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Abstract: This paper presents a framework for learning vision-based robotic policies for
contact-rich manipulation tasks that generalize spatially across task configurations. We
focus on achieving robust spatial generalization of the policy for the peg-in-hole (PiH)
task trained from a small number of demonstrations. We propose EquiContact, a hier-
archical policy composed of a high-level vision planner (Diffusion Equivariant Descriptor
Field, Diff-EDF) and a novel low-level compliant visuomotor policy (Geometric Compliant
ACT, G-CompACT). G-CompACT operates using only localized observations (geomet-
rically consistent error vectors (GCEV), force-torque readings, and wrist-mounted RGB
images) and produces actions defined in the end-effector frame. Through these design
choices, we show that the entire EquiContact pipeline is S E(3)-equivariant, from percep-
tion to force control. We also outline three key components for spatially generalizable
contact-rich policies: compliance, localized policies, and induced equivariance. Real-
world experiments on PiH tasks demonstrate a near-perfect success rate and robust gen-
eralization to unseen spatial configurations, validating the proposed framework and princi-
ples. The experimental videos and code distributions can be found on our project website:
https://sites.google.com/berkeley.edu/equicontact.
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1 Introduction

Imitation learning has recently shown significant success in expanding the capabilities of machine
learning in real-world robotics applications [1, 2, 3, 4, 5, 6, 7]. Similar to the trend seen in large
language models (LLMs), there is a growing belief that large-scale data can unlock generalizable,
vision-based policies for robotics [8, 1]. However, such policies often lack spatial generalizabil-
ity and therefore require a large amount of data to learn robust behaviors [9]. An alternative line
of recent research focuses on leveraging symmetry—particularly equivariance—to enhance spatial
generalizability, thereby improving sample efficiency during training [10, 9].

In this paper, we propose EquiContact, a hierarchical SE(3) vision-to-force equivariant policy for
spatially generalizable contact-rich tasks. Our proposed method consists of two main components.
The first is a high-level planner consisting of a Diff-EDF model [11], which uses global point cloud
data to provide a local reference frame for placing the peg relative to the hole. The second, low-
level compliant visuomotor policy is a variant of ACT [6], which we refer to as Geometric Compliant
ACT (G-CompACT). This policy handles detailed motion and contact interaction using force-torque
feedback and RGB inputs from wrist-mounted cameras. A key design feature of G-CompACT is that
it only relies on local information—specifically, the force-torque signal in the end-effector frame,
a geometrically consistent error vector (GCEV) [9], and wrist camera inputs. The output of G-
CompACT is the desired pose and admittance gains, which are then sent to the geometric admittance
controller (GAC) module to execute compliant control. The overall framework of EquiContact is
summarized in Fig. 1.

We emphasize that our contribution is on the structural framework rather than the specific choice of

algorithms. For example, one could replace the Diff-EDF with other equivariant methods, such as
9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.
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Figure 1: We propose an EquiContact, a hierarchical, provably SFE(3) vision-to-force equivariant policy for
spatially generalizable contact-rich tasks. The proposed EquiContact consists of G-CompACT and Diffusion-
EDF. The G-Compact plays a localized policy over the reference frame provided by the Diffusion-EDF, making
our framework generalizable to unseen scenarios during evaluation. The G-CompACT is trained only on the
fixed platform pose (left-upper part) but is then deployed to previously unseen platforms, both in translation
and rotation (left-lower part), demonstrating S E(3) vision-to-force equivariance and resulting spatial general-
ization.

ET-SEED [12], or replace the ACT with the DP or their variants, e.g., Diffusion Transformer (DiT)
[13]. The main contributions of this paper are as follows:

1. We propose EquiContact, a hierarchical, provably S E(3)-equivariant policy from point clouds
and RGB inputs to interaction forces for executing contact-rich tasks.

2. We demonstrate that EquiContact achieves near-perfect success rates and spatial generalizability
in real robot experiments involving tight insertions.

