
the delimiter interferes with the encoding operation
(Step 1) on both demonstrations and queries, which
completely disrupts the ICL process.

The scale of such a segmentation operation can surprise one, since more than half of the heads focus
on the segmenting operation as shown in Fig. 13 (Right). However, as an assumption, we want to
argue that dividing the input text into local segmentation is a crucial step in language modeling, so,
functionally, LM has sufficient “motivation” to focus on segmenting by the pre-training objective.
Moreover, based on the above principles, as long as the delimiter appears periodically at appropriate
positions and can be captured by attention heads (only in the structured parts of the prompt template),
as shown in Table 5 (lower), the delimiter can be designed to any token. While we still recommend
natural delimiters without semantics in the template design.
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D SEMANTICS MERGE IS NON-SELECTIVE ON LOCATION

To investigate whether the copy processing described in §4.1 has selectivity on the forerunner token,
on every attention head of each layer, for a given token position i, we measure the Normalized Copy
Magnitude shown below:

NCMnt
(α) = ntα(i−1)→i, (14)

where the α(i−1)→i is the attention score with i-th token serving as the attention query and (i−1)-th
token serving as the attention key. For each layer, we export the NCM at all positions and on all
attention heads, and separately statistics the cases where the i-th token is a label token or a non-label
token. The results for 4 models on SST-2 are shown in Fig. 15.

From the results, no significant statistical differences between these two types of tokens can be
observed, suggesting that the semantics copy process, which is identified as Step 2 of our circuit,
is not selective on the token types. However, even if we demonstrate that the model cannot exhibit
selectivity in the copy positions within the current input, a potential direction for future research is
to investigate whether any forerunner tokens in the inputs can enhance or weaken this copy process.
Given that this copying is known to be related to label denoising (§4.1), exploring and carefully
designing these forerunner tokens could significantly benefit the control of ICL behavior.

E MEASUREMENT ON DIRECT DECODING

This section measures the direct decoding bypass, suggesting that: (1) Direct decoding on well-
processed hidden states with some later layer skipped can get satisfactory accuracy even better than
the full inference process. (2) Direct decoding on insufficient processed hidden states adds bias
towards the predicting distribution.
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Figure 16: Direct decoding accura-
cies on various layers.

We examine the first claim by applying the language model
head on each layer’s hidden state on SST-2, Llama 3 8B, and
conduct a standard ICL process on the decoded token predic-
tion distribution. The results are shown in Fig. 16, where di-
rect decoding accuracy emerges from random to near 1 around
layer 18. Refer to Fig. 8 and results in Appendix H.2, we can
confirm: Accuracy emerges after all three steps are executed.
Moreover, the accuracies on the intermediate hidden states are
even higher than the last hidden states, which is aligned with
the discussion in Table 3. So, we can conclude: Direct decod-
ing on well-processed hidden states can classify well.

Moreover, we infer that direct decoding from lower layers, where hidden states are not sufficiently
processed, causes prediction bias. We investigate the influence of the direct decoding result of layer
0, by the relationship between direct decoded distribution and final prediction distribution. In detail,
on SST-2 and Llama 3 8B, we use various forerunner tokens with different direct decoding distri-
butions on the label tokens “positive” and “negative”, and calculate their ICL prediction probability
distributions respectively, as shown in Fig. 17 (Upper), where forerunner tokens with biased direct
decoding distribution produce prediction biases with the same tendencies. While, when we apply
contextual calibration (Zhao et al., 2021), which removes the background value without a query
from the prediction, such similar tendencies disappear (Fig. 17 (Lower)).

F DEMONSTRATIONS ENHANCE THE INFERENCE OF PERPLEXED QUERIES

We investigate the correlation between the queries’ perplexities and the classification accuracies with
and without demonstrations, as a supplement of results in Fig. 2 (Right). We divide the queries into
10 bins w.r.t. the language modeling loss, and calculate the prediction accuracy in each bin, shown
in Fig. 18. In these results, although a unified correlation can not be observed, we can confirm that:
Compared to the 0-shot results, the 4-shot inference shows better accuracies, especially on queries
with high language modeling loss. So, we can conclude that: Demonstrations enhance the inference
accuracy of perplexed queries, consistent with the results in Fig. 2 (Right).
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Figure 15: Copy magnitude normalized by the sequence length from the previous token to the non-
label token and label token, for every token and head in each layer. Significant statistical differences
cannot be observed.

