
Supplementary Material
Adversarial Attack Generation Empowered by Min-Max Optimization

Abstract

In this supplementary material, we first provide technical proofs of Proposition 1
and Lemma 1 in Sec A and B. We then discuss the proposed AMPGD algorithm in
Sec C. In the next section, we show the details of experimental setup including the
model architectures and training details in Sec D.1, the hyperparameters to craft
the adversarial examples (Sec D.2), the details of data transformations (Sec D.3).
Then we show additional experiments results for robust adversarial attacks (Sec E)
and generalized adversarial training (Sec F). Finally, we provide more visualiza-
tions to show that domain weights w provide a holistic tool to interpret “image
robustness” in Sec G. The summary of contents in the supplementary is provided
in the following.

Contents

A Proof of Proposition 1 16

B Proof of Lemma 1 18

C Alternating Multi-step PGD (AMPGD) for Generalized AT 19

D Experiment Setup 20
D.1 Model Architectures and Training Details . 20

D.2 Crafting Adversarial Examples . 20

D.3 Details of Conducted Data Transformations . 21

E Additional Experiment Results - Robust adversarial attacks 22
E.1 Ensemble Attack over Multiple Models . 22

E.2 Robust Adversarial Attack over Data Transformations 22

E.3 Analysis of Regularization on Probability Simplex 22

F Additional Experiment Results - Adversarial training against multiple types of adver-
sarial attacks 23

G Interpreting “Image Robustness” with Domain Weights w 25

15

A Proof of Proposition 1

Proposition 1. Given a point a 2 Rd
and a constraint set X = {�|k�kp  ✏, č  �  ĉ}, the

Euclidean projection �⇤ = projX (a) has the closed-form solution when p 2 {0, 1, 2}.

1) If p = 1, then �⇤ is given by

�
⇤
i
=

⇢
P[či,ĉi](ai)

P
d

i=1 |P[či,ĉi](ai)|  ✏

P[či,ĉi](sign(ai)max {|ai|� �1, 0}) otherwise,
(14)

where xi denotes the ith element of a vector x; P[či,ĉi](·) denotes the clip function over the in-

terval [či, ĉi]; sign(x) = 1 if x � 0, otherwise 0; �1 2 (0,maxi |ai| � ✏/d] is the root ofP
d

i=1 |P[či,ĉi](sign(ai)max {|ai|� �1, 0})| = ✏.

2) If p = 2, then �⇤ is given by

�
⇤
i
=

⇢
P[či,ĉi](ai)

P
d

i=1(P[či,ĉi](ai))
2
 ✏

2

P[či,ĉi] (ai/(�2 + 1)) otherwise,
(15)

where �2 2 (0, kak2/✏� 1] is the root of
P

d

i=1(P[či,ĉi](ai/(�2 + 1)))2 = ✏
2
.

3) If p = 0 and ✏ 2 N+, then �⇤ is given by

�
⇤
i
=

⇢
�
0
i

⌘i � [⌘]✏
0 otherwise,

⌘i =

8
<

:

p
2aiči � č2

i
ai < čip

2aiĉi � ĉ2
i

ai > ĉi

|ai| otherwise.

(16)

where [⌘]✏ denotes the ✏-th largest element of ⌘, and �
0
i
= P[či,ĉi](ai).

Proof of Proposition 1:

`1 norm When we find the Euclidean projection of a onto the set X , we solve

minimize
�

1
2k� � ak22 + I[č,ĉ](�)

subject to k�k1  ✏,
(17)

where I[č,ĉ](·) is the indicator function of the set [č, ĉ]. The Langragian of this problem is

L =
1

2
k� � ak22 + I[č,ĉ](�) + �1(k�k1 � ✏) (18)

=
dX

i=1

(
1

2
(�i � ai)

2 + �1|�i|+ I[či,ĉi](�i))� �1✏. (19)

The minimizer �⇤ minimizes the Lagrangian, it is obtained by elementwise soft-thresholding
�
⇤
i
= P[či,ĉi](sign(ai)max {|ai|� �1, 0}).

where xi is the ith element of a vector x, P[či,ĉi](·) is the clip function over the interval [či, ĉi].

The primal, dual feasibility and complementary slackness are

�1 = 0, k�k1 =
dX

i=1

|�i| =
dX

i=1

|P[či,ĉi](ai)|  ✏ (20)

or �1 > 0, k�k1 =
dX

i=1

|�i| =
dX

i=1

|P[či,ĉi](sign(ai)max {|ai|� �1, 0})| = ✏. (21)

If
P

d

i=1 |P[či,ĉi](ai)|  ✏, �⇤
i
= P[či,ĉi](ai). Otherwise �⇤

i
= P[či,ĉi](sign(ai)max {|ai|� �1, 0}),

where �1 is given by the root of the equation
P

d

i=1 |P[či,ĉi](sign(ai)max {|ai|� �1, 0})| = ✏.
Bisection method can be used to solve the above equation for �1, starting with the initial interval
(0,maxi |ai| � ✏/d]. Since

P
d

i=1 |P[či,ĉi](sign(ai)max {|ai|� 0, 0})| =
P

d

i=1 |P[či,ĉi](ai)| >

✏ in this case, and
P

d

i=1 |P[či,ĉi](sign(ai)max {|ai|�maxi |ai|+ ✏/d, 0})| 
P

d

i=1 |P[či,ĉi](sign(ai)(✏/d))| 
P

d

i=1(✏/d) = ✏.