3. We identify three key principles for spatially generalizable contact-rich manipulation: Com-
pliance, Localized Policy (Left invariance), and Induced Equivariance. These enable SE(3)-
equivariant behavior without requiring explicitly equivariant neural networks [10].

From these key principles, we propose a general framework to enhance the spatial generalization and
interpretability of vision-based policies, namely, “anchoring localized policy on globally estimated
reference frame.” We emphasize that our work provides complementary insights to recent trends of
robot learning [1, 8, 13, 2] that aim to build generalist policies from a large-scale demo dataset. Our
principles offer structural guidelines to improve spatial generalizability through S F(3) equivariance.
We note that this work is the workshop version of a previously submitted article, [14].

Problem Scenario Our primary focus is to provide a learning-based solution for a peg-in-hole
task, a classic representative of contact-rich, force-based robotic manipulation and assembly tasks,
using vision. The robot first needs to pick up the peg and then insert it into the hole, as shown
in Fig. S1, relying only on vision and proprioception. We assume only that the peg is upright
in the scene. To demonstrate spatial generalizability, we collect expert demonstrations for the G-
CompACT in a setting with a fixed, known hole pose. Then, the benchmark and proposed methods
trained only with demonstration collected from the fixed hole are evaluated across arbitrarily trans-
lated and rotated test scenarios, i.e., spatially out-of-distribution scenarios.

2 Solution Approach and Main Result

We now describe our proposed EquiContact policy, which integrates a high-level vision-based plan-
ner—Diffusion Equivariant Descriptor Field (Diff-EDF)—with a low-level compliant visuomotor
policy—Geometric Compliant control Action Chunking Transformer (G-CompACT). G-CompACT
itself consists of a behavior cloning module built on a transformer-based CVAE architecture, fol-
lowed by a geometric admittance controller (GAC). Because of the page limit, we first focus on the
insertion task, which will later be extended to include the picking task to complete the full pipeline



implementation. The Diff-EDF and G-CompACT are trained separately but are combined as a whole
pipeline during inference time, as shown in Fig. 1.

Diffusion-Equivariant Descriptor Field (Diff-EDF) Diff-EDF [11] is a diffusion-based manip-
ulation policy with a bi-equivariant structure on SE(3) transformations for pick-and-place tasks.
Diff-EDF takes two point clouds as input: the scene point cloud O®*°¢"¢ captured by two exter-
nal RGBD cameras with calibrated extrinsics (Fig. S1), and the gripper point cloud O97*P in the
end-effector frame, with or without a grasped object. Diff-EDF outputs a pose ¢,,, € SE(3)
representing the estimated target pose of the object of interest, e.g., the pose of the hole, as follows:

gEDF — f@l ((9506”67 OgT(lSp) (l)

where the neural network fp, implements the mapping. The key property of Diff-EDF is a scene
equivariance property, which is written by: g;9,,. = fo, (g1 0 O%¢™ 097*P) [11]. We refer the
readers to Supplementary Material SIL.1 for the details of the Diff-EDF.

Geometric Admittance Control We implement the geometric impedance control (GIC) proposed
in [15, 16] in the geometric admittance control (GAC) setup [9]. We first note that we follow the
notation used in [9]. Let the end-effector pose be denoted as g € SFE(3) in a homogeneous matrix
representation, or simply g = (p, R), where p € R? is a position of the end-effector and R € SO(3)
is a rotation matrix of the end-effector. Given the desired end-effector pose g4 = (pa, Ra), the
desired end-effector dynamics for the GAC setup is given as follows:

RTR4K,RY (p — pa)

fr| = |(KrRTR - RTR.KR)| @

where M € R%*6 is symmetric positive definite desired inertia matrix, Ky € R*6 symmetric posi-
tive definite damping matrix, F. € R is external wrench applied to the end-effector in end-effector
body frame and V' € R is a body-frame end-effector velocity. Further, f, = f, (g, 9a, Kp, Kr) €
RO is a elastic wrench, where f,. € se*(3), with K,, Kr € R3*3 symmetric positive definite
stiffness matrices for the translational and rotational dynamics, respectively, and (-)¥ denotes the
vee-map. The implementation details of GAC are presented in the Supplementary Material SII.2.

