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In this Appendix, we provide extended qualitative results, and more details about our Multi-step
Projection Gradient as feature, evaluation, and implementation. All code will be released for
research purposes. For supplementary videos, please refer to our project page.

A Qualitative Results

A.1 Supplementary Video

As motion is best seen in videos, we provide a supplemental video at our project site to showcase
our method. Specifically, we provide qualitative results on the PROX and H36M datasets and also
compare with state-of-the-art RGB-based methods (HuMoR-RGB and HyberIK). From the visual
result, we can see that our method can estimate physically valid human motion from 2D keypoint
inputs in a causal fashion and control a simulated character to interact with the scenes. Compared
to non-physics-based method, ours demonstrates less penetration and remain relatively stable under
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occlusion. For future work, incorporating more physical prior and simulating soft objects such as
cushions can further improve motion quality.

B Multi-step Projection Gradient (MPG)

In this section, we provide a detailed formulation for our multi-step projection gradient as a feature
formulation. First, we provide our keypoint definition based on forward kinematics in Sec. B.1. Then,
we will describe the geometric and learning-based transformation function G for augmenting MPG.

B.1 Forward Kinematics and Keypoint Definition

The SMPL body model defines 24 body joints Figure 1: Visualization of the 12 joints we use
(green dots visualized in Fig. 1), which corre- for pose estimation and the 2D keytpoins obtained
spond to the 24 angles of the joints. For datasets from SMPL using forward kinematics. Red is the
such as H36M [5] and COCO [7], some joints DEKR 2D keypoints detection result [2], white is
of the SMPL human body do not have a one-to- our pose estimation result, and green (numbered)
one correspondence. Thus, prior SMPL-based is the original 2D keypoints obtained from the pro-
human pose estimation methods often make use jection joints of SMPL.

of a predefined joint regressor to recover the cor-
responding joints from the body vertices. As
described in Sec.3.1, for the same body shape,
the lengths of the limbs can change according
to body pose, and changing the joint regressor
may even increase performance [4]. However, it
is computationally expensive to regress 3D joint
locations with linear blend skinning at every
MPG step. Thus, we opt to use a skeleton with
fixed limb length and forward kinematics for
our embodied agent toward real-time humanoid
control. To obtain limb length, we use the rest
pose (T-pose) of the SMPL body and recover
the joint positions using the pre-defined joint
regressor. From the joint positions, we compute
the fixed limb lengths following the parent-child
relationship defined in the kinematics tree.

For both the COCO 2D keypoints [7] and H36M 3D joint positions of H36M [5], we use a subset of
these points to obtain the corresponding points on the SMPL kinematics tree. Specifically, we use 12
joints, a similar joint definition to HuMoR [15], as visualized in Fig. 1. To obtain correspondences,
we choose the following joint numbers from the 24 keypoints based on SMPL: #15, #16, #17,
#20, #21, #22, #2, #3, #6, #7 without any processing. Then we average the position of joint
#15 and #20 to obtain the mid-chest point. The pelvis point is obtained by averaging the 3 joints
#0, #1, and #5. Following the process mentioned above, we obtain a sparse set of points (12) that
we can directly obtain from the SMPL body pose parameters using forward kinematics to match
visual observations and evaluation. Since not all 2D keypoints are confidently estimated, we use a
confidence threshold of 0.1. For detected 2D keypoints of confidence < 0.1, we do not consider them
and omit them during MPG calculation.

B.2 MPG and Geometric and Learning-based Transform G
We define the 3D body pose for time step t as g, = (rR, rT,0,) where q, € R"™. r} € R? and
0; € R5 are root and body joint orientations in axis-angles, while 7] € R? is the global translation.

Geometric Transform of G for rR. Due to depth ambiguity and severe occlusion, recovering
global translation accurately from 2D observations alone is an ill-posed problem. Previous attempts
that use image features[11] and 2D keypoints [12] can often result in unreliable translation estimates
(as seen in Tab.2 and our quantitative video). Our pose gradient, on the other hand, provides temporal
movement information instead of estimating global translation in one-shot. Using the temporal
smoothness of human movement and the laws of physics, our pose gradient is more robust to



occlusion and will not produce sudden jumps in pose estimates. To provide better root translation, we
also take advantage of a geometric transformation step to further improve dr} . Given 2D keypoints
kpf_?_l and body pose qf in this gradient descent iteration, we can treat a human skeleton as a rigid
body to obtain a better translation estimate. Specifically, we compute the world-space 3D keypoints
using forward kinematics J; = FKg (qf) and optimize the following reprojection error:

arg min || eam(J; + A ) — kps?, |3 1)

Ar}j*k
We solve this equation using SVD to obtain Ar[* and 9r[" is updated by Eq. 2.
ortY = orT* + Arfk 2)

Notice that Or[ ¥ is guaranteed to lead to a 2D reprojection error no bigger than the original Or], so
we use a direct additive transform to obtain a better global root translation gradient.