16

`2 norm When we find the Euclidean projection of a onto the set X , we solve
minimize

�
k� � ak22 + I[č,ĉ](�)

subject to k�k22  ✏
2
,

(22)

where I[č,ĉ](·) is the indicator function of the set [č, ĉ]. The Langragian of this problem is
L = k� � ak22 + I[č,ĉ](�) + �2(k�k

2
2 � ✏

2) (23)

=
dX

i=1

((�i � ai)
2 + �2�

2
i
+ I[či,ĉi](�i))� �2✏

2
. (24)

The minimizer �⇤ minimizes the Lagrangian, it is

�
⇤
i
= P[či,ĉi](

1

�2 + 1
ai).

The primal, dual feasibility and complementary slackness are

�2 = 0, k�k22 =
dX

i=1

�
2
i
=

dX

i=1

(P[či,ĉi](ai))
2
 ✏

2 (25)

or �2 > 0, k�k22 =
dX

i=1

�
2
i
= (P[či,ĉi](

1

�2 + 1
ai))

2 = ✏
2
. (26)

If
P

d

i=1(P[či,ĉi](ai))
2
 ✏

2, �⇤
i
= P[či,ĉi](ai). Otherwise �⇤

i
= P[či,ĉi]

⇣
1

�2+1ai

⌘
, where �2 is

given by the root of the equation
P

d

i=1(P[či,ĉi](
1

�2+1ai))
2 = ✏

2. Bisection method can be used to

solve the above equation for �2, starting with the initial interval (0,
qP

d

i=1(ai)
2/✏ � 1]. Since

P
d

i=1(P[či,ĉi](
1

0+1ai))
2 =

P
d

i=1(P[či,ĉi](ai))
2
> ✏

2 in this case, and
P

d

i=1(P[či,ĉi](
1

�2+1ai))
2 =

P
d

i=1(P[či,ĉi](✏ai/
qP

d

i=1(ai)
2))2  ✏

2
P

d

i=1(ai)
2
/(
qP

d

i=1(ai)
2)2 = ✏

2.

`0 norm For `0 norm in X , it is independent to the box constraint. So we can clip a to the box
constraint first, which is �0

i
= P[či,ĉi](ai), and then project it onto `0 norm.

We find the additional Euclidean distance of every element in a and zero after they are clipped to the
box constraint, which is

⌘i =

8
><

>:

p
a2
i
� (ai � či)2 ai < čip

a2
i
� (ai � ĉi)2 ai > ĉi

|ai| otherwise.
(27)

It can be equivalently written as

⌘i =

8
<

:

p
2aiči � č2

i
ai < čip

2aiĉi � ĉ2
i

ai > ĉi

|ai| otherwise.
(28)

To derive the Euclidean projection onto `0 norm, we find the ✏-th largest element in ⌘ and call it [⌘]✏.
We keep the elements whose corresponding ⌘i is above or equals to ✏-th, and set rest to zeros. The
closed-form solution is given by

�
⇤
i
=

⇢
�
0
i

⌘i � [⌘]✏
0 otherwise. (29)

⇤
Difference with [25, Proposition 4.1]. We remark that [25] discussed a relevant problem of gener-
ating `p-norm based adversarial examples under box and linearized classification constraints. The
key difference between our proof and that of [25, Proposition 4.1] is summarized below. First, we
place `p norm as a hard constraint rather than minimizing it in the objective function. This difference
will make our Lagrangian function more involved with a newly introduced non-negative Lagrangian
multiplier. Second, the problem of our interest is projection onto the intersection of box and `p
constraints. Such a projection step can then be combined with an attack loss (no need of linearization)
for generating adversarial examples. Third, we cover the case of `0 norm.

17

B Proof of Lemma 1

Lemma 1. Problem (11) is equivalent to

minimize
✓

E(x,y)2D maximize
w2P,{�i2Xi}

KX

i=1

wiftr(✓, �i;x, y),

where w 2 RK
represent domain weights, and P has been defined in (1).