G DEGRADATION ANALYSIS: IN-WEIGHT LEARNING WITHOUT
GROUND-TRUTH LABEL IN CONTEXT

Given the circuit proposed in this paper, it is intuitive that some label tokens, especially the ground-
truth label token of the query should be presented in the demonstrations, which is the typical in-
context learning setting compared to the In-Weight Learning (IWL) setting (Chan et al., 2022;
Reddy, 2024) where the ground-truth label is not offered in the demonstration. When the ground-
truth label is missing, the behavior of Steps 1 and 2 remains constant as they are independent of the
query (due to the causal attention mask), while the behavior of Step 3 should be re-discussed.

In this section, we demonstrate that our circuit, especially the induction processing of Step 3, can
still explain the inference behavior in the IWL scenario, but is not as robust as in the ICL scenario.
Moreover, our experiments demonstrate that in the IWL scenario, induction heads are detrimental to
the model’s predictions, which is consistent with the conclusion drawn from the results in the main
text. Also, some inference phenomena in the IWL scenario can be explained by our conclusions.
While, we also illustrate through a counterexample that under the condition of IWL, even if the
induction heads work negatively, the demonstrations can still enhance the inference.
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Figure 17: Predicting distributions on different forerunner tokens with various direct decoding logits.
Inference process used: Upper: Vanilla ICL, Lower: Biased removed inference by Contextual
Calibration proposed by Zhao et al. (2021).
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Figure 18: The correlations between language modeling loss and ICL prediction accuracies. Upper:
0-shot results; Lower: 4-shot results.

Experimental results in this section require us to consider new inference dynamics for IWL scenar-
ios, although we believe the discussion for ICL scenarios in this paper is robust. We demonstrate
that such separate consideration of ICL and IWL is reasonable and responsible by highlighting the
essential differences between ICL and IWL settings, as also shown in previous works (Chan et al.,
2022; Reddy, 2024).

G.1 HOW ACCURATE CAN INDUCTION HEADS EXPLAIN IWL INFERENCE?

Our main concern is: Whether the induction heads in our circuit for ICL can explain or predict the
inference behavior in the IWL scenario. We design a metric to investigate the accuracy of such an
explanation: We calculate the divergence between the real output probability of the model and the
predicted output probability through the attention assignment of the induction heads. In detail, given
a label space Y, for each label l ∈ Y, we denote the token-index set of l as Ll. Then, we calculate
the predicted output probability ô as:

ô = softmax
([
o1, o2, . . . , o|Y|

])
, (15)
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Figure 19: The JS divergence between the predicted output by the induction attention score (Eq. 15)
and real output on ICL and IWL settings. Since not all attention heads are induction heads, the
lowest 5 data of each layer is selected.

ol = nt

∑
i∈Ll

αh
i→q, (16)

where the αh
i→q is the attention score of head h where the query’s forerunner token serves as the

attention query, and the i-th token as the attention key. Given the real output distribution of ICL as
o, we calculate the Jensen–Shannon divergence DJS[ô, o] as the metric for the accuracy of predicting
o from ô. For each Transformer layer, we select the results of the 5 attention heads with the lowest
divergence, and the results on SST-512 are shown in Fig. 19.

In the results, statistically, compared to the ICL setting, induction heads provide poorer explanations
of model predictions in the IWL setting. However, these divergences consistently remain below the
random baseline, indicating that model outputs in the IWL setting can still be weakly explained by
induction heads. This indicates that the circuit utilized in this paper aligns with the IWL scenario,
albeit slightly weaker.

G.2 DO INDUCTION HEADS CONTRIBUTE TO IWL PROCESSING?