MV’ + K,V + f, = F,, where f, = [fp} = [

Geometric Compliant control Action Chunking with Transformers (G-CompACT) In our
previous work [9], we proposed a recipe for SFE(3) equivariant policies, which involves a left in-
variance property and policy representation in the end-effector body frame. Following this principle
and recent developments on relative action representations (similar to [17]), we structure our G-
CompACT policy at time instance k to take observations composed of: 1) Geometrically Consistent
Error Vector (GCEV) proposed in [9] (e, ), 2) FT sensor in the end-effector frame to capture contact
behaviors (F¢), and 3) RGB images from wrist cameras (/,,). The model returns N chunks of action
sequences: 1) relative pose from the current end-effector frame (g,.;), and 2) admittance gains (K,
Kr). Formally, the G-CompACT can be summarized as

a(k) = mg,(0(k)), where
a(k) = {(grel(k + i)v [_(p(k + 7:)’ [_(R(k + Z)) ivzlv O(k) = (ecaFea Iw)(k)a
withi =1,---, N denoting the index of action chunk. The GCEV e, = ¢,(9, g, ) is defined as

RT(p—
eG(gngDF): (RT ]gp_ ]:];71;:%1?) )\/ ) (4)

EDF

3)

where g is current end-effector pose and g,,,,,. is a reference frame obtained from the Diff-EDF. The
relative actions g,..;(k + 7) are projected back to the spatial frame by gg(k +¢) = g(k) - grei(k +19).
The temporary signals (gq, K. P KR)(k + i) is then filtered via the temporal aggregation, leading to
(94, Kp, Kr)(k), which are then provided to the GAC controller (2).

Main Result: SE(3)-Equivariance of EquiContact Now we show the main result of EquiCon-
tact: SFE(3) vision-to-force equivariance. Following the argument of [9], we focus on the elas-
tic wrench f_ in (2) of the GAC equation, since it is the main driving force that pulls the



peg into the hole. Let EquiContact be written as hg so that hg(g, gref, Fe) — fg, ie., hg :
SE(3) x SE(3) x se*(3) — se*(3), where g,y € SE(3) is the pose representation of the object
of interest, e.g., hole assembly (see Fig. S2). As the g, is unknown, it is observed via O*°°"¢ by
external RGBD cameras and [,, by wrist cameras. Then, the main proposition that demonstrates
S E(3) vision-to-force equivariance is presented as follows:

Proposition 1. The EquiContact Policy hy is equivariant if it is described relative to the spatial
frame.

Due to space constraints, we will elaborate on the proof and its associated details in the Supplemen-
tary Material SII.

3 Experimental Result

To validate the effectiveness of our proposed EquiContact framework and its underlying design prin-
ciples (Compliance, Localized Policy, and Induced Equivariance), we compare EquiContact against
three benchmark approaches: ACT with observation and action represented in the world frame, ex-
ecuted with and without GAC, and CompACT [18]. We conducted a series of benchmark tests to
demonstrate the effectiveness of each component in the proposed approach. The overall results are
summarized in Table S1. Note that in this benchmark test, we first focused on the placement task,
i.e., the insertion task, and extended the main algorithm to the full pick-and-place task. The full
details of the experimental results are shown in the Supplementary Material SIII.

Demonstration of Compliance The role of compliance is demonstrated by comparing the same
default ACT [6] model running with and without the compliant control in the in the 1** and 2"
rows of Table S1. Without the compliant control, the ACT model shows significantly lower success
rates, which demonstrates that the presence of compliant control is almost a deciding factor between
success and failure for contact-rich tasks. To further demonstrate the effectiveness of the task-
adaptive gains, we compare the fixed gain case (2" row) and adaptive gain case (CompACT, 3"
row). Although the success rate does not differ, the adaptive admittance gains based on FT feedback
consistently produce lower interaction forces in all directions, as shown in Fig. S3.