Proof of Lemma 1:
Similar to (1), problem (11) is equivalent to

minimize
✓

E(x,y)2D maximize
w2P

KX

i=1

wiFi(✓). (30)

Recall that Fi(✓) := maximize�i2Xi ftr(✓, �i;x, y), problem can then be written as

minimize
✓

E(x,y)2D maximize
w2P

KX

i=1

[wi maximize
�i2Xi

ftr(✓, �i;x, y)]. (31)

According to proof by contradiction, it is clear that problem (31) is equivalent to

minimize
✓

E(x,y)2D maximize
w2P,{�i2Xi}

KX

i=1

wiftr(✓, �i;x, y). (32)

⇤

18

C Alternating Multi-step PGD (AMPGD) for Generalized AT

In this section, we present the full alternating multi-step projected gradient descent (AMPGD)
algorithm to solve the problem (13), which is repeated as follows

minimize
✓

E(x,y)2D maximize
w2P,{�i2Xi}

 (✓,w, {�i})

 (✓,w, {�i}) :=
P

K

i=1 wiftr(✓, �i;x, y)�
�

2 kw � 1/Kk
2
2

Algorithm 3 AMPGD to solve problem (13)
1: Input: given ✓(0), w(0), �(0) and K > 0.
2: for t = 1, 2, . . . , T do
3: given w(t�1) and �(t�1), perform SGD to update ✓(t)

4: given ✓(t), perform R-step PGD to update w(t) and �(t)

5: end for

Problem (13) is in a more general non-convex non-concave min-max setting, where the inner
maximization involves both domain weights w and adversarial perturbations {�i}. It was shown
in [46] that the multi-step PGD is required for inner maximization in order to approximate the
near-optimal solution. This is also in the similar spirit of AT [40], which executed multi-step PGD
attack during inner maximization. We summarize AMPGD in Algorithm 3. At step 4 of Algorithm 3,
each PGD step to update w and � can be decomposed as

w(t)
r

= projP

⇣
w(t)

r�1 + �rw (✓
(t)
,w(t)

r�1, {�
(t)
i,r�1})

⌘
, 8r 2 [R],

�(t)
i,r

= projXi

⇣
�(t)
i,r�1 + �r� (✓

(t)
,w(t)

r�1, {�
(t)
i,r�1})

⌘
, 8r, i 2 [R], [K]

where let w(t)
1 := w(t�1) and �(t)

i,1 := �(t�1)
i

. Here the superscript t represents the iteration index of
AMPGD, and the subscript r denotes the iteration index of R-step PGD. Clearly, the above projection
operations can be derived for closed-form expressions through (9) and Lemma 1. To the best of our
knowledge, it is still an open question to build theoretical convergence guarantees for solving the
general non-convex non-concave min-max problem like (13), except the work [46] which proposed
O(1/T) convergence rate if the objective function satisfies a strict Polyak-Łojasiewicz condition
[29].

19

D Experiment Setup

D.1 Model Architectures and Training Details

For a comprehensive evaluation of proposed algorithms, we adopt a set of diverse DNN models
(Model A to H), including multi-layer perceptrons (MLP), All-CNNs [61], LeNet [30], LeNetV23,
VGG16 [58], ResNet50 [24], Wide-ResNet [40] and GoogLeNet [63]. For the last four models, we
use the exact same architecture as original papers and evaluate them only on CIFAR-10 dataset. The
details for model architectures are provided in Table A1. For compatibility with our framework,
we implement and train these models based on the strategies adopted in pytorch-cifar4 and achieve
comparable performance on clean images; see Table A2. To foster reproducibility, all the trained
models are publicly accessible in the anonymous link. Specifically, we trained MNIST classifiers for
50 epochs with Adam and a constant learning rate of 0.001. For CIFAR-10 classifers, the models are
trained for 250 epochs with SGD (using 0.8 nesterov momentum, weight decay 5e�4). The learning
rate is reduced at epoch 100 and 175 with a decay rate of 0.1. The initial learning rate is set as 0.01
for models {A, B, C, D, H} and 0.1 for {E, F, G}. Note that no data augmentation is employed in the
training.

Table A1: Neural network architectures used on the MNIST and CIFAR-10 dataset. Conv: convolu-
tional layer, FC: fully connected layer, Globalpool: global average pooling layer.

A (MLP) B (All-CNNs [61]) C (LeNet [30]) D (LeNetV2)

FC(128) + Relu Conv([32, 64], 3, 3) + Relu Conv(6, 5, 5) + Relu Conv(32, 3, 3) + Relu
FC(128) + Relu Conv(128, 3, 3) + Dropout(0.5) Maxpool(2, 2) Maxpool(2, 2)
FC(64) + Relu Conv([128, 128], 3, 3) + Relu Conv(16, 5, 5) + Relu Conv(64, 3, 3) + Relu

FC(10) Conv(128, 3, 3) + Dropout(0.5) Maxpool(2, 2) Maxpool(2, 2)
Softmax Conv(128, 3, 3) + Relu FC(120) + Relu FC(128) + Relu

Conv(128, 1, 1) + Relu FC(84) + Relu Dropout(0.25)
Conv(10, 1, 1) + Globalpool FC(10) FC(10)

Softmax Softmax Softmax

E (VGG16 [58]) F (ResNet50 [24]) G (Wide-ResNet [40]) H (GoogLeNet [63])

Table A2: Clean test accuracy of DNN models on MNIST and CIFAR-10. We roughly derive the
model robustness by attacking models separately using FGSM [23]. The adversarial examples are
generated by FGSM `1-attack (✏ = 0.2).