Learning-based Transform of G for Or!. Unlike global translation where depth ambiguity can
cause sudden jumps in depth perception, we find that global rotation can be robustly estimated using
a sequence of 2D keypoints only. Inspired by PoseTriplet [3], we use the temporal convolution
model (TCN) [12] to recover the camera space 3D body orientation. Unlike PoseTriplet [3], we
only regress the 3D body orientation and do not regress the 3D body pose: the TCN model is not
quite robust to occluded or incorrect 2D keypoints (e.g. missing leg joints, which is prevalent when
people are moving behind furniture). However, we notice that the TCN can still recover a reasonable
root orientation by reasoning about reliable body joints (such as arms and torsos). Thus, we use

the TCN to regress the camera space root orientation 78 = 7.1 (Fren(kp? uit+1)) based on a

window of 2D keypoints. We then calculate the difference between current root rotationr® and r/}:
ArR = (rR)=19R We directly add ArR as an additional entry to MPG instead of modifying drk—*
since there is no guarantee that the 2D reprojection error from using Ar/? will be better. We compute

ArR only once instead of K times. Combining the above two components, we obtain our complete
MPG feature.
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C Details about Evaluation

C.1 Evaluation Metrics
Here we provide a detailed list of our metric definition.

* SR: success rate measures whether the pose sequence has been estimated successfully.
For optimization-based methods, LEMO [17] and HuMoR [15], it indicates whether the
optimization process has successfully converged or not. For physics-based methods (ours),
it indicates whether the agent has lost balance or not during pose estimation. We measure
losing balance as when the position of the simulated agent g, and the output of the kinematic
policy g, deviates too much from each other (> 0.3 meters per joint on average). For
regression-based methods, e.g., HyberIK [6], we do not use this metric.

* ACD (mm): one-way average chamfer distance measures the chamfer distance between the
estimated human mesh and the point cloud captured from the RGB-D camera. This metric is
a proxy measurement of how well the policy can estimate global body translation, as used in
HuMoR [15]. Notice that RGB-D based methods such as HuMoR-RGBD and Prox-D both
directly optimize this value, while our method does not use any depth information. Unstable
optimization and degenerate solutions (where the humanoid flies away) can lead to a very
large ACD value.

* Accel. (mm/frame?): acceleration measures the joint acceleration and indicates whether the
estimated motion is jittery. From the MoCap motion sequences from the AMASS dataset, a
value of around 3 ~ 10 mm/frame? indicates human motion that are smooth. When there is
no ground-truth motion available, the joint acceleration serves as a proxy measurement for
physical realism.



* Freq. (%): frequency of penetration measures how often a scene or ground penetration of
more than 100 mm occurs. We obtain the scene penetration measurement by using the mesh
vertices obtained from the SMPL body model.

* Pen (mm): penetration measures the mean absolute values of the penetrated vertices in the
scene / ground, similar to the penetration metric in SimPOE [16].

* MPJPE (mm): mean per-joint position error is a popular pose-based metric that measures
how well the estimated joint matches the ground-truth MoCap joint locations. This metric is
calculated in a root-relative fashion where the root joint (#0, as shown in Fig.1 is aligned.

* PA-MPJPE (mm): mean per-joint position error after procrustes alignment.

* A-MPJPE (mm): absolute mean per-joint position error measures the absolute (non root-
relative) joint position error in the world coordinate frame.

C.2 Modified Scenes

Figure 2: Comparison between the
scanned scene and our modified scene

As described in Sec.3.2, we make modified scenes based
on the scanned meshes to better approximate the actual

3D scene. Due to the inaccuracy of scanning procedures
and point cloud to mesh algorithms, the scanned meshes
are often bulkier than the real environment. As a result,
the gaps between chairs and tables are often too small in

based on simple shapes. Notice that the
scanned scene has much thicker chairs
and tables, which leave smaller gaps for
the agent to sit down.

the mesh form, as visualized in Fig. 2. These inaccuracies
can often cause the humanoid to get stuck between chairs
and tables when trying to follow the 2D observations. To
resolve this issue, we created modified scenes from the
scanned meshes to better match the videos. We create
these scenes semi-automatically by selecting keypoints in
the mesh vertices and create rectangular cuboids and cylin-
ders. Another advantage of using these modified scenes
is that the signed distance functions for these modified
geoms can be computed efficiently. Modified scenes are
created for all scenes from the Prox and H36M datasets. All scenes are visualized in Fig.??.

B 1. BN

C.3 Clarification about evaluation on H36M

We conduct quantitative evaluations on the H36M dataset, as shown in Table ??. Since we do not
make use of a joint regressor, we cannot perform the standard evaluation using the 14 joints commonly
used for the evaluation on the H36M dataset. Instead, we use the 12 joints defined in Sec.B.1 to
calculate MPJPE and A-MPJPE. As input, we use the same set of 12 2D keypoints. The 2D keypoints
are estimated using a pre-trained DEKR [2] without additional fine-tuning on the H36M dataset.
Our method only uses a sparse set of detected 2D keypoints (12 keypoints) as input and does not
directly use any image feature. We also evaluate a different subset of 3D keypoints, as our use of
forward kinematics FKg causes our joint definition to be different from prior works. For quantitative
results, please refer to our supplementary video. This experiment also shows our method’s ability to
estimate pose in a generic setting where there are almost no scene elements (except for the ground
and sporadically a chair).