Demonstration of Equivariance Although the CompACT succeeds in insertion tasks in trained
scenarios without excessive interaction force, it fails to generalize to spatially unseen configurations
(denoted as ”OOD” in the 3™ row of Table S1). This is expected, as its observation and action
representations are defined in the global spatial frame, which neither guarantees nor encourages
equivariance. Furthermore, the data is only collected at the fixed platform pose, as shown in Fig. 1.
In contrast, the proposed EquiContact achieves perfect success rates on the translationally unseen
flat platform, as can be seen in the 4™ row of Table S1, and achieves a near-perfect success rate even
on the tilted platform case.

From these experimental results, we draw the key takeaway: ‘“anchoring localized policies on
globally estimated reference frames”, which serves as a general framework to enhance spatial
generalizability and interpretability of vision-based policies. The detailed elaboration of this take-
away is presented in the Supplementary Material SIV.

4 Conclusion

In this work, we introduced EquiContact, a vision-to-force equivariant policy for spatially general-
izable contact-rich tasks. By integrating a global reference frame estimator (Diff-EDF) with a fully
localized visuomotor servoing policy module (G-CompACT), we demonstrate how compliance, lo-
calized policy, and induced equivariance can be unified to enable the peg-in-hole (PiH) task, a repre-
sentative contact-rich precision task, under spatial perturbations. We proved the S F(3) equivariance
of the policy under assumptions on point cloud and image observations and validated its effective-
ness through real-world experiments on PiH benchmarks. Compared to benchmark methods, our ap-
proach generalizes to unseen platform positions and orientations while maintaining low contact force
and near-perfect success rates. Through extensive benchmark studies, we highlighted the effective-
ness of the three principles — compliance, localized policy, and induced equivariance — for achieving



spatial generalizability in contact-rich manipulation. We conclude that these principles offer a sim-
ple yet powerful design guideline for developing spatially generalizable and interpretable robotic
policies complementing recent trends in end-to-end visuomotor learning and enabling a structured
divide-and-conquer approach.
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Supplementary Material

SI Related Works

Visuomotor Servoing Methods Recently, generative modeling has become mainstream in realizing
visuomotor servoing policies. Particularly, there are two dominant methods for visuomotor servo-
ing: Action Chunking with Transformers (ACT) [6] and Diffusion Policy (DP) [5]. ACT utilizes the
conditional variational autoencoder (CVAE) method as a generative model, whereas DP employs
denoising diffusion as its generative model. ACT and DP have been extended to other approaches,
including compliance and force-reactive behaviors [18, 19, 20], as well as structural improvements
[21, 13, 22]. Our work is most closely related to CompliantACT (CompACT) [18], which inte-
grates compliant control for visuomotor policies. We have significantly improved CompACT by
incorporating a provable SE(3) equivariant structure.

Equivariant Methods Equivariant methods aim to leverage the inherent symmetries of robot tasks,
typically modeled as group transformations such as SE(3), to improve the sample efficiency of im-
itation learning. Early approaches, such as Neural Descriptor Fields (NDFs) [23] and Transporter
Networks [3], incorporated equivariance to SE(3) and SO(2) transformations, utilizing scene point
clouds and top-down views, respectively. Equivariant Descriptor Fields (EDFs) [24] reformulated
the NDF approach into a fully end-to-end learning method with SFE(3) bi-equivariance property,
which is further improved by Diffusion-EDF (Diff-EDF) [11] to improve training and inference per-
formance. Other equivariant models that extract desired keyframes from point clouds include [25].
3D Equivariant extensions of DP [26, 27, 12] and Flow-Matching [28, 29] policies have been ex-
plored in recent literature and combine S E(3) equivariant observation encoders with appropriately
modified diffusion/flow-matching processes.