MNIST CIFAR-10

Model Acc. FGSM Model Acc. FGSM Model Acc. FGSM

A: MLP 98.20% 18.92% A: MLP 55.36% 11.25% E: VGG16 87.57% 10.83%
B: All-CNNs 99.49% 50.95% B: All-CNNs 84.18% 9.89% F: ResNet50 88.11% 10.73%
C: LeNet 99.25% 63.23% C: LeNet 64.95% 14.45% G: Wide-ResNet 91.67% 15.78%
D: LeNetV2 99.33% 56.36% D: LeNetV2 74.89% 9.77% H: GoogLeNet 90.92% 9.91%

D.2 Crafting Adversarial Examples

We adopt variant C&W loss in APGDA/PGD as suggested in [40, 13] with a confidence parameter
 = 50. Cross-entropy loss is also supported in our implementation. The adversarial examples are
generated by 20-step PGD/APGDA unless otherwise stated (e.g., 50 steps for ensemble attacks). Note
that proposed algorithms are robust and will not be affected largely by the choices of hyperparameters
(↵,�, �). In consequence, we do not finely tune the parameters on the validation set. Specifically,
The learning rates ↵,� and regularization factor � for Table 1 are set as - `0 : ↵ = 1,� = 1

100 , � = 7,
`1 : ↵ = 1

4 ,� = 1
100 , � = 5, `2 : ↵ = 1

10 ,� = 1
100 , � = 3; `1 : ↵ = 1

4 ,� = 1
50 , � = 3. For

Table 3, the hyper-parameters are set as `0 : ↵ = 1,� = 1
150 , � = 1, `1 : ↵ = 1

4 ,� = 1
100 , � = 5,

`2 : ↵ = 1
8 ,� = 1

100 , � = 3; `1 : ↵ = 1
5 ,� = 1

50 , � = 6.

3An enhanced version of original LeNet with more layers and units (see Table A1 Model D).
4https://github.com/kuangliu/pytorch-cifar

20

https://github.com/kuangliu/pytorch-cifar

Due to varying model robustness on different datasets, the perturbation magnitudes ✏ are set sepa-
rately [11]. For universal perturbation experiments, the ✏ are set as 0.2 (A, B), 0.3 (C) and 0.25 (D) on
MNIST; 0.02 (B, H), 0.35 (E) and 0.05 (D) on CIFAR-10. For generalized AT, the models on MNIST
are trained following the same rules in last section, except that training epochs are prolonged to 350
and adversarial examples are crafted for assisting the training with a ratio of 0.5. Our experiment
setup is based on CleverHans package5 and Carlini and Wagner’s framework6.

D.3 Details of Conducted Data Transformations

To demonstrate the effectiveness of APGDA in generating robust adversarial examples against
multiple transformations, we adopt a series of common transformations, including a&b) flipping
images horizontally (flh) and vertically (flv); c) adjusting image brightness (bri); d) performing
gamma correction (gam), e) cropping and re-sizing images (crop); f) rotating images (rot).

Moreover, both deterministic and stochastic transformations are considered in our experiments. In
particular, Table 7 and Table A5 are deterministic settings - rot: rotating images 30 degree clockwise;
crop: cropping images in the center (0.8 ⇥ 0.8) and resizing them to 32 ⇥ 32; bri: adjusting the
brightness of images with a scale of 0.1; gam: performing gamma correction with a value of 1.3.
Differently, in Table A4, we introduce randomness for drawing samples from the distribution - rot:
rotating images randomly from -10 to 10 degree; crop: cropping images in the center randomly
(from 0.6 to 1.0); other transformations are done with a probability of 0.8. In experiments, we adopt
tf.image API 7 for processing the images.

5https://github.com/tensorflow/cleverhans
6https://github.com/carlini/nn_robust_attacks
7https://www.tensorflow.org/api_docs/python/tf/image

21

https://github.com/tensorflow/cleverhans
https://github.com/carlini/nn_robust_attacks
https://www.tensorflow.org/api_docs/python/tf/image

E Additional Experiment Results - Robust adversarial attacks

E.1 Ensemble Attack over Multiple Models

Table 3 and A3 shows the performance of average (ensemble PGD [34]) and min-max (APGDA)
strategies for attacking model ensembles. Our min-max approach results in 19.27% and 15.69%
averaged improvement on ASRall over models {A, B, C, D} and {A, E, F, H} on CIFAR-10.