To test the generalizability of our conclusion towards IWL scenarios, we conduct more ablation
experiments similar to §5.1, but with filtered inputs with no ground-truth query label presented
in the context. The results are shown in Table 6. Generally speaking, these experiments confirm
that: Our theoretical framework is still able to explain inference phenomena in IWL scenarios, thus
strengthening our framework.

In detail, compared to the results of unfiltered inputs (Table 1), we highlight 4 major phenomena,
and explain them within our framework: (1) The baseline accuracies (line 1) in IWL settings are
lower than in normal settings, even worse than random prediction. This is easy to understand given

12We select a more-way task to reduce the influence of frequency bias of ICL (introduced in §5.3).
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Table 6: Accuracy variation (%) with each inference step ablated on Left: Llama 3 8B, Right:
Falcon 7B in IWL scenarios. Notations are the same with Table 1, significant comparisons are
highlighted with arrows.

# Attention Disconnected
Key → Query

Affected Layers Ratio (from layer 1)

25% 50% 75% 100%

1 None (4-shot IWL baseline) ±0 (Acc. 33.43 ↓)

– Step1: Input Text Encode –
2 Demo. Texts xi → Forerunner si −2.31

+0.03
−17.90
+0.78

−28.58
+0.49

−31.22
−0.10

3 Query Texts xq → Forerunner sq −2.67
+0.23

−12.96
+0.23

−17.87
−0.46

−13.41
+0.26

– Step2: Semantics Merge –
4 Label yi → Query Forerunner sq −1.20

+0.29
+0.13 ↑

−0.10
+0.52 ↑

−0.06
+0.88 ↑

−0.06

– Step3: Feature Retrieval & Copy –
5 Label yi → Query Forerunner sq +2.08 ↑

−0.23
+2.05 ↑

−0.06
+5.40 ↑

−0.36
+22.95 ↑

+0.00

Reference Value
6 Zero-shot +17.22 (Acc. 50.65)
7 Random Prediction −0.93 (Acc. 32.50)

# Attention Disconnected
Key → Query

Affected Layers Ratio (from layer 1)

25% 50% 75% 100%

1 None (4-shot IWL baseline) ±0 (Acc. 27.41 ↓)

– Step1: Input Text Encode –
2 Demo. Texts xi → Forerunner si −17.64

−0.13
−24.32
−0.42

−26.17
−1.24

−26.43
+0.91

3 Query Texts xq → Forerunner sq −3.19
−0.33

−15.33
−0.23

−21.48
+0.03

−22.53
+0.32

– Step2: Semantics Merge –
4 Demo. Forerunner si → Label yi +2.93 ↑

−0.00
+1.10 ↑

+0.32
+6.38 ↑

0.13
+5.86 ↑

−0.13

– Step3: Feature Retrieval & Copy –
5 Label yi → Query Forerunner sq +8.20 ↑

+0.13
+5.63 ↑

0.23
+9.28 ↑

+0.00
+29.26 ↑

+0.10

Reference Value
6 Zero-shot +33.58 (Acc. 60.99)
7 Random Prediction +5.09 (Acc. 32.50)

the frequency bias introduced in §5.3. (2) As we gradually suppress the induction heads (line 5), the
accuracies increase, which is consistent with the conclusion in the main text of this paper: In IWL
setting, induction heads can not find and copy any correct label-related information in the context,
and only copy the label information presented in the context noisily. Therefore, after removing
it from the inference process, the accuracies increase and approach a 0-shot level. These results
confirm our main claim of this section: Induction heads are detrimental to IWL inference. (3)
Interestingly, removing the copying processing (line 4) unexpectedly enhances the accuracy. We
infer that the input texts of different labels under the same task still have a certain background-value
similarity of the encoding at the forerunner token. Such similarities are propagated into the label
tokens by Step 2, enhancing the attention flow from labels to the query’s forerunner token in Step
3, causing a decrease in accuracy. (4) Removing the demonstration text encoding (line 2) decreases
the accuracy to around 0. According to our discussion about Step 1, in this case, forerunner tokens
cannot receive information from the demonstration text, leading an equivalent sequence for the
later layers without demonstration text like [s1][y1][s2][y2] . . . [sk][yk][xq][sq][yq]. Given that the
forerunner token [s·] is consistent throughout the input, later layers are likely to conduct induction
only on the forerunner token, whose subsequent tokens do not contain the correct label, leading to a
0 accuracy. This is also a critical rebuttal to previous work (Wang et al., 2023), which believes the
label tokens directly collect the information of input text: If that is the case, then disconnecting the
links from demonstration texts to the forerunner tokens will not have such a significant disturbance
on the accuracy.