D Implementation Details

D.1 Shape-based Universal Humanoid Controller

We extend the universal humanoid controller (UHC) proposed in Kin_poly [9] to also support
humanoids with different body shapes. Specifically, we added the shape and gender parameter H =
(8, gender) to the state space of UHC to form our body shape conditioned UHC: mypc(a¢|st, Gy, H)-
In the original UHC, the body shape information is discarded during training, and the policy is learned
using a humanoid based on the mean SMPL body shape. In ours, we create different humanoids for
each body shape during training using the ground-truth body shape annotation from AMASS. In this
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Figure 3: Network architecture for our scene-aware kinematic policy

way, we can learn a humanoid controller that can control humanoids with different body shapes. The
action space and policy network architecture, and the reward function remain the same.

Training procedure. We train on the training split of the AMASS dataset [10] and remove motion
sequences that involve human-object interactions (such as stepping on stairs or leaning on tables).
This results in 11402 high-quality motion sequences. At the beginning of each episode, we sample a
fixed-length sequence (maximum length 300 frames) to train our motion controller. Reference state
initialization [14] is uesed to randomly choose the starting point for our sampled sequence and we
terminate the simulation if the simulated character deviates too far from the reference motion g¥. To
choose which motion sequence to learn from, we employ a hard-negative mining technique based on

the success rate of the sequence during training. For each motion sequence Q% = qo, . . . , g, We
maintain a history queue (of maximum length 50) for the most recent times the sequence is sampled:
hi,...h%, where each hj is a Boolean variable indicating whether the controller has successfully
imitated the sequence during training. We compute the expected success rate s’ of the sequence
based on the exponentially weighted moving average using the history s = ewma(ht,...h;).
i . .. i exp(—s'/T
The probability of sampling sequence ¢ is then P (Q ) = %

parameter. Intuitively, the more we fail at imitating a sequence, the more likely we will sample it.

where 7 is a temperature

D.2 Embodied Scene-aware Kinematic Policy

Network Architecture and Hyperparameters Our kinematic policy is an RNN-based policy with
multiplicative compositional control [13]. It consists of a Gated Recurrent Unit (GRU)[1] based
feature extractor to provide memory for our policy. Then, 6 primitives Tk are used to provide
a diverse set of pose estimates based on 2D observation ¢, (MPG) and current body state s;. We
process the environmental features separately from the pose features due to its high dimensionality,

using an MLP ;. The output of S;, concatenated with the RNN output, is fed into a composer Ty’

Table 1: Hyperparameters for our scene-aware kinematic policy.

Batch Size Learning Rate Voxel grid WL Wprior
Value 5000 5x 1074 16 x 16 x 16 5 0.0001
TCN window MPG - #steps MLP-hidden RNN-hidden  # primitives
Value 81 5 [1024, 512, 256] 512 6
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Figure 4: Visualization of a randomly sampled motion sequence and paired 2D keypoints for training.
Here, we sample from the AMASS dataset (sequence name in the caption).

to produce the action weights. Intuitively, the primitive produces potential body movement based
on the 2D observation and current body pose. Then, the composer chooses plausible action based
on the environmental features. The detailed data flow of our policy is visualized in Fig. 3. The
hyperparameters we used for training are shown in Table 1.

Training procedure. To train our kinematic policy, we sample motion sequences from AMASS
[10], H36M [5], and Kin_poly [8] to generate synthetic paired 2D keypoints. To learn a network
that is more robust to 2D keypoints detected from real videos, we randomly sample confidence from
a uniform [0, 1] distribution as the detection confidence. Keypoints with confidence < 0.1 will be
omitted in our model. For each episode, we randomly sample a sequence, randomly change its
heading, and sample a valid starting point in the camera frustum as visualized in Fig.??. We constrain
the newly sampled sequence to be always visible in the image plane and re-sample if not. With a
probability of 0.5, we also sample a random scene from the PROX dataset to let our agent learn
human-scene interactions. Although the randomly sampled motion sequence does not always yield
reasonable human-scene interactions (e.g. the reference motion may walk through a chair), collision
and physics simulation will stop our agent automatically. In this way, our agent can learn to use the
scene interaction term based on acting inside the scene.

E Broader Social Impact

This research focuses on estimating physically valid human poses from monocular videos. Such
a method can be positively used for animation, telepresence, at home robotics, etc. where natural
looking human pose can be served as the basis for higher-level methods. It can also lead to malicious
use cases, such as illegal surveillance and video synthesis. As our method focuses on fast and causal
inference, it is possible to significantly improve its speed and deploy it to real-time scenarios. Thus,
it is essential to deploy these algorithms with care and make sure that the extracted human poses are
with consent and not misused.
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