Table A3: Comparison of average and min-max (APGDA) ensemble attack over models {A, E,
F, H} on CIFAR-10. Acc (%) represents the test accuracy of classifiers on adversarial examples.
The learning rates ↵,� and regularization factor � are set as - `0 : ↵ = 1,� = 1

150 , � = 1,
`1 : ↵ = 1

4 ,� = 1
100 , � = 5, `2 : ↵ = 1

8 ,� = 1
100 , � = 3; `1 : ↵ = 1

5 ,� = 1
50 , � = 6. The attack

iteration for APGDA is set as 50.

Box constraint Opt. AccA AccE AccF AccH ASRall Lift (")

`0 (✏ = 70) avg. 27.38 6.33 7.18 6.99 66.56 -
minmax 19.38 8.72 9.48 8.94 73.83 10.92%

`1 (✏ = 30) avg. 30.90 2.06 1.85 1.84 66.23 -
minmax 12.56 3.21 2.70 2.72 83.13 25.52%

`2 (✏ = 1.5) avg. 20.87 1.75 1.21 1.54 76.41 -
minmax 10.26 3.15 2.24 2.37 84.99 11.23%

`1 (✏ = 0.03) avg. 25.75 2.59 1.66 2.27 70.54 -
minmax 13.47 3.79 3.15 3.48 81.17 15.07%

To perform a boarder evaluation, we repeat the above experiments (`1 norm) under different ✏ in
Figure A1. The ASR of min-max strategy is consistently better or on part with the average strategy.
Moreover, APGDA achieves more significant improvement when moderate ✏ is chosen: MNIST
(✏ 2 [0.15, 0.25]) and CIFAR-10 (✏ 2 [0.03, 0.05]).

(a) MNIST {A, B, C} (b) CIFAR-10 {A, B, C}

Figure A1: ASR of average and min-max `1 ensemble attack versus maximum perturbation magni-
tude ✏.

E.2 Robust Adversarial Attack over Data Transformations

Table A4 compare the performance of average (EOT [5]) and min-max (APGDA) strategies. Our
approach results in 4.31% averaged lift over four models {A, B, C, D} on CIFAR-10 under given
stochastic and deterministic transformation sets.

E.3 Analysis of Regularization on Probability Simplex

To further explore the utility of quadratic regularizer on the probability simplex in proposed min-max
framework, we conducted sensitivity analysis on � and show how the proposed regularization affects
the eventual performance (Figure A2a) taking ensemble attack as an example. The experimental
setting is the same as Table 1 except for altering the value of � from 0 to 10. Figure A2a shows that
too small or too large � leads to relative weak performance due to the unstable convergence and
penalizing too much for average case. When � is around 4, APGDA will achieve the best performance
so we adopted this value in the experiments (Table 1). Moreover, when � ! 1, the regularizer term
dominates the optimization objective and it becomes the average case.

22

Table A4: Comparison of average and min-max optimization on robust attack over multiple data
transformations on CIFAR-10. Note that all data transformations are conducted stochastically with
a probability of 0.8, except for crop which randomly crops a central area from original image and
re-size it into 32⇥ 32. The adversarial examples are generated by 20-step `1-APGDA (✏ = 0.03)
with ↵ = 1

2 ,� = 1
100 and � = 10.

Model Opt. Accori Accflh Accflv Accbri Acccrop ASRavg ASRgp Lift (")

A avg. 11.55 21.60 13.64 12.30 22.37 83.71 55.97 -
minmax 13.06 18.90 13.43 13.90 20.27 84.09 59.17 5.72%

B avg. 6.74 11.55 10.33 6.59 18.21 89.32 69.52 -
minmax 8.19 11.13 10.31 8.31 16.29 89.15 71.18 2.39%

C avg. 8.23 17.47 13.93 8.54 18.83 86.60 58.85 -
minmax 9.68 13.45 13.41 9.95 18.23 87.06 61.63 4.72%

D avg. 8.67 19.75 11.60 8.46 19.35 86.43 60.96 -
minmax 10.43 16.41 12.14 10.15 17.64 86.65 63.64 4.40%

Table A5: Comparison of average and min-max optimization on robust attack over multiple data
transformations on CIFAR-10. Here a new rotation (rot) transformation is introduced, where images
are rotated 30 degrees clockwise. Note that all data transformations are conducted with a probability of
1.0. The adversarial examples are generated by 20-step `1-APGDA (✏ = 0.03) with ↵ = 1

2 ,� = 1
100

and � = 10.