In summary, these results indicate: Even in the IWL setting, this paper’s conclusions can explain the
inference phenomena, and the findings in our paper are also significantly enhanced. This extends the
applicability of our conclusions, while, given the existence of some counterexamples shown below,
we still hope that future work can provide a more detailed discussion of the inference dynamics
under the IWL scenario.

G.3 THE COUNTEREXAMPLE

Given the demonstration shown in Fig. 20, we use the query “Geoffrey Hinton”, whose ground-
truth label is presented in the context as “Researcher” as the ICL example, and the query “Michael
Jordan”, whose ground-truth label “Athlete” is NOT presented in the context as an IWL example.
Here, to investigate the behavior of the induction heads, we input both examples to Llama 3 70B,
and visualize the attention scores from the query’s forerunner token (which serves as the attention
query) on layer 31, which is identified as the layer with the highest induction magnitude, as shown
in Fig. 20. In the right part of the figure for the IWL scenario, the attention magnitude directed
toward the labeled tokens is significantly weak, with most of the attention scores being absorbed by
the Attention Sink (Xiao et al., 2024) of the first token. A comparison with the left part, where a
ground-truth label is given in the context can particularly highlight such an observation. Such an
observation is currently aligned with our expectations since no label features similar to the query’s
forerunner token can be accessed in the IWL input.

In other words, the induction heads are almost not writing demonstration-relevant information to the
query in the IWL scenario. It is intuitive to infer that the model cannot predict the label for “Michael

26



Published as a conference paper at ICLR 2025

Figure 20: A counterexample when the induction head’s behavior cannot predict the LM’s inference
behavior. Given the demonstration shown in the figure, the attention scores from the label’s forerun-
ner token are visualized on layer 31 of Llama 3 70B. The left part is a standard ICL scenario where
the ground-truth label of the query can be accessed in the demonstrations. The right part is the IWL
scenario where the ground-truth label of the query is not presented in the demonstrations. A clear
induction pattern can not be observed in the IWL scenario.

Jordan” well, and the demonstrations cannot help the prediction either. However, as shown in Ta-
ble 7, the model produces good predictions and benefits from the demonstration, which contradicts
our expectations. Such contradiction indicates that even if our inference circuit can robustly explain
the inference behavior in the ICL scenario, it can not generalize to the IWL scenario generalizatively.

G.4 DISCUSSIONS: THE POSSIBILITY OF DIFFERENT INFERENCE DYNAMICS IN IWL
SCENARIOS

Table 7: Label probabilities from the model predictions
of the ICL (query: “Geoffrey Hinton” (Researcher)) and
IWL (query: “Michael Jordan” (Athlete)) scenario shown
in Fig. 20. In this case, IWL predictions also benefit from
demonstrations.

Label Token “ Ath#” “ Research#” “ Singer” “ Politician”

IWL 3-shot 1.00 0.00 0.00 0.00
0-shot 0.89 0.04 0.01 0.06

ICL 3-shot 0.00 1.00 0.00 0.00

Our explanation for this counterex-
ample is: It can be considered that
in the IWL settings, some different
inference dynamics contribute to the
prediction. Such difference is natural,
since even if the ICL and IWL input
data share a consistent format, they
are fundamentally distinct, and some-
times even antagonistic, as shown in
previous works (Chan et al., 2022;
Reddy, 2024), which find that toy Transformers are difficult to perform well on both types of data
with a same set of parameters. While, large models may allow for the coexistence of multiple in-
ference dynamics, as discussed in §5.2, making LLMs able to yield better performance on both ICL
and IWL inference scenarios.