Compared to recent works of [17, 30], we generalize the table-top manipulation to contact-rich tasks
while achieving full SE(3) equivariance from vision to force/control level, bridging vision, control,
and force interaction under a unified framework. In particular, compared to [30], which represents
the target policy on the estimated reference frame, we represent the policy on the end-effector frame.
This is because the estimated reference frame can be noisy, but one can always access perfect infor-
mation on the current end-effector frame via forward kinematics. Furthermore, the reference frame
is assumed to be only translated in [30], whereas we assume complete S F(3) transformation of the
reference frame. Compared to [17], both [17] and our work propose relying only on the wrist camera
for the localized policy. However, while the global information was proposed to be handled via a
large field-of-view wrist camera in [17], which is impractical in the real-world implementation, we
instead utilized a hierarchical structure to handle global information using an external camera. We
also provide more theoretically sound proof for the S F(3) equivariant visuomotor policy, as well as
an extension to the control force level. We also did not utilize SO(2) equivariance as in [17] on the
wrist camera, as our camera is not mounted vertically on the end-effector. Furthermore, utilizing a
group-equivariant neural network in the pipeline tends to increase the computational burden, as most
group-equivariant neural networks are not as well-engineered as their non-equivariant counterparts.
Therefore, we choose to have a high control frequency for the visuomotor policy rather than utilizing
a group-equivariant neural network with a lower control frequency.

SII Details of Solution Approach

SII.1 Details of Diff-EDF

As mentioned in Section 2, the objective of the Diff-EDF is to obtain the pose ¢.,. € SE(3),
which is the estimated pose of the object of interest g,.., as is presented in Fig. S2.

Let O™/ C O%*"¢ denote the subset of points corresponding to the object of interest (e.g., the
hole structure, see also Fig. S2). The model is designed to satisfy the following left-equivariance
property on the point cloud characterization of the target object of interest:

Assumption 1 (Left-Equivariance of Diff-EDF).
9epr = Jou (Oref7 O ¥P) = g1+ Gppr = Jo, (g1 © Orefa oIresr), (%)



To meet this assumption, we randomize the pose of the hole-platform assembly during training,
both translationally and rotationally, with visual distractors in the background. This encourages the
model to focus on O/, not the rest of the objects in the scene.

While this property is not strictly enforced (due to the learned nature of fy,), Diff-EDF utilizes
equivariant backbone architectures and localized attention mechanisms [31], enabling it to general-
ize from as few as ~ 10 demonstrations and have high robustness to left SE(3) transformations.
To train Diff-EDF, the scene and grasp point clouds are collected together with the target reference
frames, which represent the desired poses of the end-effector for pick-and-place operations. 15
demonstrations were collected for the Diff-EDF: 12 samples of the flat platform and 3 samples of
the tilted platform, both translationally and rotationally randomized. The training process of Diff-
EDF follows the procedure in [11].

While the original Diff-EDF supports right-equivariance to handle transformations between the grip-
per and the grasped object, we did not utilize this feature. In practice, we observed that arbitrary
peg transformations relative to the gripper introduced additional challenges. First, grasping the peg
based on an arbitrary transformation leads to imprecise grasps, resulting in object slippage during
contact. Second, the gripper-object rotation must be estimated continuously in real-time for G-
CompACT to work under slippage. Instead, we enforced a consistent grasp orientation and relied
only on the left-equivariance property. We refer the readers to [11, 10] for full details of Diff-EDF.

SII.2 Implementation Details of GAC

Given the desired dynamics (2), the desired end-effector pose command g4 (k) provided to the end-
effector controller is calculated in discrete time as

de(k) :Vb(k)'i'Ts : M_l(Fe(k)_fG (k)_KdVb(k))a
ga(k)=g(k) - exp (Vi (k) - To), 6)

where T is a sampling time and (A) denotes a hat-map. For the details of the GIC/GAC, we refer to
[15, 9]. The admittance control loop is implemented at a 200Hz rate using ROS2.