Model Opt. Accori Accflh Accflv Accbri Accgam Acccrop Accrot ASRavg ASRgp Lift (")

A avg. 11.06 22.37 14.81 12.32 10.92 20.40 15.89 84.60 49.24 -
minmax 13.51 18.84 14.03 15.20 13.00 18.03 14.79 84.66 52.31 6.23%

B avg. 5.55 11.96 9.97 5.63 5.94 16.42 11.47 90.44 65.18 -
minmax 6.75 9.13 10.56 6.72 7.11 12.23 10.80 90.96 70.38 7.98%

C avg. 7.65 22.30 15.82 8.17 8.07 15.44 15.09 86.78 49.67 -
minmax 9.05 15.10 14.57 9.57 9.31 14.11 14.23 87.72 55.37 11.48%

D avg. 8.22 20.88 13.49 7.91 8.71 16.33 14.98 87.07 53.52 -
minmax 10.17 14.65 13.62 10.03 10.35 14.36 13.82 87.57 57.36 7.17%

F Additional Experiment Results - Adversarial training against multiple
types of adversarial attacks

Figure A2: Sensitivity analysis of the regularizer
�

2 kw � 1/Kk
2
2 on the probability simplex. The

experimental setting is the same as Table 1 except
for altering the value of �.

Adversarial Training Details: Following the
state-of-the-art approach MSD [41], we present
experimental results of generalized AT to
achieve simultaneous robustness to `1, `2, and
`1 perturbations on the MNIST and CIFAR-10
datasets. Specifically, we adopted the same ar-
chitectures as [41] four layer convolutional net-
works on MNIST and the pre-activation version
of the ResNet18 [24]. The perturbation radius ✏
for (`1, `2, `1) balls is set as (0.3, 2.0, 10) and
(0.03, 0.5, 12) on MNIST and CIFAR-10 follow-
ing [41]. For MNIST models, all models are
trained 15 epochs with the Adam optimizer. We
used a variation of the learning rate schedule
from [60] - piecewise linear schedule from 0 to
10�3 over the first 6 epochs, and down to 0 over
the last 9 epochs. For CIFAR-10 models, we
trained all the models for 50 epochs and used the SGD optimizer with momentum 0.9 and weight
decay 5⇥ 10�4. The learning rate schedule rate is piecewise linear from 0 to 0.1 over the first 20
epochs, down to 0.005 over the next 20 epochs, and finally back down to 0 in the last 10 epochs.

23

Evaluation Setup: To make fair comparisons with MSD [41], we implemented AMPGD based on
the public codebase8 and followed the exact evaluation settings. Specifically, for `1 attacks, we use
FGSM [22], PGD attack [40] and Momentum Iterative Method [19]. For `2 attacks, we use PGD
attack, the Gaussian noise attack [52], the boundary attack [9] (Brendel et al., 2017), DeepFool [45],
the pointwise attack [55], DDN-based attack [54] and C&W attack [13]. For `1 attacks, we use
the `1 PGD attack, the salt & pepper attack [52] and the pointwise attack [55]. Moreover, we also
incorporate the state-of-the-art AutoAttack [18] for a more comprehensive evaluation under mixed `p
perturbations.

Experimental Results: The complete adversarial accuracy results on `p attacks and the union
of them are shown in Table A6. As we can see, our AMPGD approach leads to a consistent and
significant improvement on MNIST. Compared to MSD, we found that our AMPGD emphasize more
on defending the strongest adversary - `1 PGD thus avoiding biased by one particular perturbation
model. This observation is also consistent to the learning curves in Figure 3.

Table A6: Summary of adversarial robustness on MNIST.

L1-AT L2-AT L1-AT MAX [65] AVG [65] MSD [41] AMPGD

Clean Accuracy 99.1% 99.2% 99.3% 98.6% 99.1% 98.3% 98.3%

`1 Attacks (✏ = 0.3) [41] 90.3% 0.4% 0.0% 51.0% 65.2% 62.7% 76.1%
`2 Attacks (✏ = 2.0) [41] 13.6% 69.2% 38.5% 61.9% 60.1% 67.9% 70.2%
`1 Attacks (✏ = 10) [41] 4.2% 43.4% 70.0% 52.6% 39.2% 65.0% 67.2%
All Attacks [41] 3.7% 0.4% 0.0% 42.1% 34.9% 58.4% 64.1%
AA (`1, ✏ = 0.3) [18] 89.5% 0.0% 0.0% 55.0% 52.8% 56.6% 74.4%
AA (`2, ✏ = 2.0) [18] 3.5% 67.6% 37.3% 56.9% 55.8% 68.1% 63.8%
AA (`1, ✏ = 10) [18] 2.4% 60.1% 71.9% 46.5% 40.7% 70.0% 60.5%
AA (all attacks) [18] 1.7% 0.0% 0.0% 36.9% 30.5% 55.9% 59.3%
AA+ (`1, ✏ = 0.3) [18] 89.6% 0.0% 0.0% 54.4% 52.4% 55.7% 74.3%
AA+ (`2, ✏ = 2.0) [18] 2.1% 67.4% 36.8% 55.9% 53.8% 67.3% 61.9%
AA+ (`1, ✏ = 10) [18] 1.8% 60.4% 71.4% 42.3% 36.7% 68.6% 59.8%
AA+ (all attacks) [18] 1.2% 0.0% 0.0% 34.3% 28.8% 54.8% 58.3%

8https://github.com/locuslab/robust_union

24

https://github.com/locuslab/robust_union

G Interpreting “Image Robustness” with Domain Weights w

Tracking domain weight w of the probability simplex from our algorithms is an exclusive feature
of solving problem 1. In Sec. 4, we show the strength of w in understanding the procedure of
optimization and interpreting the adversarial robustness. Here we would like to show the usage of
w in measuring “image robustness” on devising universal perturbation to multiple input samples.
Table A7 and A8 show the image groups on MNIST with weight w in APGDA and two metrics
(distortion of `2-C&W, minimum ✏ for `1-PGD) of measuring the difficulty of attacking single
images. The binary search is utilized to searching for the minimum perturbation.