Therefore, although we claim that our circuit can explain inference behavior under some of the IWL
scenarios, it is reasonable to consider ICL data and IWL data separately, and this paper conducts a
robust analysis under ICL conditions, leaving the IWL scenario for future works.
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Figure 21: Supplemental experiment result on more samples for Fig. 7.

H AUGMENTATED EXPERIMENT RESULTS

H.1 ATTENTION HEAD STATISTICS

We count the marked times of each attention head as Forerunner Token Head (Fig. 22, 23, 24, 25) /
Correct Induction Head (Fig. 26, 27, 28, 29) by all data samples from each dataset on each model.

Forerunner Token Head Statistics. We plot the distributions of the marked Forerunner Token
Heads towards correct and wrong labels: There are observable morphological differences in figures
across different datasets, while the forerunner token heads marked on the correct and incorrect labels
of the same dataset are almost identical. The detailed data confirms our conclusion in §4.1.

Induction Head Statistics. We plot the distributions of the marked Correct Induction Heads, where
there are observable morphological differences in figures across different datasets, but also signifi-
cant overlaps, which confirms our conclusion in §4.2.

H.2 OTHER LMS’ EXPERIMENT RESULTS

Table 8: Results of Table 1 on Falcon 7B.

# Attention Disconnected
Key → Query

Affected Layers Ratio (from layer 1)

25% 50% 75% 100%

1 None (4-shot baseline) ±0 (Acc. 65.27)

– Step1: Input Text Encode –
2 Demo. Texts xi → Forerunner si −7.65

−0.68 ± 0.07
−15.69

−0.62 ± 0.07
−27.15

+0.08 ± 0.03
−29.10

−0.36 ± 0.07

3 Query Texts xq → Forerunner sq −8.30
−0.16 ± 0.00

−21.13
−0.15 ± 0.00

−28.84
+0.11 ± 0.01

−31.74
−0.15 ± 0.02

– Step2: Semantics Merge –
4 Demo. Forerunner si → Label yi −1.01

+0.36 ± 0.10
−1.92

−0.00 ± 0.00
−1.04

+0.06 ± 0.00
−1.27

+0.06 ± 0.02

– Step3: Feature Retrieval & Copy –
5 Label yi → Query Forerunner sq +3.32

+1.72 ± 3.94
−3.61

−0.03 ± 0.00
−7.91

−0.00 ± 0.00
−5.92

+0.10 ± 0.00

Reference Value
6 Zero-shot −4.28 (Acc. 60.99)
7 Random Prediction −32.77 (Acc. 32.50)

The results of most experiments in
the main text on Llama 3 8B are
shown in Fig. 30, 33, 36, and 39;
The results of most experiments in
the main text on Falcon 40B are
shown in Fig. 31, 34, 37, and 40;
The results of most experiments in
the main text on Falcon 7B are shown
in Fig. 32, 35, 38, 41, and Table 8.

From these results, we can conclude
consistently with the main text. How-
ever, as discussed in §5.2, inference
dynamics on these models are delo-
calized, thus clear serialization of the 3 steps can not be observed in these results.

H.3 MORE RESULTS OF FIG. 7

To enhance the persuasiveness, we additionally and randomly try 4 input samples as supplements to
Fig. 7 on SST-2 and Llama 3 70B as shown in Fig. 21. From these results, we can observe similar
phenomena to Fig. 21 and conclude consistently.
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Figure 22: Forerunner Token Head marked on Llama 3 70B.
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Figure 23: Forerunner Token Head marked on Llama 3 8B.