SII.3 Details of G-CompACT

First, we note that in our hardware setup, we utilized two wrist cameras, I, 1 and I, 2, as shown in
Fig. S1, but they are simply denoted as I,,. Since the images I,, are fed to the transformer encoder
followed by the visual encoder structure, e.g., ResNet, one can further the G-CompACT in (3) as

a(k) = m, (e, Fe, 2)(k),  where z(k) = jip(Lw). ()

where 114 denotes the visual encoder, and z is the latent variable from the visual encoder. In what
follows, we introduce the assumption regarding the left-invariant visual representation.

Assumption 2 (Left-invariant Visual Features). The features from visual encoder ji4 are left invari-
ant, i.e.,
z2(k) = pg(gi 0 Lw) = pe(lw), Vg € SE(3), ®)

where we refer to g; as a left-group action [10]. Originally, g; € SFE(3) cannot be applied to the
image domain. However, with the slight abuse of notation, one can understand the SE(3) action on
the image as illustrated in Fig. S2.

The meaning of the visual representation z being left-invariant is that the vision encoder f14 is trained
to focus only on group action invariant features, such as the flat surface surrounding the hole on the
platform. The satisfaction of Assumption 2 can be challenging. To satisfy this assumption, we have
designed our platform and the surface surrounding the hole assembly so that there are sufficient
surface features and the cameras primarily see the surface surrounding the hole, not the lower parts
of the platform. This engineering choice was somewhat ad hoc, as there is no guarantee or sufficient
inductive bias to encourage the desired behavior. We will demonstrate in later experimental results
that this assumption may not apply in certain cases.

The following proposition shows the left-invariance of the G-CompACT method in the end-effector
frame.
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Figure S1: (Left) Overview of the workspace for the peg-in-hole assembly task is presented. 2 external cameras
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clearance. (Right-Bottom) Hole part with flat and tilted (30°) platforms.
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Figure S2: Effects of the left group action g; to the end-effector pose g and the reference frame g, s, and to the
wrists cameras [,,,1 and I,, 2. As the left group action is applied on the end-effector, the wrist cameras start to
see not only the optical table but also the outer backgrounds. {s} denotes a spatial frame.

Proposition 2 (Left-invariance of G-CompACT). Suppose that the Assumption 2 holds. Then,

a(k) = m, (g1 0 o(k)) = o, (0(K))- ©)
Proof. The left-translated observation signals o(k) reads that:
gloo(k):(gloec7gloF67glC>Iw)- (10)

As was shown in Lemma 1 of [9], the GCEV e, is left invariant as

gioeqg (g?gEDF) = €g (glga glgEDF) = €g (g7gEDF)'

The force-torque sensor values are left-invariant because they are already defined with respect to the
end-effector frame [9], and the visual representation vectors satisfy left invariance due to Assump-
tion 1. Combining all these properties, it follows that

a(k) = m, (g1 © o(k)) = 7, (e, Fe, 2) = ma, (0(k)), (11)
which shows the left invariance of the G-CompACT policy on the end-effector frame. O

In what follows, we demonstrate that the pose signal produced by G-CompACT is equivariant when
described in the spatial frame.
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Corollary 1 (SE(3) Equivariance of G-CompACT). Let the output of G-CompACT in the spatial
frame be g4 via (without considering the outputs related to gains)

9d :g'W92(eG(g7gEDF)7Fevlw)' (12)
Then,

9194 = 919 - 7792(91 o eG(g’gEDF)’gl o Fevgl © Iw)
:glg'7T92(eg(gagEDF)aFeaIw)~ (13)

Since the temporary desired pose on the spatial frame signal, g4, is SE(3) equivariant, the tempo-
rally ensembled signal g is also equivariant. Therefore, by combining the G-CompACT with a spa-
tial frame representation and temporal ensemble, we will now define the final form of G-CompACT
as g, , which is given by:

(gdevaR) :ﬁ02(eG(g7gEDF)7F€7Iw)' (14)

and satisfies the following equivariance property:
(9194, Kp, Kr) (k) = g, (g1 © o(k)). (15)

To train a G-CompACT, we collect the expert demonstration using teleoperation on the fixed pose
of the platform. During data collection, the expert teleoperator monitors the task’s progress, makes
real-time movement commands via a SpaceMouse, and adjusts the admittance gains using keyboard
input to switch between the following predefined gain modes: low-gain mode, high-gain mode,
insertion mode, and contact mode. The low/high gain mode has low/high gains in all directions, the
insertion mode has high gains in the z direction of the end-effector frame and low gains elsewhere.
Finally, the contact mode has low gains in the z direction and high gains elsewhere. We collected
86 demonstrations to train a near-perfect policy.