Although adversaries need to consider a trade-off between multiple images while devising universal
perturbation, we find that weighting factor w in APGDA is highly correlated under different `p norms.
Furthermore, w is also highly related to minimum distortion required for attacking a single image
successfully. It means the inherent “image robustness” exists and effects the behavior of generating
universal perturbation. Larger weight w usually indicates an image with higher robustness (e.g.,
fifth ’zero’ in the first row of Table A7), which usually corresponds to the MNIST letter with clear
appearance (e.g., bold letter).

25

Table A7: Interpretability of domain weight w for universal perturbation to multiple inputs on
MNIST (Digit 0 to 4). Domain weight w for different images under `p-norm (p = 0, 1, 2,1) and two
metrics measuring the difficulty of attacking single image are recorded, where dist. (`2) denotes the
the minimum distortion of successfully attacking images using C&W (`2) attack; ✏min (`1) denotes
the minimum perturbation magnitude for `1-PGD attack.

Image

Weight

`0 0. 0. 0. 0. 1.000 0.248 0.655 0.097 0. 0.
`1 0. 0. 0. 0. 1.000 0.07 0.922 0. 0. 0.
`2 0. 0. 0. 0. 1.000 0.441 0.248 0.156 0.155 0.
`1 0. 0. 0. 0. 1.000 0.479 0.208 0.145 0.168 0.

Metric dist.(C&W `2) 1.839 1.954 1.347 1.698 3.041 1.545 1.982 2.178 2.349 1.050
✏min (`1) 0.113 0.167 0.073 0.121 0.199 0.167 0.157 0.113 0.114 0.093

Image

Weight

`0 0. 0. 0.613 0.180 0.206 0. 0. 0.223 0.440 0.337
`1 0. 0. 0.298 0.376 0.327 0. 0. 0.397 0.433 0.169
`2 0. 0. 0.387 0.367 0.246 0. 0.242 0.310 0.195 0.253
`1 0.087 0.142 0.277 0.247 0.246 0. 0.342 0.001 0.144 0.514

Metric dist.(C&W `2) 1.090 1.182 1.327 1.458 0.943 0.113 1.113 1.357 1.474 1.197
✏min (`1) 0.075 0.068 0.091 0.105 0.096 0.015 0.090 0.076 0.095 0.106

Image

Weight

`0 0. 1.000 0. 0. 0. 0. 0. 0.909 0. 0.091
`1 0. 1.000 0. 0. 0. 0. 0. 0.843 0. 0.157
`2 0. 0.892 0. 0. 0.108 0. 0. 0.788 0. 0.112
`1 0. 0.938 0. 0. 0.062 0. 0. 0.850 0. 0.150

Metric dist.(C&W `2) 1.335 2.552 2.282 1.229 1.884 1.928 1.439 2.312 1.521 2.356
✏min (`1) 0.050 0.165 0.110 0.083 0.162 0.082 0.106 0.176 0.072 0.171

Image

Weight

`0 0.481 0. 0.378 0. 0. 0. 0.352 0. 0. 0.648
`1 0.690 0. 0.310 0. 0. 0. 0.093 0.205 0. 0.701
`2 0.589 0.069 0.208 0. 0.134 0.064 0.260 0.077 0. 0.600
`1 0.864 0. 0.084 0. 0.052 0.079 0.251 0.156 0. 0.514

Metric dist.(C&W `2) 2.267 1.656 2.053 1.359 0.861 1.733 1.967 1.741 1.031 2.413
✏min (`1) 0.171 0.088 0.143 0.117 0.086 0.100 0.097 0.096 0.038 0.132

Image

Weight

`0 0. 0. 0.753 0. 0.247 0. 0. 0. 1.000 0.
`1 0.018 0. 0.567 0. 0.416 0.347 0. 0. 0.589 0.063
`2 0. 0. 0.595 0. 0.405 0.346 0. 0. 0.654 0.
`1 0. 0. 0.651 0. 0.349 0.239 0. 0. 0.761 0.