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Correct Label

200

300

400

500

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Wrong Label

200

300

400

500

SST-2

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Correct Label

200

300

400

500

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Wrong Label

200

300

400

500

MR

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Correct Label

200

300

400

500

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Wrong Label

200

300

400

500

FP

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Correct Label

200

300

400

500

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Wrong Label

200

300

400

500

SST-5

30



Published as a conference paper at ICLR 2025

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Correct Label

200

300

400

500

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Wrong Label

200

300

400

500

TREC

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Correct Label

200

300

400

500

0 20 40 60 80 100 120
Head #

1

11

21

31

41

51Tr
an

sf
or

m
er

 B
lo

ck

Forerunner Token Head to Wrong Label

200

300

400

500

AGNews

Figure 24: Forerunner Token Head marked on Falcon 40B.
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Figure 25: Forerunner Token Head marked on Falcon 7B.

0 10 20 30 40 50 60
Head #

1

11

21

31

41

51

61

71

Tr
an

sf
or

m
er

 B
lo

ck

Correct Induction Head

0

50

100

150

200

250

SST-2

0 10 20 30 40 50 60
Head #

1

11

21

31

41

51

61

71

Tr
an

sf
or

m
er

 B
lo

ck

Correct Induction Head

0

50

100

150

200

250

MR

0 10 20 30 40 50 60
Head #

1

11

21

31

41

51

61

71

Tr
an

sf
or

m
er

 B
lo

ck

Correct Induction Head

0

50

100

150

200

250

FP

0 10 20 30 40 50 60
Head #

1

11

21

31

41

51

61

71

Tr
an

sf
or

m
er

 B
lo

ck

Correct Induction Head

0

50

100

150

200

250

SST-5

0 10 20 30 40 50 60
Head #

1

11

21

31

41

51

61

71

Tr
an

sf
or

m
er

 B
lo

ck

Correct Induction Head

0

50

100

150

200

250

TREC

0 10 20 30 40 50 60
Head #

1

11

21

31

41

51

61

71

Tr
an

sf
or

m
er

 B
lo

ck

Correct Induction Head

0

50

100

150

200

250

AGNews

Figure 26: Correct Induction Head marked on Llama 3 70B.
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Figure 27: Correct Induction Head marked on Llama 3 8B.
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Figure 28: Correct Induction Head marked on Falcon 40B.
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Figure 29: Correct Induction Head marked on Falcon 7B.
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Figure 30: Augmentated results towards Fig. 2 on Llama 3 8B.
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Figure 31: Augmentated results towards Fig. 2 on Falcon 40B.
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Figure 32: Augmentated results towards Fig. 2 on Falcon 7B.
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Figure 33: Augmentated results towards Fig. 3 and 4 (on Layer 16) on Llama 3 8B.
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Figure 34: Augmentated results towards Fig. 3 and 4 (on Layer 24) on Falcon 40B.
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Figure 35: Augmentated results towards Fig. 3 and 4 (on Layer 16) on Falcon 7B.
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Figure 36: Augmentated results towards Fig. 5 on Llama 3 8B.
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Figure 37: Augmentated results towards Fig. 5 on Falcon 40B.
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Figure 38: Augmentated results towards Fig. 5 on Falcon 7B.
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Figure 39: Augmentated results towards Fig. 6 on Llama 3 8B.
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Figure 40: Augmentated results towards Fig. 6 on Falcon 40B.

1 5 10 15 20 25 30
Transformer Block Number

0

5

10

15

20

25

In
du

ct
io

n 
H

ea
d 

#

Induction
Correct Induction

1 5 10 15 20 25 30
Transformer Block Number

0.2

0.3

0.4

0.5

0.6

0.7

C
or

re
ct

 L
ab

el
 A

ss
ig

nm
en

t

Vanilla Attention
Best Ind. Head

Head Average
Random

SS
T-

2

M
R FP

SS
T-

5

TR
E

C

AG
N

Dataset 2

SST-2

MR

FP

SST-5

TREC

AGN

D
at

as
et

 1

1

0.83 1

0.71 0.72 1

0.59 0.58 0.53 1

0.48 0.45 0.43 0.69 1

0.54 0.54 0.52 0.67 0.64 1

Figure 41: Augmentated results towards Fig. 6 on Falcon 7B.
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