Since we know the fixed pose of the platform a priori, e.g., a ground-truth reference frame, the
GCEV vector can be calculated for the training process. Nevertheless, the reference frame needs
to be estimated via Diff-EDF (as g, ) during the inference stage, which may have non-negligible
errors. To handle this issue, we have added noise to the reference frame g, to calculate e, during
dataset preprocessing. This provides the model with an inductive bias to primarily rely on e, values
for rough alignment and rely on vision feedback for fine-grained motion. The rest of the training
follows the standard imitation learning pipeline.

SI1.4 EquiContact

The proposed EquiContact method comprises the high-level Diff-EDF, which serves as a high-level
vision planner that provides the reference frame to be fed to GCEYV, and the low-level G-CompACT,
which handles fine-grained movement and contact interaction during insertion using real-time vision
and force feedback. The overall pipeline of the EquiContact is presented in Fig. 1. The SE(3)
vision-to-force equivariance property of EquiContact is proposed in Proposition 1; we now present
the proof here.

Proof. Suppose that the Assumption 1 and 2 hold. Let the object of interest, e.g., a peg for the
picking task and a hole for the placing task, be observed by O"¢/, I,, with its pose given by g, s
so that the left-translated g; - g, is observed by g; o Oref from the point cloud, and g; o I, by the
left-translated end-effector attached wrist camera as described in Fig. S2.

First, notice that hy can be fully written as

h@(g7gT8f7F€) = fc (977?@2 (ec (ga f91 (Oref))’ Fe’ Iw)) (16)
= fc(gvﬁ-Qz(eg(gagEDF)aFeaIw))~
:(gdepaKR)
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Then, when both g and g,y undergoes a left transformation g;, from Assumption 1 and Corollary 1,
the following holds:

h@(glg7glgrefa g1 © Fe)

= [ (919, 0, (e (919, fo, (910 O")), g1 o Fe, gy 0 L))

= fo(919: 76, (e (919, 919555 ) 91 © Fe, g1 0 L)) (17)
= fo (919, 9194, Kp, Kr) = fo(9, 94, Kp, KR)

= ho(g, gres, Fe).

We note that the second-last equation (SE(3) left-invariance of the elastic wrench) comes from
Lemma 1 of [9]. Finally, from the result of Proposition 2 of [9], it follows that

h(919, @igress gi 0 Fe) = Adgihg(g, gregs Fe), (18)

where Ad is an Adjoint operator, Adgl is a representation for se*(3) (wrench) domain for the group
action g; [9], and superscript s denotes a vector represented in the spatial frame. O

Extensions to Pick Tasks So far, we have described our method in terms of the insertion (place-
ment) task. The proposed method can be extended to pick tasks in the same manner. The Diff-EDF
can be utilized to obtain the pick reference frame, which is used for e, for the picking G-CompACT.
The picking G-CompACT is trained in such a way that the manipulator grasps a peg in a fixed,
aligned pose, which helps EquiContact bypass the right-equivariance issue. For G-CompACT, the

FT sensor values are not utilized as one of its observations, and it does not output the admittance
gains; instead, it uses fixed gains.

SIII Additional Experimental Results

Here, we present additional experimental results for EquiContact: a result of the full pick-and-place
pipeline and the failure cases due to dissatisfaction of Assumption 2.
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Figure S3: Force profiles of CompACT and ACT with GAC (fixed gains) during insertion tasks are presented.
The CompACT with force-torque sensor inputs and output gains shows lower interaction force in all directions.