Metric dist.(C&W `2) 1.558 1.229 1.939 0.297 1.303 0.940 1.836 1.384 1.079 2.027
✏min (`1) 0.084 0.088 0.122 0.060 0.094 0.115 0.103 0.047 0.125 0.100

26

Table A8: Interpretability of domain weight w for universal perturbation to multiple inputs on MNIST
(Digit 5 to 9). Domain weight w for different images under `p-norm (p = 0, 1, 2,1) and two metrics
measuring the difficulty of attacking single image are recorded, where dist. (`2) denotes the the
minimum distortion of successfully attacking images using C&W (`2) attack; ✏min (`1) denotes the
minimum perturbation magnitude for `1-PGD attack.

Image

Weight

`0 0. 0.062 0.254 0. 0.684 0.457 0. 0. 0.542 0.
`1 0.131 0.250 0. 0. 0.619 0.033 0.157 0.005 0.647 0.158
`2 0.012 0.164 0.121 0. 0.703 0.161 0.194 0. 0.508 0.136
`1 0.158 0.008 0.258 0. 0.576 0.229 0.179 0. 0.401 0.191

Metric dist. (`2) 1.024 1.532 1.511 1.351 1.584 1.319 1.908 1.020 1.402 1.372
✏min (`1) 0.090 0.106 0.085 0.069 0.144 0.106 0.099 0.0748 0.131 0.071

Image

Weight

`0 0.215 0. 0. 0.194 0.590 0.805 0. 0. 0.195 0.
`1 0.013 0. 0. 0.441 0.546 0.775 0. 0. 0.225 0.
`2 0.031 0. 0. 0.410 0.560 0.767 0. 0. 0.233 0.
`1 0. 0. 0. 0.459 0.541 0.854 0. 0. 0.146 0.

Metric dist. (`2) 1.199 0.653 1.654 1.156 1.612 2.158 0. 1.063 1.545 0.147
✏min (`1) 0.090 0.017 0.053 0.112 0.158 0.159 0.020 0.069 0.145 0.134

Image

Weight

`0 0.489 0. 0. 0.212 0.298 0.007 0.258 0.117 0.482 0.136
`1 0.525 0.190 0. 0.215 0.070 0.470 0.050 0.100 0.343 0.038
`2 0.488 0.165 0. 0.175 0.172 0.200 0.175 0.233 0.378 0.014
`1 0.178 0.263 0. 0.354 0.205 0.258 0.207 0.109 0.426 0.

Metric dist. (`2) 1.508 1.731 1.291 1.874 1.536 1.719 2.038 1.417 2.169 0.848
✏min (`1) 0.110 0.125 0.089 0.126 0.095 0.087 0.097 0.084 0.135 0.077

Image

Weight

`0 0. 0. 1.000 0. 0. 0.246 0. 0. 0. 0.754
`1 0. 0.180 0.442 0.378 0. 0.171 0. 0. 0. 0.829
`2 0. 0.298 0.593 0.109 0. 0.330 0. 0. 0. 0.670
`1 0. 0.377 0.595 0.028 0. 0.407 0. 0. 0. 0.593

Metric dist. (`2) 1.626 1.497 1.501 1.824 0.728 1.928 1.014 1.500 1.991 1.400
✏min (`1) 0.070 0.153 0.156 0.156 0.055 0.171 0.035 0.090 0.170 0.161

Image

Weight

`0 1. 0. 0. 0. 0. 0. 0.665 0.331 0. 0.004
`1 0.918 0. 0.012 0. 0.070 0. 0.510 0.490 0. 0.
`2 0.911 0. 0.089 0. 0. 0. 0.510 0.490 0. 0.
`1 0.935 0. 0.065 0. 0. 0. 0.665 0.331 0. 0.004

Metric dist. (`2) 1.961 1.113 1.132 1.802 0.939 1.132 1.508 1.335 1.033 1.110
✏min (`1) 0.144 0.108 0.083 0.103 0.079 0.041 0.090 0.103 0.083 0.044

27

	Introduction
	Related work

	Min-Max Across Domains
	Min-Max Power in Attack Design
	A Unified Framework for Robust Adversarial Attacks
	Min-Max Algorithm for Adversarial Attack Generation

	Experiments on Adversarial Exploration
	Experimental setup
	Ensemble Attack over Multiple Models
	Multi-Image Universal Perturbation
	Robust Attack over Data Transformations

	Extension: Understanding Defense over Multiple Perturbation Domains
	Adversarial Training under Mixed Types of Adversarial Attacks
	Generalized AT vs. Multiple p Attacks
	Additional Discussions

	Conclusion
	Proof of Proposition 1
	Proof of Lemma 1
	Alternating Multi-step PGD (AMPGD) for Generalized AT
	Experiment Setup
	Model Architectures and Training Details
	Crafting Adversarial Examples
	Details of Conducted Data Transformations

	Additional Experiment Results - Robust adversarial attacks
	Ensemble Attack over Multiple Models
	Robust Adversarial Attack over Data Transformations
	Analysis of Regularization on Probability Simplex

	Additional Experiment Results - Adversarial training against multiple types of adversarial attacks
	Interpreting “Image Robustness” with Domain Weights w