Full Pick-and-place Pipeline The result of EquiContact for the full pick-and-place task is sum-
marized in Table S2. The EquiContact also demonstrates a near-perfect success rate in the full
pick-and-place pipeline for peg-in-hole tasks. However, as the whole task is formulated in sequen-

tial stages, the error in the previous stage tends to propagate to the following stages, leading to
slightly increased failure cases.
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Table S1: Success rates of the insertion policies in real-world experiments for the proposed and benchmark
approaches. “In-Dist.” denotes in-distribution data and “OOD” denotes out-of-distribution data. In addition,
“Flat” and “Titled” in the Test Scenario refer to testing with the flat and tilted platforms, respectively. For the
In-Dist. (in distribution) scenario, the initial pose of the end-effector is randomized around the flat platform.

Methods Observation Action Test Scenario Slll(c:ti S$
ACT w/o GAC World Pose World Pose Flat (In-Dist.) 2/10
ACT w/ GAC World Pose World Pose Flat (In-Dist.) 20/20
CompACT World Pose, FT World Pose, Gains Flat (In-Dist.) 20/20
Flat (OOD) 0/10
EquiContact .0y ©p Relative Pose,Gains ©iat(OOD) 20720
(Place, Ours) Tilted (30°, OOD) 19/20

Table S2: Success Rates of the proposed EquiContact for a full pipeline of pick and place.

Test Scenario Success Rate Failure Cases
Flat Platform (OOD) 20/20 N/A
Tilted Platform (30°, OOD) 18/20 1 Pick, 1 Place

Table S3: Success Rates of the G-CompACT (insertion) trained with the base dataset and augmented dataset
for the flat platform under the presence of visual distractor scenario and tilted platform with large angle cases.
The evaluation is conducted with the ground-truth reference frames.

Test Scenario Base Dataset Augmented Dataset
W/ Visual Distractor 4/10 9/10
Tilted Platform (45°) 5/10 9/10

Failure Cases and Performance Recovery via Data Augmentation Although the EquiContact
framework is vision-to-force equivariant in theory, this guarantee holds only under Assumptions 1
and 2. In particular, Assumption 2, which requires left-invariance of the visual features, is more
challenging to enforce in practice, as our approach does not explicitly encode this property through
loss functions or architectural inductive bias. As a result, the proposed G-CompACT algorithm
shows degraded performance in scenarios with visual distractors or on a more severely tilted plat-
form (45°) — see Table S3 (“Base Dataset” column). Note that the larger tilting angle results in more
out-of-distribution images, as the wrist cameras begin to capture more unseen background scenes,
as illustrated in Fig. S2. To accommodate this, we augment the base dataset with 20 demos collected
using the visual distractor on a fixed, flat platform and 20 demos collected from a 30° angle of the
tilted platform. After training with the augmented dataset, the success rates return to normal levels,
as shown in the “Augmented Dataset” column of Table S3, demonstrating the performance recovery
achieved through data augmentation.

SIV  Anchoring a Localized Policy on the Reference Frame for Equivariance

The G-CompACT policy 7y, operates exclusively on localized inputs: GCEV, FT values in the end-
effector frame, and images from wrist cameras. Its outputs, relative poses, and admittance gains
are likewise defined in the local end-effector frame. The localized policy is anchored to a reference
frame generated by the Diff-EDF planner. This architectural design induces SF(3)-equivariance
and resulting spatial generalization. Under this principle, one may hypothesize the reason for the
spatial generalizability of recent vision-language-action models, which utilize both wrist and ex-
ternal cameras. The wrist camera provides a localized policy, anchored in the reference frame ob-
tained from the external cameras and proprioceptive information. In fact, learning a reference frame
from proprioceptive information (e.g., joint position) and the external camera is subtle because of
its black-box nature. In contrast, our method, which utilizes a point cloud-based reference frame
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approach, is more interpretable. Thus, we propose “anchoring localized policies on globally esti-
mated reference frames” as a general framework for the divide-and-conquer philosophy to enhance
spatial generalization and interpretability. In our case, this structure also enables provable SFE(3)
equivariance via differential geometric design.
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